1
|
Whelan L, Dockery A, Stephenson KAJ, Zhu J, Kopčić E, Post IJM, Khan M, Corradi Z, Wynne N, O' Byrne JJ, Duignan E, Silvestri G, Roosing S, Cremers FPM, Keegan DJ, Kenna PF, Farrar GJ. Detailed analysis of an enriched deep intronic ABCA4 variant in Irish Stargardt disease patients. Sci Rep 2023; 13:9380. [PMID: 37296172 PMCID: PMC10256698 DOI: 10.1038/s41598-023-35889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Over 15% of probands in a large cohort of more than 1500 inherited retinal degeneration patients present with a clinical diagnosis of Stargardt disease (STGD1), a recessive form of macular dystrophy caused by biallelic variants in the ABCA4 gene. Participants were clinically examined and underwent either target capture sequencing of the exons and some pathogenic intronic regions of ABCA4, sequencing of the entire ABCA4 gene or whole genome sequencing. ABCA4 c.4539 + 2028C > T, p.[= ,Arg1514Leufs*36] is a pathogenic deep intronic variant that results in a retina-specific 345-nucleotide pseudoexon inclusion. Through analysis of the Irish STGD1 cohort, 25 individuals across 18 pedigrees harbour ABCA4 c.4539 + 2028C > T and another pathogenic variant. This includes, to the best of our knowledge, the only two homozygous patients identified to date. This provides important evidence of variant pathogenicity for this deep intronic variant, highlighting the value of homozygotes for variant interpretation. 15 other heterozygous incidents of this variant in patients have been reported globally, indicating significant enrichment in the Irish population. We provide detailed genetic and clinical characterization of these patients, illustrating that ABCA4 c.4539 + 2028C > T is a variant of mild to intermediate severity. These results have important implications for unresolved STGD1 patients globally with approximately 10% of the population in some western countries claiming Irish heritage. This study exemplifies that detection and characterization of founder variants is a diagnostic imperative.
Collapse
Affiliation(s)
- Laura Whelan
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland.
| | - Adrian Dockery
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
- Next Generation Sequencing Laboratory, Pathology Department, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Kirk A J Stephenson
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Julia Zhu
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Ella Kopčić
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Iris J M Post
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Niamh Wynne
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - James J O' Byrne
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
- International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University Hospital, Dublin 7, Ireland
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Emma Duignan
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - Giuliana Silvestri
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Ophthalmology, The Royal Victoria Hospital, Belfast, Northern Ireland, UK
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - David J Keegan
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Paul F Kenna
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - G Jane Farrar
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
2
|
Majander A, Sankila EM, Falck A, Vasara LK, Seitsonen S, Kulmala M, Haavisto AK, Avela K, Turunen JA. Natural history and biomarkers of retinal dystrophy caused by the biallelic TULP1 variant c.148delG. Acta Ophthalmol 2023; 101:215-221. [PMID: 36128853 DOI: 10.1111/aos.15252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/19/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To report clinical features and potential disease markers of inherited retinal dystrophy (IRD) caused by the biallelic c.148delG variant in the tubby-like protein 1 (TULP1) gene. METHODS A retrospective observational study of 16 IRD patients carrying a homozygous pathogenic TULP1 c.148delG variant. Clinical data including fundus spectral-domain optical coherence tomography (SD-OCT) were assessed. A meta-analysis of visual acuity of previously reported other pathogenic TULP1 variants was performed for reference. RESULTS The biallelic TULP1 variant c.148delG was associated with infantile and early childhood onset IRD. Retinal ophthalmoscopy was primarily normal converting to peripheral pigmentary retinopathy and maculopathy characterized by progressive extra-foveal loss of the ellipsoid zone (EZ), the outer plexiform layer (OPL), and the outer nuclear layer (ONL) bands in the SD-OCT images. The horizontal width of the foveal EZ showed significant regression with the best-corrected visual acuity (BCVA) of the eye (p < 0.0001, R2 = 0.541, F = 26.0), the age of the patient (p < 0.0001, R2 = 0.433, F = 16.8), and mild correlation with the foveal OPL-ONL thickness (p = 0.014, R2 = 0.245, F = 7.2). Modelling of the BCVA data suggested a mean annual loss of logMAR 0.027. The level of visual loss was similar to that previously reported in patients carrying other truncating TULP1 variants. CONCLUSIONS This study describes the progression of TULP1 IRD suggesting a potential time window for therapeutic interventions. The width of the foveal EZ and the thickness of the foveal OPL-ONL layers could serve as biomarkers of the disease stage.
Collapse
Affiliation(s)
- Anna Majander
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eeva-Marja Sankila
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aura Falck
- Department of Ophthalmology, PEDEGO Research Unit and Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Laura Kristiina Vasara
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sanna Seitsonen
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maarit Kulmala
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna-Kaisa Haavisto
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kristiina Avela
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joni A Turunen
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Eye Genetics Group, Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
3
|
Bodenbender JP, Marino V, Bethge L, Stingl K, Haack TB, Biskup S, Kohl S, Kühlewein L, Dell’Orco D, Weisschuh N. Biallelic Variants in TULP1 Are Associated with Heterogeneous Phenotypes of Retinal Dystrophy. Int J Mol Sci 2023; 24:ijms24032709. [PMID: 36769033 PMCID: PMC9916573 DOI: 10.3390/ijms24032709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Biallelic pathogenic variants in TULP1 are mostly associated with severe rod-driven inherited retinal degeneration. In this study, we analyzed clinical heterogeneity in 17 patients and characterized the underlying biallelic variants in TULP1. All patients underwent thorough ophthalmological examinations. Minigene assays and structural analyses were performed to assess the consequences of splice variants and missense variants. Three patients were diagnosed with Leber congenital amaurosis, nine with early onset retinitis pigmentosa, two with retinitis pigmentosa with an onset in adulthood, one with cone dystrophy, and two with cone-rod dystrophy. Seventeen different alleles were identified, namely eight missense variants, six nonsense variants, one in-frame deletion variant, and two splice site variants. For the latter two, minigene assays revealed aberrant transcripts containing frameshifts and premature termination codons. Structural analysis and molecular modeling suggested different degrees of structural destabilization for the missense variants. In conclusion, we report the largest cohort of patients with TULP1-associated IRD published to date. Most of the patients exhibited rod-driven disease, yet a fraction of the patients exhibited cone-driven disease. Our data support the hypothesis that TULP1 variants do not fold properly and thus trigger unfolded protein response, resulting in photoreceptor death.
Collapse
Affiliation(s)
- Jan-Philipp Bodenbender
- Department for Ophthalmology, University Eye Hospital, University of Tübingen, 72076 Tübingen, Germany
- Correspondence: (J.-P.B.); (N.W.)
| | - Valerio Marino
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Leon Bethge
- Department for Ophthalmology, University Eye Hospital, University of Tübingen, 72076 Tübingen, Germany
| | - Katarina Stingl
- Department for Ophthalmology, University Eye Hospital, University of Tübingen, 72076 Tübingen, Germany
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Saskia Biskup
- Praxis für Humangenetik, 72076 Tübingen, Germany
- CeGaT GmbH, 72076 Tübingen, Germany
| | - Susanne Kohl
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Laura Kühlewein
- Department for Ophthalmology, University Eye Hospital, University of Tübingen, 72076 Tübingen, Germany
| | - Daniele Dell’Orco
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Nicole Weisschuh
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
- Correspondence: (J.-P.B.); (N.W.)
| |
Collapse
|
4
|
Tulp1 deficiency causes early-onset retinal degeneration through affecting ciliogenesis and activating ferroptosis in zebrafish. Cell Death Dis 2022; 13:962. [PMID: 36396940 PMCID: PMC9672332 DOI: 10.1038/s41419-022-05372-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
Mutations in TUB-like protein 1 (TULP1) are associated with severe early-onset retinal degeneration in humans. However, the pathogenesis remains largely unknown. There are two homologous genes of TULP1 in zebrafish, namely tulp1a and tulp1b. Here, we generated the single knockout (tulp1a-/- and tulp1b-/-) and double knockout (tulp1-dKO) models in zebrafish. Knockout of tulp1a resulted in the mislocalization of UV cone opsins and the degeneration of UV cones specifically, while knockout of tulp1b resulted in mislocalization of rod opsins and rod-cone degeneration. In the tulp1-dKO zebrafish, mislocalization of opsins was present in all types of photoreceptors, and severe degeneration was observed at a very early age, mimicking the clinical manifestations of TULP1 patients. Photoreceptor cilium length was significantly reduced in the tulp1-dKO retinas. RNA-seq analysis showed that the expression of tektin2 (tekt2), a ciliary and flagellar microtubule structural component, was downregulated in the tulp1-dKO zebrafish. Dual-luciferase reporter assay suggested that Tulp1a and Tulp1b transcriptionally activate the promoter of tekt2. In addition, ferroptosis might be activated in the tulp1-dKO zebrafish, as suggested by the up-regulation of genes related to the ferroptosis pathway, the shrinkage of mitochondria, reduction or disappearance of mitochondria cristae, and the iron and lipid droplet deposition in the retina of tulp1-dKO zebrafish. In conclusion, our study establishes an appropriate zebrafish model for TULP1-associated retinal degeneration and proposes that loss of TULP1 causes defects in cilia structure and opsin trafficking through the downregulation of tekt2, which further increases the death of photoreceptors via ferroptosis. These findings offer insight into the pathogenesis and clinical treatment of early-onset retinal degeneration.
Collapse
|
5
|
TULP1 related retinal dystrophy: report of rare and novel variants with a previously undescribed phenotype in two cases. Ophthalmic Genet 2021; 43:277-281. [PMID: 34865612 DOI: 10.1080/13816810.2021.2010769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To report on two rare and one novel TULP1 pathogenic variants in two patients associated with a previously uncharacterized phenotype of retinal degeneration. METHODS Case report. RESULTS A 4 year-old and a 19 year-old female presented with reduced vision and bilateral bull's eye maculopathy. In both patients, a unique pattern of perivascular retinal degeneration was noted. Electroretinography was consistent with a cone-rod dystrophy. Sequence analysis identified pathogenic variants in the TULP1 gene c.1087 G > A, p.(Gly363Arg); c.1568 G > A, p.(Cys523Tyr); and c.821delA, p.(Lys274ArgfsTer36). CONCLUSION Patients with TULP1-related retinal dystrophy can have a distinctive retinopathy with a unique pattern of macular degeneration and periarteriolar vascular pigmentation.
Collapse
|
6
|
Jaffal L, Joumaa H, Mrad Z, Zeitz C, Audo I, El Shamieh S. The genetics of rod-cone dystrophy in Arab countries: a systematic review. Eur J Hum Genet 2021; 29:897-910. [PMID: 33188265 PMCID: PMC8187393 DOI: 10.1038/s41431-020-00754-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Since a substantial difference in the prevalence of genetic causes of rod-cone dystrophy (RCD) was found among different populations, we conducted a systematic review of the genetic findings associated with RCD in Arab countries. Of the 816 articles retrieved from PubMed, 31 studies conducted on 407 participants from 11 countries were reviewed. Next-generation sequencing (NGS) was the most commonly used technique (68%). Autosomal recessive pattern was the most common pattern of inheritance (97%) and half of the known genes associated with RCD (32/63) were identified. In the Kingdom of Saudi Arabia, in addition to RP1 (20%) and TULP1 (20%), gene defects in EYS (8%) and CRB1 (7%) were also prevalently mutated. In North Africa, the main gene defects were in MERTK (18%) and RLBP1 (18%). Considering all countries, RP1 and TULP1 remained the most prevalently mutated. Variants in TULP1, RP1, EYS, MERTK, and RLBP1 were the most prevalent, possibly because of founder effects. On the other hand, only ten Individuals were found to have dominant or X-linked RCD. This is the first time a catalog of RCD genetic variations has been established in subjects from the Arabi countries. Although the last decade has seen significant interest, expertise, and an increase in RCD scientific publication, much work needs to be conducted.
Collapse
Affiliation(s)
- Lama Jaffal
- Department of Biological and Environmental Sciences, Faculty of Science, Beirut Arab University, Debbieh, 1107 2809, Lebanon
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh, 1700, Lebanon
| | - Hawraa Joumaa
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh, 1700, Lebanon
| | - Zamzam Mrad
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh, 1700, Lebanon
| | - Christina Zeitz
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, 75012, France
| | - Isabelle Audo
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, 75012, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, 28 rue de Charenton, F-75012, Paris, France
- University College London Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Said El Shamieh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, 1107 2809, Lebanon.
| |
Collapse
|
7
|
Magliyah M, Alshamrani AA, Schatz P, Taskintuna I, Alzahrani Y, Nowilaty SR. Clinical spectrum, genetic associations and management outcomes of Coats-like exudative retinal vasculopathy in autosomal recessive retinitis pigmentosa. Ophthalmic Genet 2021; 42:178-185. [PMID: 33441055 DOI: 10.1080/13816810.2020.1867754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Coats-like retinal vasculopathy in retinitis pigmentosa (RP) is rare. This study describes its clinical spectrum, management outcomes and genetic associations in patients with autosomal recessive RP (arRP).Materials and methods: Retrospective review of ophthalmic, multimodal imaging, genetic findings and treatment outcomes of arRP patients who developed Coats-like features. Identification of patients included searching a retinal dystrophy registry of 798 patients.Results: Ten eyes of six patients with arRP (4 males, 2 females, mean age 33 years) demonstrated Coats-like features, namely inferotemporal peripheral retinal telangiectasis combined with unilateral inferotemporal vasoproliferative tumor (VPT) in 4 eyes. Exudative retinal detachment (ERD) developed in five eyes of which four had VPT. Ablation of the vasculopathy using retinal laser photocoagulation and/or cryotherapy in eight eyes, allowed ERD and/or lipid exudation to decrease in seven eyes despite incomplete vasculopathy regression. Additional intravitreal triamcinolone acetonide injection in one eye failed to regress the ERD and associated VPT. Observation in one eye caused increased exudation. Six mutations, including three novel mutations, were found in CRB1, CNGB1, RPGR, and TULP1.Conclusions: Coats-like features in arRP range from retinal telangiectasis to VPTs with extensive ERD and occur predominantly in the inferotemporal retinal periphery. In addition to their classic association with CRB1 mutations, other genes are implicated. To the best of our knowledge, this is the first report describing CNGB1 mutations in Coats-like RP. Awareness of the vasculopathy spectrum is important, and timely ablation of the vasculopathy with long-term monitoring is recommended to prevent additional visual loss in RP patients.
Collapse
Affiliation(s)
- Moustafa Magliyah
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | | | - Patrik Schatz
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.,Department of Ophthalmology, Clinical Sciences, Skane County University Hospital, University of Lund, Lund, Sweden
| | - Ibrahim Taskintuna
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Yahya Alzahrani
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.,Ophthalmology Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Sawsan R Nowilaty
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Verbakel SK, Fadaie Z, Klevering BJ, van Genderen MM, Feenstra I, Cremers FPM, Hoyng CB, Roosing S. The identification of a RNA splice variant in TULP1 in two siblings with early-onset photoreceptor dystrophy. Mol Genet Genomic Med 2019; 7:e660. [PMID: 30950243 PMCID: PMC6565574 DOI: 10.1002/mgg3.660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/23/2022] Open
Abstract
Background Early‐onset photoreceptor dystrophies are a major cause of irreversible visual impairment in children and young adults. This clinically heterogeneous group of disorders can be caused by mutations in many genes. Nevertheless, to date, 30%–40% of cases remain genetically unexplained. In view of expanding therapeutic options, it is essential to obtain a molecular diagnosis in these patients as well. In this study, we aimed to identify the genetic cause in two siblings with genetically unexplained retinal disease. Methods Whole exome sequencing was performed to identify the causative variants in two siblings in whom a single pathogenic variant in TULP1 was found previously. Patients were clinically evaluated, including assessment of the medical history, slit‐lamp biomicroscopy, and ophthalmoscopy. In addition, a functional analysis of the putative splice variant in TULP1 was performed using a midigene assay. Results Clinical assessment showed a typical early‐onset photoreceptor dystrophy in both the patients. Whole exome sequencing identified two pathogenic variants in TULP1, a c.1445G>A (p.(Arg482Gln)) missense mutation and an intronic c.718+23G>A variant. Segregation analysis confirmed that both siblings were compound heterozygous for the TULP1 c.718+23G>A and c.1445G>A variants, while the unaffected parents were heterozygous. The midigene assay for the c.718+23G>A variant confirmed an elongation of exon 7 leading to a frameshift. Conclusion Here, we report the first near‐exon RNA splice variant that is not present in a consensus splice site sequence in TULP1, which was found in a compound heterozygous manner with a previously described pathogenic TULP1 variant in two patients with an early‐onset photoreceptor dystrophy. We provide proof of pathogenicity for this splice variant by performing an in vitro midigene splice assay, and highlight the importance of analysis of noncoding regions beyond the noncanonical splice sites in patients with inherited retinal diseases.
Collapse
Affiliation(s)
- Sanne K Verbakel
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zeinab Fadaie
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Jeroen Klevering
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria M van Genderen
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands.,Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ilse Feenstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Chen X, Sheng X, Liu Y, Li Z, Sun X, Jiang C, Qi R, Yuan S, Wang X, Zhou G, Zhen Y, Xie P, Liu Q, Yan B, Zhao C. Distinct mutations with different inheritance mode caused similar retinal dystrophies in one family: a demonstration of the importance of genetic annotations in complicated pedigrees. J Transl Med 2018; 16:145. [PMID: 29843741 PMCID: PMC5975579 DOI: 10.1186/s12967-018-1522-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/17/2018] [Indexed: 12/03/2022] Open
Abstract
Background Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy presenting remarkable genetic heterogeneity. Genetic annotations would help with better clinical assessments and benefit gene therapy, and therefore should be recommended for RP patients. This report reveals the disease causing mutations in two RP pedigrees with confusing inheritance patterns using whole exome sequencing (WES). Methods Twenty-five participants including eight patients from two families were recruited and received comprehensive ophthalmic evaluations. WES was applied for mutation identification. Bioinformatics annotations, intrafamilial co-segregation tests, and in silico analyses were subsequently conducted for mutation verification. Results All patients were clinically diagnosed with RP. The first family included two siblings born to parents with consanguineous marriage; however, no potential pathogenic variant was found shared by both patients. Further analysis revealed that the female patient carried a recurrent homozygous C8ORF37 p.W185*, while the male patient had hemizygous OFD1 p.T120A. The second family was found to segregate mutations in two genes, TULP1 and RP1. Two patients born to consanguineous marriage carried homozygous TULP1 p.R419W, while a recurrent heterozygous RP1 p.L762Yfs*17 was found in another four patients presenting an autosomal dominant inheritance pattern. Crystal structural analysis further indicated that the substitution from arginine to tryptophan at the highly conserved residue 419 of TULP1 could lead to the elimination of two hydrogen bonds between residue 419 and residues V488 and S534. All four genes, including C8ORF37, OFD1, TULP1 and RP1, have been previously implicated in RP etiology. Conclusions Our study demonstrates the coexistence of diverse inheritance modes and mutations affecting distinct disease causing genes in two RP families with consanguineous marriage. Our data provide novel insights into assessments of complicated pedigrees, reinforce the genetic complexity of RP, and highlight the need for extensive molecular evaluations in such challenging families with diverse inheritance modes and mutations. Electronic supplementary material The online version of this article (10.1186/s12967-018-1522-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xunlun Sheng
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Yani Liu
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Zili Li
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Xiantao Sun
- Department of Ophthalmology, Children's Hospital of Zhengzhou, Zhengzhou, China
| | - Chao Jiang
- Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Qi
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Shiqin Yuan
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Xuhui Wang
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Ge Zhou
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Yanyan Zhen
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Ping Xie
- Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinghuai Liu
- Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Biao Yan
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| | - Chen Zhao
- Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China. .,Department of Ophthalmology, Children's Hospital of Zhengzhou, Zhengzhou, China.
| |
Collapse
|
10
|
Wang M, Xu Z, Kong Y. The tubby-like proteins kingdom in animals and plants. Gene 2018; 642:16-25. [PMID: 29109004 DOI: 10.1016/j.gene.2017.10.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/15/2017] [Accepted: 10/27/2017] [Indexed: 11/28/2022]
|
11
|
Khan AO, Budde BS, Nürnberg P, Kawalia A, Lenzner S, Bolz HJ. Genome-wide linkage and sequence analysis challenge CCDC66 as a human retinal dystrophy candidate gene and support a distinct NMNAT1-related fundus phenotype. Clin Genet 2017; 93:149-154. [PMID: 28369829 DOI: 10.1111/cge.13022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
To uncover the genotype underlying early-onset cone-rod dystrophy and central nummular macular atrophic lesion in 2 siblings from an endogamous Arab family, we performed targeted next-generation sequencing (NGS) of 44 retinal dystrophy genes, whole-exome sequencing (WES) and genome-wide linkage analysis. Targeted NGS and WES in the index patient highlighted 2 homozygous variants, a CCDC66 frameshift deletion and a novel missense NMNAT1 variant, c.500G>A (p.Asn167Ser). Linkage and segregation analysis excluded the CCDC66 variant and confirmed the NMNAT1 mutation. Biallelic NMNAT1 mutations cause Leber congenital amaurosis with a central nummular macular atrophic lesion (LCA9). The NMNAT1 mutation reported here underlied cone-rod dystrophy rather than LCA but the fundus lesion was compatible with that of LCA9 patients, highlighting that such a fundus appearance should raise suspicion for biallelic mutations in NMNAT1 when in the context of any retinal dystrophy. Although Ccdc66 mutations have been proposed to cause retinal disease in dogs, our results and public databases challenge CCDC66 as a candidate gene for human retinal dystrophy.
Collapse
Affiliation(s)
- A O Khan
- Eye Institute, Cleveland Clinic Abu Dhabi (CCAD), Abu Dhabi, United Arab Emirates
| | - B S Budde
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - P Nürnberg
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - A Kawalia
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - S Lenzner
- Bioscientia, Center for Human Genetics, Ingelheim, Germany
| | - H J Bolz
- Bioscientia, Center for Human Genetics, Ingelheim, Germany.,Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Chiang J(PW, Gorin MB. Challenges confronting precision medicine in the context of inherited retinal disorders. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1152159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Khan AO, Al Rashaed S, Neuhaus C, Bergmann C, Bolz HJ. Peripherin mutations cause a distinct form of recessive Leber congenital amaurosis and dominant phenotypes in asymptomatic parents heterozygous for the mutation. Br J Ophthalmol 2015; 100:209-15. [PMID: 26061163 DOI: 10.1136/bjophthalmol-2015-306844] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/26/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Dominant mutations in peripherin (PRPH2) are associated with a spectrum of retinal dystrophy phenotypes, many of which are adult onset and involve the macula. Recessive PRPH2 mutations cause retinal dystrophy associated with prominent maculopathy in adulthood; however, the presenting childhood phenotype has not been defined. We characterise this phenotype. METHODS Retrospective case series of families harbouring bi-allelic PRPH2 mutations (2010-2014). RESULTS Three children (two families; assessed at 2 years old) and two adults (one family; assessed at 24 and 35 years old) with homozygous PRPH2 mutations (c.497G>A (p.Cys166Tyr) or c.136C>T (p.Arg46*)) all had infantile nystagmus and decreased vision noted soon after birth and a history of staring at lights during infancy (photophilia). The three children had high hyperopia, a normal or near normal fundus, and non-recordable electroretinographies (ERGs). The two adults had slight myopia, macular and peripheral retinal changes, and non-recordable ERGs. All five available carrier parents had macular±peripheral retinal findings, although they considered themselves asymptomatic except for one mother who had developed visual loss in one eye at 48 years old and had an associated subfoveal lesion. CONCLUSIONS Bi-allelic PRPH2 mutations cause a distinct Leber congenital amaurosis phenotype in infancy; affected adults have prominent maculopathy. Heterozygous parents can be asymptomatic but have clinically obvious macular phenotypes with or without peripheral retinal findings, which can be helpful in making the genetic diagnosis in affected children. The difference between the heterozygous and homozygous phenotypes is likely related to gene product dosage effect.
Collapse
Affiliation(s)
- Arif O Khan
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Saba Al Rashaed
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | | | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany Department of Medicine, University Freiburg Medical Center, Freiburg, Germany
| | - Hanno J Bolz
- Center for Human Genetics, Bioscientia, Ingelheim, Germany Institute of Human Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|