1
|
Henning RJ. The differentiation of the competitive athlete with physiologic cardiac remodeling from the athlete with cardiomyopathy. Curr Probl Cardiol 2024; 49:102473. [PMID: 38447749 DOI: 10.1016/j.cpcardiol.2024.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
There are currently 5 million active high school, collegiate, professional, and master athletes in the United States. Regular intense exercise by these athletes can promote structural, electrical and functional remodeling of the heart, which is termed the "athlete's heart." In addition, regular intense exercise can lead to pathological adaptions that promote or worsen cardiac disease. Many of the athletes in the United States seek medical care. Consequently, physicians must be aware of the normal cardiac anatomy and physiology of the athlete, the differentiation of the normal athlete heart from the athlete with cardiomyopathy, and the contemporary care of the athlete with a cardiomyopathy. In athletes with persistent cardiovascular symptoms, investigations should include a detailed history and physical examination, an ECG, a transthoracic echocardiogram, and in athletes in whom the diagnosis is uncertain, a maximal exercise stress test or a continuous ECG recording, and cardiac magnetic resonance imaging or cardiac computed tomography angiography when definition of the coronary anatomy or characterization of the aorta and the aortic great vessels is indicated. This article discusses the differentiation of the normal athlete with physiologic cardiac remodeling from the athlete with hypertrophic, dilated or arrhythmogenic ventricular cardiomyopathy (ACM). The ECG changes in trained athletes that are considered normal, borderline, or abnormal are listed. In addition, the normal echocardiographic measurements for athletes who consistently participate in endurance, power, combined or heterogeneous sports are enumerated and discussed. Algorithms are listed that are useful in the diagnosis of trained athletes with borderline or abnormal echocardiographic measurements suggestive of cardiomyopathies along with the major and minor criteria for the diagnosis of ACM in athletes. Thereafter, the treatment of athletes with hypertrophic, dilated, and arrhythmogenic right ventricular cardiomyopathies are reviewed. The distinction between physiologic changes and pathologic changes in the hearts of athletes has important therapeutic and prognostic implications. Failure by the physician to correctly diagnose an athlete with hypertrophic cardiomyopathy, dilated cardiomyopathy, or ACM, can lead to the sudden cardiac arrest and death of the athlete during training or sports competition. Conversely, an incorrect diagnosis by a physician of cardiac pathology in a normal athlete can lead to an unnecessary restriction of athlete training and competition with resultant significant emotional, psychological, financial, and long-term health consequences in the athlete.
Collapse
|
2
|
Colne E, Pace N, Fraix A, Gauthier F, Selton-Suty C, Chenuel B, Sadoul N, Girerd N, Lamiral Z, Felloni J, Djaballah K, Filippetti L, Huttin O. Advanced myocardial deformation echocardiography for evaluation of the athlete's heart: Functional and mechanistic analysis. Arch Cardiovasc Dis 2024; 117:490-496. [PMID: 39153877 DOI: 10.1016/j.acvd.2024.05.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Assessment of the athlete's heart is challenging because of a phenotypic overlap between reactive physiological adaptation and pathological remodelling. The potential value of myocardial deformation remains controversial in identifying early cardiomyopathy. AIM To identify the echocardiographic phenotype of athletes using advanced two-dimensional speckle tracking imaging, and to define predictive factors of subtle left ventricular systolic dysfunction. METHODS In total, 191 healthy male athletes who underwent a preparticipation medical evaluation at Nancy University Hospital between 2013 and 2020 were included. Clinical and echocardiographic data were compared with 161 healthy male subjects from the STANISLAS cohort. Borderline global longitudinal strain value was defined as<17.5%. RESULTS Athletes demonstrated lower left ventricular ejection fraction (57.9±5.3% vs. 62.6±6.4%; P<0.01) and lower global longitudinal strain (17.5±2.2% vs. 21.1±2.1%; P<0.01). No significant differences were found between athletes with and without a borderline global longitudinal strain value regarding clinical characteristics, structural echocardiographic features and exercise capacity. A borderline global longitudinal strain value was associated with a lower endocardial global longitudinal strain (18.8±1.2% vs. 22.7±1.9%; P=0.02), a lower epicardial global longitudinal strain (14.0±1.1% vs. 16.6±1.2%; P<0.01) and a higher endocardial/epicardial global longitudinal strain ratio (1.36±0.07 vs. 1.32±0.06; P<0.01). No significant difference was found regarding mechanical dispersion (P=0.46). CONCLUSIONS Borderline global longitudinal strain value in athletes does not appear to be related to structural remodelling, mechanical dispersion or exercise capacity. The athlete's heart is characterized by a specific myocardial deformation pattern with a more pronounced epicardial layer strain impairment.
Collapse
Affiliation(s)
- Eva Colne
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Nathalie Pace
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France.
| | - Antoine Fraix
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Félix Gauthier
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | | | - Bruno Chenuel
- University Centre of Sports Medicine and Adapted Physical Activity, Nancy University Hospital, 54000 Nancy, France
| | - Nicolas Sadoul
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Nicolas Girerd
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France; Inserm, UMR-1116, Lorraine University, 54505 Vandœuvre-Lès-Nancy, France; Inserm, CIC 1433, Lorraine University, 54505 Vandœuvre-Lès-Nancy, France
| | - Zohra Lamiral
- Inserm, CIC 1433, Lorraine University, 54505 Vandœuvre-Lès-Nancy, France
| | - Jérôme Felloni
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Karim Djaballah
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Laura Filippetti
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Olivier Huttin
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France; Inserm, UMR-1116, Lorraine University, 54505 Vandœuvre-Lès-Nancy, France
| |
Collapse
|
3
|
Klaeboe LG, Lie ØH, Brekke PH, Bosse G, Hopp E, Haugaa KH, Edvardsen T. Differentiation of Myocardial Properties in Physiological Athletic Cardiac Remodeling and Mild Hypertrophic Cardiomyopathy. Biomedicines 2024; 12:420. [PMID: 38398022 PMCID: PMC10886585 DOI: 10.3390/biomedicines12020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Clinical differentiation between athletes' hearts and those with hypertrophic cardiomyopathy (HCM) can be challenging. We aimed to explore the role of speckle tracking echocardiography (STE) and cardiac magnetic resonance imaging (CMR) in the differentiation between athletes' hearts and those with mild HCM. We compared 30 competitive endurance elite athletes (7% female, age 41 ± 9 years) and 20 mild phenotypic mutation-positive HCM carriers (15% female, age 51 ± 12 years) with left ventricular wall thickness 13 ± 1 mm. Mechanical dispersion (MD) was assessed by means of STE. Native T1-time and extracellular volume (ECV) were assessed by means of CMR. MD was higher in HCM mutation carriers than in athletes (54 ± 16 ms vs. 40 ± 11 ms, p = 0.001). Athletes had a lower native T1-time (1204 (IQR 1191, 1234) ms vs. 1265 (IQR 1255, 1312) ms, p < 0.001) and lower ECV (22.7 ± 3.2% vs. 25.6 ± 4.1%, p = 0.01). MD > 44 ms optimally discriminated between athletes and HCM mutation carriers (AUC 0.78, 95% CI 0.65-0.91). Among the CMR parameters, the native T1-time had the best discriminatory ability, identifying all HCM mutation carriers (100% sensitivity) with a specificity of 75% (AUC 0.83, 95% CI 0.71-0.96) using a native T1-time > 1230 ms as the cutoff. STE and CMR tissue characterization may be tools that can differentiate athletes' hearts from those with mild HCM.
Collapse
Affiliation(s)
- Lars G. Klaeboe
- Precision Health Center for Optimized Cardiac Care (ProCardio), Department of Cardiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway; (L.G.K.); (Ø.H.L.); (K.H.H.)
| | - Øyvind H. Lie
- Precision Health Center for Optimized Cardiac Care (ProCardio), Department of Cardiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway; (L.G.K.); (Ø.H.L.); (K.H.H.)
| | - Pål H. Brekke
- Precision Health Center for Optimized Cardiac Care (ProCardio), Department of Cardiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway; (L.G.K.); (Ø.H.L.); (K.H.H.)
| | - Gerhard Bosse
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway; (G.B.); (E.H.)
| | - Einar Hopp
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway; (G.B.); (E.H.)
| | - Kristina H. Haugaa
- Precision Health Center for Optimized Cardiac Care (ProCardio), Department of Cardiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway; (L.G.K.); (Ø.H.L.); (K.H.H.)
- Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
| | - Thor Edvardsen
- Precision Health Center for Optimized Cardiac Care (ProCardio), Department of Cardiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway; (L.G.K.); (Ø.H.L.); (K.H.H.)
- Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- KG Jebsen Cardiac Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
4
|
Ottaviani A, Mansour D, Molinari LV, Galanti K, Mantini C, Khanji MY, Chahal AA, Zimarino M, Renda G, Sciarra L, Pelliccia F, Gallina S, Ricci F. Revisiting Diagnosis and Treatment of Hypertrophic Cardiomyopathy: Current Practice and Novel Perspectives. J Clin Med 2023; 12:5710. [PMID: 37685777 PMCID: PMC10489039 DOI: 10.3390/jcm12175710] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Sarcomeric hypertrophic cardiomyopathy (HCM) is a prevalent genetic disorder characterised by left ventricular hypertrophy, myocardial disarray, and an increased risk of heart failure and sudden cardiac death. Despite advances in understanding its pathophysiology, treatment options for HCM remain limited. This narrative review aims to provide a comprehensive overview of current clinical practice and explore emerging therapeutic strategies for sarcomeric HCM, with a focus on cardiac myosin inhibitors. We first discuss the conventional management of HCM, including lifestyle modifications, pharmacological therapies, and invasive interventions, emphasizing their limitations and challenges. Next, we highlight recent advances in molecular genetics and their potential applications in refining HCM diagnosis, risk stratification, and treatment. We delve into emerging therapies, such as gene editing, RNA-based therapies, targeted small molecules, and cardiac myosin modulators like mavacamten and aficamten, which hold promise in modulating the underlying molecular mechanisms of HCM. Mavacamten and aficamten, selective modulators of cardiac myosin, have demonstrated encouraging results in clinical trials by reducing left ventricular outflow tract obstruction and improving symptoms in patients with obstructive HCM. We discuss their mechanisms of action, clinical trial outcomes, and potential implications for the future of HCM management. Furthermore, we examine the role of precision medicine in HCM management, exploring how individualised treatment strategies, including exercise prescription as part of the management plan, may optimise patient outcomes. Finally, we underscore the importance of multidisciplinary care and patient-centred approaches to address the complex needs of HCM patients. This review also aims to encourage further research and collaboration in the field of HCM, promoting the development of novel and more effective therapeutic strategies, such as cardiac myosin modulators, to hopefully improve the quality of life and outcome of patients with sarcomeric HCM.
Collapse
Affiliation(s)
- Andrea Ottaviani
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Davide Mansour
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Lorenzo V. Molinari
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Kristian Galanti
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mohammed Y. Khanji
- Barts Heart Centre, Barts Health NHS Trust, London EC1A 7BE, UK
- Newham University Hospital, Barts Health NHS Trust, London E13 8SL, UK
- NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London EC1A 7BE, UK
| | - Anwar A. Chahal
- Barts Heart Centre, Barts Health NHS Trust, London EC1A 7BE, UK
- Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA 17605, USA
- Cardiac Electrophysiology, Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, PA 17605, USA
| | - Marco Zimarino
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Heart Department, SS. Annunziata Hospital, ASL 2 Abruzzo, 66100 Chieti, Italy
| | - Giulia Renda
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Heart Department, SS. Annunziata Hospital, ASL 2 Abruzzo, 66100 Chieti, Italy
| | - Luigi Sciarra
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesco Pelliccia
- Department of Cardiovascular Sciences, Sapienza University, 00166 Rome, Italy
| | - Sabina Gallina
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Heart Department, SS. Annunziata Hospital, ASL 2 Abruzzo, 66100 Chieti, Italy
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Heart Department, SS. Annunziata Hospital, ASL 2 Abruzzo, 66100 Chieti, Italy
- Department of Clinical Sciences, Lund University, 21428 Malmö, Sweden
| |
Collapse
|
5
|
Faro DC, Losi V, Rodolico MS, Licciardi S, Monte IP. Speckle tracking echocardiography-derived parameters as new prognostic markers in hypertrophic cardiomyopathies. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead014. [PMID: 36936390 PMCID: PMC10019808 DOI: 10.1093/ehjopen/oead014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023]
Abstract
Aims Hypertrophic cardiomyopathies (HCM) are caused in 30-60% of cases by mutations in cardiac sarcomere genes but can also be an expression of cardiac involvement in multi-systemic metabolic diseases, such as Anderson-Fabry disease (AFD). HCM entails a risk of sudden cardiac death (SCD) of 0.9%/year and is the most common cause of SCD in young adults. Recent studies suggested mechanical dispersion (MD) by speckle tracking echocardiography (STE) as an additional arrhythmic risk marker. The aim of the study was to evaluate left ventricle global longitudinal strain (LV-GLS) and MD, in patients with HCM or AFD cardiomyopathy, and the association with ventricular arrhythmias (V-AR). Methods and results We evaluated 40 patients with HCM, 57 with AFD (12 with LV hypertrophy and 45 without), and 40 healthy subjects, between January 2014 and June 2022. We performed a comprehensive echocardiographic study and analysed systolic and diastolic functions, LV-GLS, and MD. We also analysed V-AR, including ventricular fibrillation and sustained/non-sustained ventricular tachycardia, by Holter electrocardiogram (Holter-EKG), in a subset of hypertrophic patients. Data were analysed by unpaired Student t-test or chi-square/Fisher's exact test as appropriate and binary logistic regression (SPSS Statistics ver.26). LV-GLS was significantly lower in the V-AR group compared with patients without V-AR (median -10.2% vs. -14%, P = 0.038); MD was significantly higher in the V-AR group (85.5 ms vs. 61.1 ms, P = 0.004). V-AR were found significantly associated with MD (OR, 1.030; 95% CI, 1.003-1.058; P = 0.03). Conclusions MD is a useful additional index in the evaluation of patients with HCM and may be a promising prognostic predictor of increased arrhythmic risk.
Collapse
Affiliation(s)
- Denise Cristiana Faro
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
| | - Valentina Losi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
| | - Margherita Stefania Rodolico
- C.N.R. Institute for Biomedical Research and Innovation-IRIB, Section of Catania, Via P. Caifami 18, 95126 Catania, Italy
| | | | | |
Collapse
|
6
|
Al Saikhan L, Park C, Hughes AD. Reproducibility of Left Ventricular Dyssynchrony Indices by Three-Dimensional Speckle-Tracking Echocardiography: The Impact of Sub-optimal Image Quality. Front Cardiovasc Med 2019; 6:149. [PMID: 31649937 PMCID: PMC6795682 DOI: 10.3389/fcvm.2019.00149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/26/2019] [Indexed: 11/13/2022] Open
Abstract
Background: 3D speckle-tracking echocardiography (3D-STE) is a novel method to quantify left ventricular (LV) mechanical dyssynchrony. 3D-STE is influenced by image quality, but studies on the magnitude of its effect on 3D-STE derived LV systolic dyssynchrony indices (SDIs) and their test-retest reproducibility are limited. Methods: 3D-STE was performed in two groups, each comprising 18 healthy volunteers with good echocardiographic windows. In study 1, optimal and inferior-quality images, by intentionally poor echocardiographic technique, were acquired. In study 2, sub-optimal quality images were acquired by impairing ultrasound propagation using neoprene rubber sheets (thickness 2, 3, and 4 mm) mimicking mildly, moderately, and severely impaired images, respectively. Measures (normalized to cardiac cycle duration) were volume- and strain-based SDIs defined as the standard deviation of time to minimum segmental values, and volume- and strain-derived dispersion indices. For both studies test-retest reproducibility was assessed. Results: Test-retest reproducibility was better for most indices when restricting the analysis to good quality images; nevertheless, only volume-, circumferential strain-, and principal tangential strain-derived LV dyssynchrony indices achieved fair to good reliability. There was no evidence of systematic bias due to sub-optimal quality image. Volume-, circumferential strain-, and principal tangential strain-derived SDIs correlated closely. Radial strain- and longitudinal strain-SDI correlated moderately or weakly with volume-SDI, respectively. Conclusions: Sub-optimal image quality compromised the reliability of 3D-STE derived dyssynchrony indices but did not introduce systematic bias in healthy individuals. Even with optimal quality images, only 3D-STE indices based on volume, circumferential strain and principal tangential strain showed acceptable test-retest reliability.
Collapse
Affiliation(s)
- Lamia Al Saikhan
- Department of Cardiac Technology, College of Applied Medial Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Chloe Park
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, UCL Institute of Cardiovascular Science, London, United Kingdom
| | - Alun D. Hughes
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Science and Experimental Medicine, UCL Institute of Cardiovascular Science, London, United Kingdom
| |
Collapse
|
7
|
Ternacle J, Bremont C, d’Humieres T, Faivre L, Doan HL, Gallet R, Oliver L, Dubois-Randé JL, Lim P. Left ventricular dyssynchrony and 2D and 3D global longitudinal strain for differentiating physiological and pathological left ventricular hypertrophy. Arch Cardiovasc Dis 2017; 110:403-412. [DOI: 10.1016/j.acvd.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/28/2016] [Accepted: 11/29/2016] [Indexed: 11/16/2022]
|
8
|
Schnell F, Matelot D, Daudin M, Kervio G, Mabo P, Carré F, Donal E. Mechanical Dispersion by Strain Echocardiography: A Novel Tool to Diagnose Hypertrophic Cardiomyopathy in Athletes. J Am Soc Echocardiogr 2017; 30:251-261. [DOI: 10.1016/j.echo.2016.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 01/05/2023]
|
9
|
Parato VM, Antoncecchi V, Sozzi F, Marazia S, Zito A, Maiello M, Palmiero P. Echocardiographic diagnosis of the different phenotypes of hypertrophic cardiomyopathy. Cardiovasc Ultrasound 2016; 14:30. [PMID: 27519172 PMCID: PMC4982201 DOI: 10.1186/s12947-016-0072-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/19/2016] [Indexed: 01/19/2023] Open
Abstract
Hypertrophic Cardiomyopathy (HCM) is an inherited cardiovascular disorder of great genetic heterogeneity and has a prevalence of 0.1 – 0.2 % in the general population. Several hundred mutations in more than 27 genes, most of which encode sarcomeric structures, are associated with the HCM phenotype. Then, HCM is an extremely heterogeneous disease and several phenotypes have been described over the years. Originally only two phenotypes were considered, a more common, obstructive type (HOCM, 70 %) and a less common, non-obstructive type (HNCM, 30 %) (Maron BJ, et al. Am J Cardiol 48:418 –28, 1981). Wigle et al. (Circ 92:1680–92, 1995) considered three types of functional phenotypes: subaortic obstruction, midventricular obstruction and cavity obliteration. A leader american working group suggested that HCM should be defined genetically and not morphologically (Maron BJ, et al. Circ 113:1807–16, 2006). The European Society of Cardiology Working Group on Myocardial and Pericardial Diseases recommended otherwise a morphological classification (Elliott P, et al. Eur Heart J 29:270–6, 2008). Echocardiography is still the principal tool for the diagnosis, prognosis and clinical management of HCM. It is well known that the echocardiographic picture may have a clinical and prognostic impact. For this reason, in this article, we summarize the state of the art regarding the echocardiographic pattern of the HCM phenotypes and its impact on clinical course and prognosis.
Collapse
Affiliation(s)
- Vito Maurizio Parato
- Cardiology Unit and EchoLab of Emergency Department, Madonna del Soccorso Hospital, Politecnica delle Marche University, 3-7, Via Manara, San Benedetto del Tronto-Ascoli Piceno, 63074, Italy.
| | | | - Fabiola Sozzi
- Cardiology Unit, University Policlinico Hospital, Milan, Italy
| | | | - Annapaola Zito
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy
| | - Maria Maiello
- ASL BR, Health Center, Districtual Cardiology, Brindisi, Italy
| | | | | |
Collapse
|
10
|
Hedman K, Tamás É, Bjarnegård N, Brudin L, Nylander E. Cardiac systolic regional function and synchrony in endurance trained and untrained females. BMJ Open Sport Exerc Med 2015; 1:e000015. [PMID: 27900120 PMCID: PMC5117015 DOI: 10.1136/bmjsem-2015-000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2015] [Indexed: 01/20/2023] Open
Abstract
Background Most studies on cardiac function in athletes describe overall heart function in predominately male participants. We aimed to compare segmental, regional and overall myocardial function and synchrony in female endurance athletes (ATH) and in age-matched sedentary females (CON). Methods In 46 ATH and 48 CON, echocardiography was used to measure peak longitudinal systolic strain and myocardial velocities in 12 left ventricular (LV) and 2 right ventricular (RV) segments. Regional and overall systolic function were calculated together with four indices of dyssynchrony. Results There were no differences in regional or overall LV systolic function between groups, or in any of the four dyssynchrony indices. Peak systolic velocity (s′) was higher in the RV of ATH than in CON (9.7±1.5 vs 8.7±1.5 cm/s, p=0.004), but not after indexing by cardiac length (p=0.331). Strain was similar in ATH and CON in 8 of 12 LV myocardial segments. In septum and anteroseptum, basal and mid-ventricular s′ was 6–7% and 17–19% higher in ATH than in CON (p<0.05), respectively, while s′ was 12% higher in CON in the basal LV lateral wall (p=0.013). After indexing by cardiac length, s′ was only higher in ATH in the mid-ventricular septum (p=0.041). Conclusions We found differences between trained and untrained females in segmental systolic myocardial function, but not in global measures of systolic function, including cardiac synchrony. These findings give new insights into cardiac adaptation to endurance training and could also be of use for sports cardiologists evaluating female athletes.
Collapse
Affiliation(s)
- Kristofer Hedman
- Department of Clinical Physiology and Department of Medical and Health Sciences , Linköping University , Linköping , Sweden
| | - Éva Tamás
- Department of Cardiothoracic and Vascular Surgery and Department of Medical and Health Sciences , Linköping University , Linköping , Sweden
| | - Niclas Bjarnegård
- Department of Medical and Health Sciences , Linköping University , Linköping ; Department of Clinical Physiology , County Hospital Ryhov , Jönköping , Sweden
| | - Lars Brudin
- Department of Medical and Health Sciences, Linköping University, Linköping and Department of Clinical Physiology, County Hospital, Kalmar, Sweden
| | - Eva Nylander
- Department of Clinical Physiology and Department of Medical and Health Sciences , Linköping University , Linköping , Sweden
| |
Collapse
|
11
|
Magrì D, Piccirillo G, Ricotta A, De Cecco CN, Mastromarino V, Serdoz A, Muscogiuri G, Gregori M, Casenghi M, Cauti FM, Oliviero G, Musumeci MB, Maruotti A, Autore C. Spatial QT Dispersion Predicts Nonsustained Ventricular Tachycardia and Correlates with Confined Systodiastolic Dysfunction in Hypertrophic Cardiomyopathy. Cardiology 2015; 131:122-9. [DOI: 10.1159/000377622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/28/2015] [Indexed: 11/19/2022]
Abstract
Objectives: An increased dispersion of myocardial repolarization represents one of the mechanisms underlying the arrhythmic risk in hypertrophic cardiomyopathy (HCM). We investigated spatial myocardial repolarization dispersion indices in HCM patients with nonsustained ventricular tachycardia (NSVT) and, contextually, their main clinical determinants. Methods: Fifty-two well-matched HCM outpatients were categorized into two groups according to the presence or the absence of NSVT at 24-hour Holter electrocardiogram (ECG) monitoring. Each patient underwent a clinical examination, including Doppler echocardiogram integrated with tissue Doppler imaging, cardiac magnetic resonance, and 12-lead surface ECG to calculate the dispersion for the following intervals: QRS, Q-Tend (QTe), Q-Tpeak, Tpeak-Tend (TpTe), J-Tpeak, and J-Tend. Results: The NSVT group showed only QTe dispersion and TpTe dispersion values to be significantly higher than their counterparts. NSVT occurrence was independently predicted by late gadolinium enhancement presence (p = 0.021) and QTe Bazett dispersion (p = 0.030), the latter strongly associated with the myocardial performance index (MPI) obtained at the basal segment of the interventricular septum (p = 0.0004). Conclusion: Our data support QTe dispersion as an easy and noninvasive tool for identifying HCM patients with NSVT propensity. The strong relationship between QTe dispersion and MPI allows us to hypothesize an intriguing link between electrical instability and confined myocardial areas of systodiastolic dysfunction.
Collapse
|
12
|
Cardim N, Galderisi M, Edvardsen T, Plein S, Popescu BA, D'Andrea A, Bruder O, Cosyns B, Davin L, Donal E, Freitas A, Habib G, Kitsiou A, Petersen SE, Schroeder S, Lancellotti P, Camici P, Dulgheru R, Hagendorff A, Lombardi M, Muraru D, Sicari R. Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: an expert consensus of the European Association of Cardiovascular Imaging Endorsed by the Saudi Heart Association. Eur Heart J Cardiovasc Imaging 2015; 16:280. [PMID: 25650407 DOI: 10.1093/ehjci/jeu291] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Taking into account the complexity and limitations of clinical assessment in hypertrophic cardiomyopathy (HCM), imaging techniques play an essential role in the evaluation of patients with this disease. Thus, in HCM patients, imaging provides solutions for most clinical needs, from diagnosis to prognosis and risk stratification, from anatomical and functional assessment to ischaemia detection, from metabolic evaluation to monitoring of treatment modalities, from staging and clinical profiles to follow-up, and from family screening and preclinical diagnosis to differential diagnosis. Accordingly, a multimodality imaging (MMI) approach (including echocardiography, cardiac magnetic resonance, cardiac computed tomography, and cardiac nuclear imaging) is encouraged in the assessment of these patients. The choice of which technique to use should be based on a broad perspective and expert knowledge of what each technique has to offer, including its specific advantages and disadvantages. Experts in different imaging techniques should collaborate and the different methods should be seen as complementary, not as competitors. Each test must be selected in an integrated and rational way in order to provide clear answers to specific clinical questions and problems, trying to avoid redundant and duplicated information, taking into account its availability, benefits, risks, and cost.
Collapse
MESH Headings
- Cardiac Imaging Techniques/methods
- Cardiac Imaging Techniques/standards
- Cardiomyopathy, Hypertrophic/diagnosis
- Cardiomyopathy, Hypertrophic/therapy
- Consensus
- Echocardiography, Doppler/methods
- Echocardiography, Doppler/standards
- Europe
- Female
- Humans
- Image Interpretation, Computer-Assisted
- Magnetic Resonance Imaging, Cine/methods
- Magnetic Resonance Imaging, Cine/standards
- Male
- Multimodal Imaging/methods
- Multimodal Imaging/standards
- Positron-Emission Tomography/methods
- Positron-Emission Tomography/standards
- Practice Guidelines as Topic/standards
- Role
- Saudi Arabia
- Societies, Medical/standards
- Tomography, X-Ray Computed/methods
- Tomography, X-Ray Computed/standards
Collapse
|
13
|
Comentarios a la guía de práctica clínica de la ESC 2014 sobre el diagnóstico y manejo de la miocardiopatía hipertrófica. Una vision crítica desde la cardiología española. Rev Esp Cardiol 2015. [DOI: 10.1016/j.recesp.2014.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Comments on the 2014 ESC Guidelines on the Diagnosis and Management of Hypertrophic Cardiomyopathy. A Critical View From the Perspective of Spanish Cardiology. ACTA ACUST UNITED AC 2015; 68:4-9. [DOI: 10.1016/j.rec.2014.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 10/11/2014] [Indexed: 11/24/2022]
|
15
|
Badran HM, Soliman M, Hassan H, Abdelfatah R, Saadan H, Yacoub M. Right ventricular mechanics in hypertrophic cardiomyopathy using feature tracking. Glob Cardiol Sci Pract 2013; 2013:185-97. [PMID: 24689019 PMCID: PMC3963737 DOI: 10.5339/gcsp.2013.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 06/04/2013] [Indexed: 11/26/2022] Open
Abstract
Objectives: Right ventricular (RV) mechanics in hypertrophic cardiomyopathy (HCM) are poorly understood. We investigate global and regional deformation of the RV in HCM and its relationship to LV phenotype, using 2D strain vector velocity imaging (VVI). Methods: 100 HCM patients (42% females, 41 ± 19 years) and 30 control patients were studied using VVI. Longitudinal peak systolic strain (ϵsys), strain rate (SR), time to peak (ϵ) (TTP), displacement of RV free wall (RVFW) and septal wall were analyzed. Similar parameters were quantified in LV septal, lateral, anterior and inferior segments. Intra-V-delay was defined as SD of TTP. Inter-V-delay was estimated from TTP difference between the most delayed LV segment & RVFW. Results: ϵsys and SR of both RV & LV, showed loss of base to apex gradient and significant decline in HCM (p < 0.001). Deformation variables estimated from RVFW were strongly correlated with each other (r = 0.93, p < 0.0001). Both were directly related to LV ϵsys, SRsys, SRe, ejection fraction (EF)%, RVFW displacement (P < 0.001) and inversely related to age, positive family history (p < 0.004, 0.005), RV wall thickness, maximum wall thickness (MWT), intra-V-delay, LA volume (P < 0.0001), LVOT gradient (p < 0.02, 0.005) respectively. ROC curves were constructed to explore the cut-off point that discriminates RV dysfunction. Global and RVFW ϵsys: − 19.5% shows 77, 70% sensitivity & 97% specificity, SRsys: − 1.3s− 1 shows 82, 70% sensitivity & 30% specificity. Multivariate analyses revealed that RVFW displacement (β = − 0.9, p < 0.0001) and global LV SRsys (β = 5.9, p < 0.0001) are independent predictors of global RV deformation. Conclusions: Impairment of RV deformation is evident in HCM using feature tracking. It is independently influenced by LV mechanics and correlated to the severity of LV phenotype. RVFW deformation analysis and global RV assessment are comparable.
Collapse
|
16
|
Badran HM, Elnoamany MF, Soltan G, Ezat M, Elsedi M, Abdelfatah RA, Yacoub M. Relationship of mechanical dyssynchrony to QT interval prolongation in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 2011; 13:423-32. [DOI: 10.1093/ejechocard/jer290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
17
|
Aziz EF, Javed F, Pratap B, Herzog E. Strategies for the prevention and treatment of sudden cardiac death. Open Access Emerg Med 2010; 2010:99-114. [PMID: 22102788 PMCID: PMC3219585 DOI: 10.2147/oaem.s6869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cardiovascular diseases account for 40% of all deaths in the West. Sudden cardiac death (SCD) is a major health problem affecting over 300,000 patients annually in the United States alone. Presence of coronary artery disease (CAD), usually in the setting of diminished left ventricular ejection fraction, is still the single major risk factor for SCD. Additionally, acute myocardial ischemia, structural cardiac defects, anomalous coronary arteries, cardiomyopathies, genetic mutations, and ventricular arrhythmias are all attributed to SCD, demonstrating the perplexity of this condition. With the recent advancements in cardiovascular medicine, the incidence of SCD is expected to increase steeply as the prevalence of CAD and heart failure is uprising in general population. Considering SCD, the major challenge confronting contemporary cardiology, multiple strategies for prevention against SCD have been developed. β-blockers have been shown to reduce the risk of SCD, whereas implantable cardioverter-defibrillator devices are found to be effective at terminating the malignant arrhythmias. In recent years, multiple clinical trials were carried out to identify patients who may benefit from preventive intervention, including medical therapy and automatic cardioverter-defibrillator implantations. This review article provides insight into the advanced strategies for the prevention and treatment of SCD based on the data available in medical literature to date.
Collapse
Affiliation(s)
- Emad F Aziz
- The Advanced Cardiac Admission Program, St Luke's-Roosevelt Hospital Center, University Hospital of Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | | | | | | |
Collapse
|
18
|
Sahlén A, Shahgaldi K, Aminoff A, Aagaard P, Manouras A, Winter R, Ehrenborg E, Braunschweig F. Effects of Prolonged Exercise on Left Ventricular Mechanical Synchrony in Long-Distance Runners: Importance of Previous Exposure to Endurance Races. J Am Soc Echocardiogr 2010; 23:977-84. [DOI: 10.1016/j.echo.2010.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Indexed: 11/26/2022]
|
19
|
D'Andrea A, Caso P, Bossone E, Scarafile R, Riegler L, Di Salvo G, Gravino R, Cocchia R, Castaldo F, Salerno G, Golia E, Limongelli G, De Corato G, Cuomo S, Pacileo G, Russo MG, Calabro R. Right ventricular myocardial involvement in either physiological or pathological left ventricular hypertrophy: an ultrasound speckle-tracking two-dimensional strain analysis. EUROPEAN JOURNAL OF ECHOCARDIOGRAPHY 2010; 11:492-500. [DOI: 10.1093/ejechocard/jeq007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Christiaans I, van Engelen K, van Langen IM, Birnie E, Bonsel GJ, Elliott PM, Wilde AAM. Risk stratification for sudden cardiac death in hypertrophic cardiomyopathy: systematic review of clinical risk markers. Europace 2010; 12:313-21. [PMID: 20118111 DOI: 10.1093/europace/eup431] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We performed a systematic literature review of recommended 'major' and 'possible' clinical risk markers for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM). We searched the Medline, Embase and Cochrane databases for articles published between 1971 and 2007. We included English language reports on HCM patients containing follow-up data on the endpoint (sudden) cardiac death using survival analysis. Analysis was undertaken using the quality of reporting of meta-analyses (QUORUM) statement checklist. The quality was checked using a quality assessment form from the Cochrane Collaboration. Thirty studies met inclusion criteria and passed quality assessment. The use of the six major risk factors (previous cardiac arrest or sustained ventricular tachycardia, non-sustained ventricular tachycardia, extreme left ventricular hypertrophy, unexplained syncope, abnormal blood pressure response, and family history of sudden death) in risk stratification for SCD as recommended by international guidelines was supported by the literature. In addition, left ventricular outflow tract obstruction seems associated with a higher risk of SCD. Our systematic review provides sound evidence for the use of the six major risk factors for SCD in the risk stratification of HCM patients. Left ventricular outflow tract obstruction could be included in the overall risk profile of patients with a marked left ventricular outflow gradient under basal conditions.
Collapse
Affiliation(s)
- Imke Christiaans
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Anwar AM, Soliman OII, Nemes A, Germans T, Krenning BJ, Geleijnse ML, Van Rossum AC, ten Cate FJ. Assessment of Mitral Annulus Size and Function by Real-time 3-Dimensional Echocardiography in Cardiomyopathy: Comparison with Magnetic Resonance Imaging. J Am Soc Echocardiogr 2007; 20:941-8. [PMID: 17555937 DOI: 10.1016/j.echo.2007.01.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Indexed: 11/21/2022]
Abstract
OBJECTIVE We sought to assess mitral annular (MA) size and function in hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) using real-time 3-dimensional (3D) echocardiography (RT3DE). METHODS The study included 30 patients with HCM, 20 patients with DCM, and 30 control subjects. RT3DE measurements included end-systolic and end-diastolic MA area (MAA) (MAA(3D)), MA diameter(3D), MA fractional area change (MAFAC), and MA fractional shortening. In subgroup of 50 patients, magnetic resonance imaging (MRI) was used for MAA(MRI) and MA diameter(MRI) measurement. RESULTS End-diastolic MAA(3D) was larger in HCM than in control group (P < .0001). Higher MAFAC and MA fractional shortening were present in HCM than in control group (P = .001 and P = .006, respectively). End-systolic and end-diastolic MAA(3D) in DCM were higher than in HCM and control groups (P < .0001). Lower MAFAC and MA fractional shortening were present in DCM than in HCM and control groups (P < .0001). MAFAC correlated well with left ventricular function in control subjects (r = 0.94, P < .0001), whereas correlation was less in DCM (r = 0.53, P = .02) and HCM (r = 0.42, P < .01). RT3DE and MRI measurements were comparable. CONCLUSION RT3DE assessment of MA size and function in control subjects and patients with cardiomyopathy is accurate and well correlated with MRI.
Collapse
Affiliation(s)
- Ashraf M Anwar
- Cardiology Department, Al-Husein University Hospital, Al-Azhar University, Cairo, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Venckunas T, Mazutaitiene B. The role of echocardiography in the differential diagnosis between training induced myocardial hypertrophy versus cardiomyopathy. J Sports Sci Med 2007; 6:166-171. [PMID: 24149325 PMCID: PMC3786236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 03/15/2007] [Indexed: 06/02/2023]
Abstract
Increased myocardial mass due to regular high-volume intense exercise training (so-called athlete's heart) is not uncommon. Although directly correlated with the extent of training loads, myocardial hypertrophy is not present exclusively in well-trained or elite athletes. Athlete's heart is considered a physiological phenomenon with no known harmful consequences. However, extreme forms of myocardial hypertrophy due to endurance training resemble a structural heart disease such as hypertrophic cardiomyopathy, a condition associated with substantially increased risk of cardiac event. Endurance sports such as rowing and road cycling, rather than strength/power training, are most commonly associated with left ventricular (LV) wall thickness compatible with hypertrophic cardiomyopathy. The differentiation between physiological and maladaptive cardiac hypertrophy in athletes is undoubtedly important, since untreated cardiac abnormality often possesses a real threat of premature death due to heart failure during intense physical exertion. Luckily, the distinction from pathological hypertrophy is usually straightforward using transthoracic echocardiography, as endurance athletes, in addition to moderately and proportionally thickened LV walls with normal acoustic density, tend to possess increased LV diameter. In more uncertain cases, a detailed evaluation of myocardial function using (tissue) Doppler and contrast echocardiography is effective. When a doubt still remains, knowledge of an athlete's working capacity may be useful in evaluating whether the insidious cardiac pathology is absent. In such cases cardiopulmonary exercise testing typically resolves the dilemma: indices of aerobic capacity are markedly higher in healthy endurance athletes compared to patients. Other characteristics such as a decrease of LV mass due to training cessation are also discussed in the article. Key pointsTransthoracic echocardiography is still the most common relevant differentiation technique applied to distinguish athlete's heart from the cardiomyopathy.Conventional echocardiographic criteria such as left ventricular chamber size and diastolic function parameters are to be regarded first when making differential diagnosis between substantially increased wall thickness in athlete's heart (i.e. physiological adaptation) versus a disease (usually hypertrophic cardiomyopathy).When conventional echocardiographic parameters fail to diagnose the nature of myocardial hypertrophy, other differentiation criteria such as aerobic fitness, cardiac performance in response to physical exertion, and changes in echocardiographic parameters due to detraining, must be taken into consideration.Tissue Doppler, contrast and three-dimensional imaging are state-of-the-art echocardiographic techniques which have recently appeared in the differential diagnostics.
Collapse
|