1
|
Lombardo B, Izzo V, Terracciano D, Ranieri A, Mazzaccara C, Fimiani F, Cesaro A, Gentile L, Leggiero E, Pero R, Izzo B, D'Alicandro AC, Ercolini D, D'Alicandro G, Frisso G, Pastore L, Calabrò P, Scudiero O. Laboratory medicine: health evaluation in elite athletes. Clin Chem Lab Med 2020; 57:1450-1473. [PMID: 30835249 DOI: 10.1515/cclm-2018-1107] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
The need to evaluate the health status of an athlete represents a crucial aim in preventive and protective sports science in order to identify the best diagnostic strategy to improve performance and reduce risks related to physical exercise. In the present review we aim to define the main biochemical and haematological markers that vary significantly during and after sports training to identify risk factors, at competitive and professional levels and to highlight the set up of a specific parameter's panel for elite athletes. Moreover, we also intend to consider additional biomarkers, still under investigation, which could further contribute to laboratory sports medicine and provide reliable data that can be used by athlete's competent staff in order to establish personal attitudes and prevent sports injuries.
Collapse
Affiliation(s)
- Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,CEINGE Advanced Biotechnologies, Naples, Italy
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Annaluisa Ranieri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,CEINGE Advanced Biotechnologies, Naples, Italy
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,CEINGE Advanced Biotechnologies, Naples, Italy
| | - Fabio Fimiani
- Division of Cardiology, Department of Cardio-Thoracic and Respiratory Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Arturo Cesaro
- Division of Cardiology, Department of Cardio-Thoracic and Respiratory Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | | | | | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Barbara Izzo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | | | - Danilo Ercolini
- Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy.,Division of Microbiology, Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy
| | - Giovanni D'Alicandro
- Department of Neuroscience and Rehabilitation, Center of Sports Medicine and Disability, AORN, Santobono-Pausillipon, Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,CEINGE Advanced Biotechnologies, Naples, Italy
| | - Lucio Pastore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,CEINGE Advanced Biotechnologies, Naples, Italy.,Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Paolo Calabrò
- Division of Cardiology, Department of Cardio-Thoracic and Respiratory Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,CEINGE Advanced Biotechnologies, Naples, Italy.,Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
2
|
Kraemer WJ, Ratamess NA, Hymer WC, Nindl BC, Fragala MS. Growth Hormone(s), Testosterone, Insulin-Like Growth Factors, and Cortisol: Roles and Integration for Cellular Development and Growth With Exercise. Front Endocrinol (Lausanne) 2020; 11:33. [PMID: 32158429 PMCID: PMC7052063 DOI: 10.3389/fendo.2020.00033] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Hormones are largely responsible for the integrated communication of several physiological systems responsible for modulating cellular growth and development. Although the specific hormonal influence must be considered within the context of the entire endocrine system and its relationship with other physiological systems, three key hormones are considered the "anabolic giants" in cellular growth and repair: testosterone, the growth hormone superfamily, and the insulin-like growth factor (IGF) superfamily. In addition to these anabolic hormones, glucocorticoids, mainly cortisol must also be considered because of their profound opposing influence on human skeletal muscle anabolism in many instances. This review presents emerging research on: (1) Testosterone signaling pathways, responses, and adaptations to resistance training; (2) Growth hormone: presents new complexity with exercise stress; (3) Current perspectives on IGF-I and physiological adaptations and complexity these hormones as related to training; and (4) Glucocorticoid roles in integrated communication for anabolic/catabolic signaling. Specifically, the review describes (1) Testosterone as the primary anabolic hormone, with an anabolic influence largely dictated primarily by genomic and possible non-genomic signaling, satellite cell activation, interaction with other anabolic signaling pathways, upregulation or downregulation of the androgen receptor, and potential roles in co-activators and transcriptional activity; (2) Differential influences of growth hormones depending on the "type" of the hormone being assayed and the magnitude of the physiological stress; (3) The exquisite regulation of IGF-1 by a family of binding proteins (IGFBPs 1-6), which can either stimulate or inhibit biological action depending on binding; and (4) Circadian patterning and newly discovered variants of glucocorticoid isoforms largely dictating glucocorticoid sensitivity and catabolic, muscle sparing, or pathological influence. The downstream integrated anabolic and catabolic mechanisms of these hormones not only affect the ability of skeletal muscle to generate force; they also have implications for pharmaceutical treatments, aging, and prevalent chronic conditions such as metabolic syndrome, insulin resistance, and hypertension. Thus, advances in our understanding of hormones that impact anabolic: catabolic processes have relevance for athletes and the general population, alike.
Collapse
Affiliation(s)
- William J. Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
- *Correspondence: William J. Kraemer
| | - Nicholas A. Ratamess
- Department of Health and Exercise Science, The College of New Jersey, Ewing, NJ, United States
| | - Wesley C. Hymer
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Bradley C. Nindl
- Department of Sports Medicine, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | | |
Collapse
|
3
|
Voss SC, Giraud S, Alsayrafi M, Bourdon PC, Schumacher YO, Saugy M, Robinson N. The effect of a period of intensive exercise on the isoform test to detect growth hormone doping in sports. Growth Horm IGF Res 2013; 23:105-108. [PMID: 23608056 DOI: 10.1016/j.ghir.2013.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/13/2013] [Accepted: 03/26/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The major objective of this study was to investigate the effects of several days of intense exercise on growth hormone (hGH) testing using the World Anti-Doping Agencies hGH isoform differential immunoassays. Additionally the effects of circadian variation and exercise type on the isoform ratios were also investigated. STUDY DESIGN 15 male athletes performed a simulated nine day cycling stage race. Blood samples were collected twice daily over a period of 15 days (stage race+three days before and after). hGH isoforms were analysed by the official WADA immunoassays (CMZ Assay GmbH). RESULTS All measured isoform ratios were far below the WADA decision limits for an adverse analytical finding. Changes in the isoform ratios could not be clearly connected to circadian variation, exercise duration or intensity. CONCLUSIONS The present study demonstrates that the hGH isoform ratios are not significantly affected by exercise or circadian variation. We demonstrated that heavy, long term exercise does not interfere with the decision limits for an adverse analytical finding.
Collapse
Affiliation(s)
- S C Voss
- Anti Doping Lab Qatar, PO Box 27775, Doha, Qatar.
| | | | | | | | | | | | | |
Collapse
|
4
|
Acute hormonal and force responses to combined strength and endurance loadings in men and women: the "order effect". PLoS One 2013; 8:e55051. [PMID: 23408956 PMCID: PMC3567118 DOI: 10.1371/journal.pone.0055051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To examine acute responses and recovery of serum hormones and muscle force following combined strength (S) and endurance (E) loading sessions in which the order of exercises is reversed (ES vs. SE). METHODS This cross-over study design included recreationally endurance trained men and women (age 21-45 years, n = 12 men n = 10 women) who performed both loadings. Maximal bilateral isometric strength (MVC), isometric rate of force development (RFD) and serum concentrations of testosterone (T), cortisol (C), growth hormone (GH), insulin-like growth factor 1 (IGF-1), binding protein 3 (IGFBP3) and sex hormone binding globulin (SHBG) were measured during and after both loadings. RESULTS Both of the present combined (ES and SE) loadings led to a greater acute decrease in MVC in men than in women, while RFD was slightly affected only in men. Recovery of MVC and RFD to baseline was complete at 24 h regardless of the order of exercises. In men, neuromuscular fatigue was accompanied by increased C concentrations observed post SE. This was followed by decreased concentrations of T at 24 h and 48 h that were significantly lower than those observed following ES. GH response in men also differed significantly post loadings. In women, only a significant difference in T between ES and SE loadings was observed at post. CONCLUSION These observed differences in hormonal responses despite similarities in neuromuscular fatigue in men indicate the presence of an order effect as the body was not fully recovered at 48 h following SE. These findings may be applicable in training prescription in order to optimize specific training adaptations.
Collapse
|
5
|
Strohbach CA, Scofield DE, Nindl BC, Centi AJ, Yanovich R, Evans RK, Moran DS. Female recruits sustaining stress fractures during military basic training demonstrate differential concentrations of circulating IGF-I system components: a preliminary study. Growth Horm IGF Res 2012; 22:151-157. [PMID: 22704365 DOI: 10.1016/j.ghir.2012.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 04/24/2012] [Accepted: 04/25/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Stress fracture injuries sustained during military basic combat training (BT) are a significant problem and occur at a higher rate in female recruits than male recruits. Insulin-like growth factor-I (IGF-I) is an easily measured biomarker that is involved in bone formation and positively correlated with bone mineral density, especially in women. This study examined the response of the IGF-I system between female soldiers that sustained a stress fracture (SFX, n=13) during BT and female soldiers who did not (NSFX, n=49). DESIGN Female soldiers (n=62, 18.8 ± 0.6 yr) from 2 companies of a gender-integrated combat battalion in the Israeli Defense Forces participated in this study. Height, weight and blood draws were taken upon entry to BT (preBT) and after a four-month BT program (postBT). Stress fractures were diagnosed by bone scan. Serum was analyzed for total IGF-I, free IGF-I, IGF binding proteins (IGFBP)1-6, BAP, calcium, CTx, IL1β, IL6, PINP, PTH, TNFα, TRAP, and 25(OH)D. Statistical differences between SFX and NSFX groups and time points were assessed by RM ANOVA with Fisher post-hoc (p≤0.05). RESULTS The SFX group was significantly taller and had lower BMI than NSFX (p≤0.05). Serum concentrations of total IGF-I, bioavailable IGF-I, other bone biomarkers, and cytokines were not significantly different between SFX and NSFX preBT. Serum IGFBP-2 and IGFBP-5 were significantly higher in the SFX compared to the NSFX preBT (p≤0.05). In both groups, total IGF-I increased pre to postBT (p≤0.05). Additionally, a significant difference was observed in the bioavailable IGF-I response pre to postBT for both groups. The SFX group demonstrated a significant decrease in bioavailable IGF-I pre to postBT (preBT: 0.58 ± 0.58 ng/mL; postBT 0.39 ± 0.48; p≤0.05) whereas the NSFX group demonstrated a significant increase in bioavailable IGF-I pre to postBT (preBT: 0.53 ± 0.37 ng/mL; postBT: 0.63 ± 0.45; p≤0.05). CONCLUSIONS Our study demonstrated that serum IGF-I changes during basic training and that women sustaining stress fractures during BT significantly decreased bioavailable IGF-I, whereas their uninjured counter parts increased bioavailable IGF-I. These results suggest that stress fracture susceptibility may be related to differential IGF-I system concentrations and response to physical training.
Collapse
Affiliation(s)
- C A Strohbach
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Manini TM, Yarrow JF, Buford TW, Clark BC, Conover CF, Borst SE. Growth hormone responses to acute resistance exercise with vascular restriction in young and old men. Growth Horm IGF Res 2012; 22:167-172. [PMID: 22727808 PMCID: PMC3915940 DOI: 10.1016/j.ghir.2012.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Resistance exercise (RE) stimulates growth hormone (GH) secretion in a load-dependent manner, with heavier loads producing larger GH responses. However, new research demonstrates that low-load RE performed with blood flow restriction (BFR) produces potent GH responses that are similar to or exceed those produced following high-load RE. We hypothesized that low-load RE with vascular restriction would attenuate the known age-related reduction in GH response to RE. DESIGN In a randomized crossover design, ten young (28 ± 7.8 years) and ten older (67.4 ± 4.6 years) men performed bilateral knee extension RE with low-load [20% of one-repetition maximum (1RM)] with BFR and high-load (80% 1RM) without BFR. GH and lactate were measured every 10 minutes throughout a 150-minute testing session (30 minutes prior to and 120 minutes following completion of the exercise); IGF-I was measured at baseline and 60 minutes post-exercise. RESULTS Area under the GH curve indicated that both age groups responded similarly to each exercise condition. However, young men had a significantly greater maximal GH response to low-load RE with BFR than the high-load condition without BFR. Additionally, younger men had greater maximal GH concentrations to low-load RE with BFR than older men (p=0.02). The GH responses were marginally correlated to lactate concentration (r=0.13, p=0.002) and IGF-I levels were unchanged with RE. CONCLUSIONS GH responses to low-load RE with vascular restriction are slightly higher than high-load RE without vascular restriction in young men. However, low-load RE with vascular restriction did not attenuate the known age-related reduction in GH response with exercise. These data suggest that while low-load RE with vascular restriction is as effective for inducing a GH response than traditionally-based high-load RE, there is a more potent response in young men.
Collapse
Affiliation(s)
- Todd M Manini
- University of Florida, Department of Aging and Geriatric Research, Gainesville, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Rahimi R, Qaderi M, Faraji H, Boroujerdi SS. Effects of very short rest periods on hormonal responses to resistance exercise in men. J Strength Cond Res 2010; 24:1851-9. [PMID: 20555276 DOI: 10.1519/jsc.0b013e3181ddb265] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of 3 different rest periods on the acute hormonal responses to resistance exercise (RE) was examined in 10 experienced resistance trained men (age: 20.37 +/- 2.24 years, weight: 65.5 +/- 26.70 kg). On 3 separate sessions of an RE protocol, subjects were assigned in a random order a rest interval of 60 seconds (P60), 90 seconds (P90), or 120 seconds (P120) between sets. The RE session consisted of 4 sets of squat and bench press to failure using 85% of 1 repetition maximum. Blood draws occurred at pre-exercise (T0), immediately post (T1), and 30 minutes post (T30) exercise for measurement of serum growth hormone (GH), testosterone (TS), and blood-lactate concentrations. Serum GH concentrations were significantly higher at T1 in P60 (64%) compared with P120. Also, serum TS concentrations were significantly higher at T1 in P120 (65%) and P90 (76%) compared to P60 (p < or = 0.05). Blood-lactate concentrations significantly increased at T1 for 3 protocols, but no significant protocols differences were observed. Although, training volume by using P90 and P120 was greater than that of P60, statistically a significant difference in training volume was not observed. The results of the present study support rest period in RE sets as an important variable to increase the anabolic hormone concentrations, and it should be mentioned that short rest intervals elevated greater increase in GH concentration compared with 120-second rest. However, TS response was greater in the RE protocol with a 120-second rest interval between sets.
Collapse
Affiliation(s)
- Rahman Rahimi
- Department of Physical Education and Sport Science, University of Kurdistan, Sanandaj, Iran.
| | | | | | | |
Collapse
|
8
|
Ojasto T, Häkkinen K. Effects of Different Accentuated Eccentric Loads on Acute Neuromuscular, Growth Hormone, and Blood Lactate Responses During a Hypertrophic Protocol. J Strength Cond Res 2009; 23:946-53. [DOI: 10.1519/jsc.0b013e3181a2b22f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Sakharov DA, Thevis M, Tonevitsky AG. Analysis of Major Isoforms of Human Growth Hormone before and after Intensive Physical Exercise. Bull Exp Biol Med 2009; 146:466-9. [DOI: 10.1007/s10517-009-0335-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
|
11
|
Spiering BA, Kraemer WJ, Anderson JM, Armstrong LE, Nindl BC, Volek JS, Maresh CM. Resistance exercise biology: manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways. Sports Med 2008; 38:527-40. [PMID: 18557656 DOI: 10.2165/00007256-200838070-00001] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent advances in molecular biology have elucidated some of the mechanisms that regulate skeletal muscle growth. Logically, muscle physiologists have applied these innovations to the study of resistance exercise (RE), as RE represents the most potent natural stimulus for growth in adult skeletal muscle. However, as this molecular-based line of research progresses to investigations in humans, scientists must appreciate the fundamental principles of RE to effectively design such experiments. Therefore, we present herein an updated paradigm of RE biology that integrates fundamental RE principles with the current knowledge of muscle cellular and molecular signalling. RE invokes a sequential cascade consisting of: (i) muscle activation; (ii) signalling events arising from mechanical deformation of muscle fibres, hormones, and immune/inflammatory responses; (iii) protein synthesis due to increased transcription and translation; and (iv) muscle fibre hypertrophy. In this paradigm, RE is considered an 'upstream' signal that determines specific downstream events. Therefore, manipulation of the acute RE programme variables (i.e. exercise choice, load, volume, rest period lengths, and exercise order) alters the unique 'fingerprint' of the RE stimulus and subsequently modifies the downstream cellular and molecular responses.
Collapse
Affiliation(s)
- Barry A Spiering
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | | | | | | | |
Collapse
|