1
|
Jówko E, Płaszewski M, Cieśliński M, Sacewicz T, Cieśliński I, Jarocka M. The effect of low level laser irradiation on oxidative stress, muscle damage and function following neuromuscular electrical stimulation. A double blind, randomised, crossover trial. BMC Sports Sci Med Rehabil 2019; 11:38. [PMID: 31890228 PMCID: PMC6933902 DOI: 10.1186/s13102-019-0147-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Low level laser therapy (LLLT) is among novel methods for preventing and treating muscle damage and soreness induced by volitional exercise, but little is known about using LLLT before neuromuscular electrical stimulation. The aim of this first randomised, double blind, crossover trial addressing this issue was to evaluate effects of LLLT on muscle damage and oxidative stress, as well as recovery of muscle function after a single session of isometric neuromuscular electrical stimulation(NMES). METHODS Twenty four moderately active, healthy men aged 21-22 years received 45 electrically evoked tetanic, isometric contractions of the quadriceps femoris, preceded by LLLT or sham-LLLT. Maximal isometric voluntary muscle torques, perceived soreness, and blood samples were analysed from baseline to 96 h post intervention. We measured plasma markers of muscle damage (the activity of creatine kinase), and inflammation (C-reactive protein), and evaluated redox state parameters. RESULTS NMES-evoked contractions induced oxidative stress, demonstrated by an increase in lipid peroxidation and impairments in enzymatic antioxidant system. LLLT irradiations had a protective effect on NMES-induced decrease in enzymatic antioxidant defence and shortened the duration of inflammation. This effect of irradiations on redox state and inflammation did not affect lipid peroxidation, muscle damage, and muscle torque. CONCLUSIONS LLLT may protect from impairments in enzymatic antioxidant system and may shorten inflammation induced by a single NMES session in moderately active, healthy men. However, the effects of LLLT on redox state and inflammatory processes do not seem to affect muscle damage and recovery of muscle function after NMES. TRIAL REGISTRATION The study was retrospectively registered in the Australian New Zealand Clinical Trials Registry (ANZCTR); The trial registration number: ACTRN12619000678190; date of registration: 6 May 2019.
Collapse
Affiliation(s)
- Ewa Jówko
- Józef Piłsudski University of Physical Education in Warsaw; Faculty of Physical Education and Health in Biała Podlaska, Chair of Natural Sciences, Akademicka 2, 21-500 Biała Podlaska, Poland
| | - Maciej Płaszewski
- Józef Piłsudski University of Physical Education in Warsaw; Faculty of Physical Education and Health in Biała Podlaska, Chair of Rehabilitation, Biała Podlaska, Poland
| | - Maciej Cieśliński
- Józef Piłsudski University of Physical Education in Warsaw; Faculty of Physical Education and Health in Biała Podlaska, Chair of Rehabilitation, Biała Podlaska, Poland
| | - Tomasz Sacewicz
- Józef Piłsudski University of Physical Education in Warsaw; Faculty of Physical Education and Health in Biała Podlaska, Chair of Natural Sciences, Akademicka 2, 21-500 Biała Podlaska, Poland
| | - Igor Cieśliński
- Józef Piłsudski University of Physical Education in Warsaw; Faculty of Physical Education and Health in Biała Podlaska, Chair of Rehabilitation, Biała Podlaska, Poland
| | - Marta Jarocka
- Józef Piłsudski University of Physical Education in Warsaw; Faculty of Physical Education and Health in Biała Podlaska, Chair of Rehabilitation, Biała Podlaska, Poland
| |
Collapse
|
2
|
Santos DFDSD, Melo Aquino BD, Jorge CO, Azambuja GD, Schiavuzzo JG, Krimon S, Neves JDS, Parada CA, Oliveira-Fusaro MCG. Muscle pain induced by static contraction in rats is modulated by peripheral inflammatory mechanisms. Neuroscience 2017; 358:58-69. [PMID: 28673715 DOI: 10.1016/j.neuroscience.2017.06.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/12/2017] [Accepted: 06/22/2017] [Indexed: 11/15/2022]
Abstract
Muscle pain is an important health issue and frequently related to static force exertion. The aim of this study is to evaluate whether peripheral inflammatory mechanisms are involved with static contraction-induced muscle pain in rats. To this end, we developed a model of muscle pain induced by static contraction performed by applying electrical pulses through electrodes inserted into muscle. We also evaluated the involvement of neutrophil migration, bradykinin, sympathetic amines and prostanoids. A single session of sustained static contraction of gastrocnemius muscle induced acute mechanical muscle hyperalgesia without affecting locomotor activity and with no evidence of structural damage in muscle tissue. Static contraction increased levels of creatine kinase but not lactate dehydrogenase, and induced neutrophil migration. Dexamethasone (glucocorticoid anti-inflammatory agent), DALBK (bradykinin B1 antagonist), Atenolol (β1 adrenoceptor antagonist), ICI 118,551 (β2 adrenoceptor antagonist), indomethacin (cyclooxygenase inhibitor), and fucoidan (non-specific selectin inhibitor) all reduced static contraction-induced muscle hyperalgesia; however, the bradykinin B2 antagonist, bradyzide, did not have an effect on static contraction-induced muscle hyperalgesia. Furthermore, an increased hyperalgesic response was observed when the selective bradykinin B1 agonist des-Arg9-bradykinin was injected into the previously stimulated muscle. Together, these findings demonstrate that static contraction induced mechanical muscle hyperalgesia in gastrocnemius muscle of rats is modulated through peripheral inflammatory mechanisms that are dependent on neutrophil migration, bradykinin, sympathetic amines and prostanoids. Considering the clinical relevance of muscle pain, we propose the present model of static contraction-induced mechanical muscle hyperalgesia as a useful tool for the study of mechanisms underlying static contraction-induced muscle pain.
Collapse
Affiliation(s)
- Diogo Francisco da Silva Dos Santos
- Laboratory of Studies of Pain and Inflammation, School of Applied Sciences, State University of Campinas, Pedro Zaccaria 1300, Limeira, Sao Paulo, Brazil
| | - Bruna de Melo Aquino
- Laboratory of Studies of Pain and Inflammation, School of Applied Sciences, State University of Campinas, Pedro Zaccaria 1300, Limeira, Sao Paulo, Brazil
| | - Carolina Ocanha Jorge
- Laboratory of Studies of Pain and Inflammation, School of Applied Sciences, State University of Campinas, Pedro Zaccaria 1300, Limeira, Sao Paulo, Brazil
| | - Graciana de Azambuja
- Laboratory of Studies of Pain and Inflammation, School of Applied Sciences, State University of Campinas, Pedro Zaccaria 1300, Limeira, Sao Paulo, Brazil
| | - Jalile Garcia Schiavuzzo
- Laboratory of Studies of Pain and Inflammation, School of Applied Sciences, State University of Campinas, Pedro Zaccaria 1300, Limeira, Sao Paulo, Brazil
| | - Suzy Krimon
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Monteiro Lobato 255, Campinas, Sao Paulo, Brazil
| | - Juliana Dos Santos Neves
- Department of Morphology, Piracicaba Dental School, State University of Campinas, Limeira 901, Piracicaba, Sao Paulo, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Monteiro Lobato 255, Campinas, Sao Paulo, Brazil
| | | |
Collapse
|
3
|
Silva PE, Babault N, Mazullo JB, de Oliveira TP, Lemos BL, Carvalho VO, Durigan JLQ. Safety and feasibility of a neuromuscular electrical stimulation chronaxie-based protocol in critical ill patients: A prospective observational study. J Crit Care 2016; 37:141-148. [PMID: 27732921 DOI: 10.1016/j.jcrc.2016.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 08/23/2016] [Accepted: 09/14/2016] [Indexed: 12/26/2022]
Abstract
PURPOSE The aim of this study was to evaluate the safety and feasibility of a neuromuscular electrical stimulation (NMES) protocol based on neuromuscular excitability and applied in numerous muscle groups of critical ill patients. MATERIALS AND METHODS We performed a prospective observational study using an NMES applied daily and bilaterally into 5 muscle groups in lower limbs for 3 consecutive days. The characteristics of NMES were 90 contractions per muscle, pulse width equal to chronaxie, and a pulse frequency of 100 Hz. We assessed safety with central venous oxygen saturation, serum lactate, and creatine phosphokinase measurements. To evaluate feasibility, we recorded the time spent for the entire NMES protocol and the number of NMES sessions completed. RESULTS Eleven male patients finished the study. There were no significant changes observed in creatine phosphokinase from baseline up to 96 hours: 470(±270) IU/L and 455(±240) IU/L (P>.99). Central venous oxygen saturation and serum lactate had the same pattern with no significant variations (P=.23 and P=.8, respectively). The time spent during the whole procedure and the number of complete NMES sessions performed were 107±24 minutes and 84 sessions (85%), respectively. CONCLUSIONS We demonstrated that NMES chronaxie-based protocol is safe and feasible.
Collapse
Affiliation(s)
- Paulo Eugênio Silva
- Physical Therapy Division, University Hospital of Brasília, University of Brasília, Brasília, Federal District, Brazil; Health Sciences and Technologies PhD Program, University of Brasilia, Federal District, Brazil.
| | - Nicolas Babault
- Centre d'Expertise de la Performance G. Cometti, UFR STAPS, Université de Bourgogne-Franche-Comté, Dijon, France
| | | | | | | | - Vitor Oliveira Carvalho
- Physical Therapy Division, Federal University of Sergipe, The GrEAt Group (Grupo de Estudos de Atividade Fisica), Sergipe, Brazil
| | | |
Collapse
|
4
|
Electrically induced muscle cramps induce hypertrophy of calf muscles in healthy adults. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2015; 15:227-36. [PMID: 26032216 PMCID: PMC5133727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Skeletal muscles usually cramp at short lengths, where the tension that can be exerted by muscle fibers is low. Since high tension is an important anabolic stimulus, it is questionable if cramps can induce hypertrophy and strength gains. In the present study we investigated if electrically induced cramps (EIMCs) can elicit these adaptations. METHODS 15 healthy male adults were randomly assigned to an intervention (IG; n=10) and a control group (CG; n=5). The cramp protocol (CP) applied twice a week to one leg of the IG, consisted of 3x6 EIMCs, of 5 s each. Calf muscles of the opposite leg were stimulated equally, but were hindered from cramping by fixating the ankle at 0° plantar flexion (nCP). RESULTS After six weeks, the cross sectional area of the triceps surae was similarly increased in both the CP (+9.0±3.4%) and the nCP (+6.8±3.7%). By contrast, force of maximal voluntary contractions, measured at 0° and 30° plantar flexion, increased significantly only in nCP (0°: +8.5±8.8%; 30°: 11.7±13.7%). CONCLUSION The present data indicate that muscle cramps can induce hypertrophy in calf muscles, though lacking high tension as an important anabolic stimulus.
Collapse
|
5
|
Muscle damage induced by electrical stimulation. Eur J Appl Physiol 2011; 111:2427-37. [DOI: 10.1007/s00421-011-2086-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 07/11/2011] [Indexed: 11/26/2022]
|
6
|
Less indication of muscle damage in the second than initial electrical muscle stimulation bout consisting of isometric contractions of the knee extensors. Eur J Appl Physiol 2009; 108:709-17. [DOI: 10.1007/s00421-009-1278-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
|
7
|
Mackey AL, Bojsen-Moller J, Qvortrup K, Langberg H, Suetta C, Kalliokoski KK, Kjaer M, Magnusson SP. Evidence of skeletal muscle damage following electrically stimulated isometric muscle contractions in humans. J Appl Physiol (1985) 2008; 105:1620-7. [DOI: 10.1152/japplphysiol.90952.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It is unknown whether muscle damage at the level of the sarcomere can be induced without lengthening contractions. To investigate this, we designed a study where seven young, healthy men underwent 30 min of repeated electrical stimulated contraction of m. gastrocnemius medialis, with the ankle and leg locked in a fixed position. Two muscle biopsies were collected 48 h later: one from the stimulated muscle and one from the contralateral leg as a control. The biopsies were analyzed immunohistochemically for inflammatory cell infiltration and intermediate filament disruption. Ultrastructural changes at the level of the z-lines were investigated by transmission electron microscopy. Blood samples were collected for measurement of creatine kinase activity, and muscle soreness was assessed in the days following stimulation. The biopsies from the stimulated muscle revealed macrophage infiltration and desmin-negative staining in a small percentage of myofibers in five and four individuals, respectively. z-Line disruption was evident at varying magnitudes in all subjects and displayed a trend toward a positive correlation ( r = 0.73, P = 0.0663) with the force produced by stimulation. Increased muscle soreness in all subjects, combined with a significant increase in creatine kinase activity ( P < 0.05), is indirectly suggestive of muscle damage, and the novel findings of the present study, i.e., 1) macrophages infiltration, 2) lack of desmin staining, and 3) z-line disruption, provide direct evidence of damage at the myofiber and sarcomere levels. These data support the hypothesis that muscle damage at the level of the sarcomere can be induced without lengthening muscle contractions.
Collapse
|