1
|
Li S, Qiu Y, Li Y, Wu J, Yin N, Ren J, Shao M, Yu J, Song Y, Sun X, Gao S, Cao W. Serum metabolite biomarkers for the early diagnosis and monitoring of age-related macular degeneration. J Adv Res 2024:S2090-1232(24)00434-X. [PMID: 39369956 DOI: 10.1016/j.jare.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024] Open
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is a leading cause of irreversible blindness worldwide, with significant challenges for early diagnosis and treatment. OBJECTIVES To identify new biomarkers that are important for the early diagnosis and monitoring of the severity/progression of AMD. METHODS We investigated the diagnostic and monitoring potential of blood metabolites in a cohort of 547 individuals (167 healthy controls, 240 individuals with other eye diseases as eye disease controls, and 140 individuals with AMD) from 2 centers over three phases: discovery phase 1, discovery phase 2, and an external validation phase. The samples were analyzed via a mass spectrometry-based, widely targeted metabolomic workflow. In discovery phases 1 and 2, we built a machine learning algorithm to predict the probability of AMD. In the external validation phase, we further confirmed the performance of the biomarker panel identified by the algorithm. We subsequently evaluated the performance of the identified biomarker panel in monitoring the progression and severity of AMD. RESULTS We developed a clinically specific three-metabolite panel (hypoxanthine, 2-furoylglycine, and 1-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocholine) via five machine learning models. The random forest model effectively discriminated patients with AMD from patents in the other two groups and showed acceptable calibration (area under the curve (AUC) = 1.0; accuracy = 1.0) in both discovery phases 1 and 2. An independent validation phase confirmed the diagnostic model's efficacy (AUC = 0.962; accuracy = 0.88). The three-biomarker panel model demonstrated an AUC of 1.0 in differentiating the severity of AMD via RF machine learning, which was consistent across both the discovery and external validation phases. Additionally, the biomarker concentrations remained stable under repeated freeze-thaw cycles (P > 0.05). CONCLUSIONS This study reveals distinct metabolite variations in the serum of AMD patients, paving the way for the development of the first routine laboratory test for AMD.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Shanghai 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.
| | - Yichao Qiu
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Yingzhu Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Jianing Wu
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ning Yin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Jun Ren
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Mingxi Shao
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Jian Yu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Shanghai 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Yunxiao Song
- Department of Clinical Laboratory, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, China
| | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Shanghai 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Shunxiang Gao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China.
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Shanghai 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.
| |
Collapse
|
2
|
Ma Y, Shao M, Li S, Lei Y, Cao W, Sun X. The association between airborne particulate matter (PM 2.5) exposure level and primary open-angle glaucoma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116752. [PMID: 39053180 DOI: 10.1016/j.ecoenv.2024.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The eye is vulnerable to the adverse effects of air pollution. Previous experimental study found that fine particulate matter (PM2.5) had a direct toxic effect on intraocular tissues. However, clinical evidence for the impact of air pollutants exposure on functional and structural changes in glaucoma remains scarce. A total of 120 patients with primary open-angle glaucoma (POAG) who met the inclusion criteria were included in this retrospective study. The standardized ophthalmic examination, such as intraocular pressure (IOP), visual field, optical coherence tomography, and comprehensive physical examination, were performed. The air pollution data, including PM2.5 concentration and air quality index (AQI), were collected. PM2.5 and AQI for the day of the medical examination, as well as one month, and three months before the medical examination date, were investigated. In our results, higher average exposure levels for one-month and three-month, were associated with increased IOP (r=0.229, P=0.013; r=0.204, P=0.028, respectively) and decreased visual field mean sensitivity (MS) (r=-0.212, P=0.037; r=-0.305, P=0.002, respectively). PM2.5 concentrations for the day of the medical examination was not significantly associated with ocular parameters. In multiple linear regression analysis adjusted for demographic and clinical factors, higher PM2.5 exposure for one month was associated with elevated IOP (P=0.040, β=0.173, 95 %CI=0.008-0.337). We also found an association between PM2.5 and MS (one-month exposure: β=-0.160, P=0.029; three-month exposure: β=-0.238, P=0.002). The logistic regression analysis found that three-month average PM2.5 exposure level was significantly associated with the disease severity (β=0.043, P=0.025, 95 %CI=1.005-1.084). In conclusion, this study is the first to investigate the relationship between air pollution and detailed ocular parameters of POAG patients in Shanghai over a three-year period, and to explore the effects of different exposure times of PM2.5 on glaucoma. This study found that PM2.5 exposure was correlated with elevated IOP and decreased MS. The one-month PM2.5 exposure level had the most significant effects on IOP. The three-month PM2.5 exposure level was an independent risk factor for POAG severity. Current evidence suggests there may be an association between PM2.5 exposure and POAG.
Collapse
Affiliation(s)
- Yi Ma
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Mingxi Shao
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Shengjie Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 20031, China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; NHC Key laboratory of Myopia and Related Eye Diseases, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 20031, China
| |
Collapse
|
3
|
Li S, Ren J, Jiang Z, Qiu Y, Shao M, Li Y, Wu J, Song Y, Sun X, Gao S, Cao W. Metabolomics identifies and validates serum androstenedione as novel biomarker for diagnosing primary angle closure glaucoma and predicting the visual field progression. eLife 2024; 12:RP91407. [PMID: 38358793 PMCID: PMC10942597 DOI: 10.7554/elife.91407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Background Primary angle closure glaucoma (PACG) is the leading cause of irreversible blindness in Asia, and no reliable, effective diagnostic, and predictive biomarkers are used in clinical routines. A growing body of evidence shows metabolic alterations in patients with glaucoma. We aimed to develop and validate potential metabolite biomarkers to diagnose and predict the visual field progression of PACG. Methods Here, we used a five-phase (discovery phase, validation phase 1, validation phase 2, supplementary phase, and cohort phase) multicenter (EENT hospital, Shanghai Xuhui Central Hospital), cross-sectional, prospective cohort study designed to perform widely targeted metabolomics and chemiluminescence immunoassay to determine candidate biomarkers. Five machine learning (random forest, support vector machine, lasso, K-nearest neighbor, and GaussianNaive Bayes [NB]) approaches were used to identify an optimal algorithm. The discrimination ability was evaluated using the area under the receiver operating characteristic curve (AUC). Calibration was assessed by Hosmer-Lemeshow tests and calibration plots. Results Studied serum samples were collected from 616 participants, and 1464 metabolites were identified. Machine learning algorithm determines that androstenedione exhibited excellent discrimination and acceptable calibration in discriminating PACG across the discovery phase (discovery set 1, AUCs=1.0 [95% CI, 1.00-1.00]; discovery set 2, AUCs = 0.85 [95% CI, 0.80-0.90]) and validation phases (internal validation, AUCs = 0.86 [95% CI, 0.81-0.91]; external validation, AUCs = 0.87 [95% CI, 0.80-0.95]). Androstenedione also exhibited a higher AUC (0.92-0.98) to discriminate the severity of PACG. In the supplemental phase, serum androstenedione levels were consistent with those in aqueous humor (r=0.82, p=0.038) and significantly (p=0.021) decreased after treatment. Further, cohort phase demonstrates that higher baseline androstenedione levels (hazard ratio = 2.71 [95% CI: 1.199-6.104], p=0.017) were associated with faster visual field progression. Conclusions Our study identifies serum androstenedione as a potential biomarker for diagnosing PACG and indicating visual field progression. Funding This work was supported by Youth Medical Talents - Clinical Laboratory Practitioner Program (2022-65), the National Natural Science Foundation of China (82302582), Shanghai Municipal Health Commission Project (20224Y0317), and Higher Education Industry-Academic-Research Innovation Fund of China (2023JQ006).
Collapse
Affiliation(s)
- Shengjie Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan UniversityShanghaiChina
- Key Laboratory of Myopia, Chinese Academy of Medical SciencesShanghaiChina
- NHC Key Laboratory of Myopia, Fudan UniversityShanghaiChina
| | - Jun Ren
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Zhendong Jiang
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yichao Qiu
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Mingxi Shao
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yingzhu Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Jianing Wu
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yunxiao Song
- Department of Clinical Laboratory, Shanghai Xuhui Central Hospital, Fudan UniversityShanghaiChina
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan UniversityShanghaiChina
- Key Laboratory of Myopia, Chinese Academy of Medical SciencesShanghaiChina
- NHC Key Laboratory of Myopia, Fudan UniversityShanghaiChina
| | - Shunxiang Gao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and PhotomedicineShanghaiChina
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan UniversityShanghaiChina
- Key Laboratory of Myopia, Chinese Academy of Medical SciencesShanghaiChina
- NHC Key Laboratory of Myopia, Fudan UniversityShanghaiChina
| |
Collapse
|
4
|
Hoppe C, Gregory-Ksander M. The Role of Complement Dysregulation in Glaucoma. Int J Mol Sci 2024; 25:2307. [PMID: 38396986 PMCID: PMC10888626 DOI: 10.3390/ijms25042307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Glaucoma is a progressive neurodegenerative disease characterized by damage to the optic nerve that results in irreversible vision loss. While the exact pathology of glaucoma is not well understood, emerging evidence suggests that dysregulation of the complement system, a key component of innate immunity, plays a crucial role. In glaucoma, dysregulation of the complement cascade and impaired regulation of complement factors contribute to chronic inflammation and neurodegeneration. Complement components such as C1Q, C3, and the membrane attack complex have been implicated in glaucomatous neuroinflammation and retinal ganglion cell death. This review will provide a summary of human and experimental studies that document the dysregulation of the complement system observed in glaucoma patients and animal models of glaucoma driving chronic inflammation and neurodegeneration. Understanding how complement-mediated damage contributes to glaucoma will provide opportunities for new therapies.
Collapse
Affiliation(s)
- Cindy Hoppe
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA;
- Animal Physiology/Neurobiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Meredith Gregory-Ksander
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
5
|
Xu R, Zheng J, Liu L, Zhang W. Effects of inflammation on myopia: evidence and potential mechanisms. Front Immunol 2023; 14:1260592. [PMID: 37849748 PMCID: PMC10577208 DOI: 10.3389/fimmu.2023.1260592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
As the most common type of refractive error, myopia has become one of the leading causes of visual impairment. With the increasing prevalence of myopia, there is a growing need to better understand the factors involved in its development. Inflammation, one of the most fundamental pathophysiological processes in humans, is a rapid response triggered by harmful stimuli and conditions. Although controlled inflammatory responses are necessary, over-activated inflammation is the common soil for many diseases. The impact of inflammation on myopia has received rising attention in recent years. Elevated inflammation may contribute to myopia progression either directly or indirectly by inducing scleral remodeling, and myopia development may also increase ocular inflammation. This article provides a comprehensive review of the interplay between inflammation and myopia and the potential biological mechanisms, which may present new targets for understanding the pathology of myopia and developing myopia therapies.
Collapse
Affiliation(s)
- Ran Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zheng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Association between Serum Potassium with Risk of Onset and Visual Field Progression in Patients with Primary Angle Close Glaucoma: A Cross-Sectional and Prospective Cohort Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2275171. [PMID: 35783194 PMCID: PMC9246612 DOI: 10.1155/2022/2275171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/04/2022] [Indexed: 12/08/2022]
Abstract
Evidence suggests that ion metabolism may be associated with oxidative stress in the ocular tissue in glaucoma patients. This study is aimed at determining whether serum ion levels are associated with the onset and/or visual field (VF) progression of PACG. A total of 265 PACG and 166 healthy subjects were included in the cross-sectional study. Meanwhile, 265 subjects with PACG were followed up every six months for at least two years in the cohort study. All subjects were evaluated for serum concentrations of ions (calcium, phosphorus, potassium (K+), sodium, and chlorine) and underwent VF examination. Logistic regression analysis was performed to assess the risk factors for PACG. Cox regression analyses and Kaplan-Meier survival analyses were performed to identify factors associated with VF progression in PACG subjects. In the cross-sectional study, the K+ level (4.31 ± 0.39 mmol/L) was significantly higher in the PACG group than in the normal group (4.16 ± 0.35 mmol/L, P < 0.001). Multiple logistic regression showed that the increased K+ level was a risk factor of PACG (OR = 2.94, 95%CI = 1.63–5.32, P < 0.001). In the cohort study, there were 105 PACG subjects with progression and 160 PACG subjects without progression. The progression group had significantly higher baseline serum K+ levels (4.41 ± 0.37 mmol/L) than the no progression group (4.25 ± 0.39 mmol/L) (P = 0.002). The increased level of K+ at baseline was associated with faster VF progression (HR = 2.07, 95%CI = 1.23–3.46, P = 0.006). PACG subjects with higher baseline K+ levels had significantly lower VF nonprogression rates (51.94%) than subjects with lower K+ levels (68.38%, log-rank test P = 0.01). This study found that increased serum K+ level is a risk factor of PACG and is associated with faster VF progression in PACG, which might result from its influence on the oxidative stress process.
Collapse
|