1
|
Hendricks M, Verhagen E, van de Water ATM. Epidemiology, etiology and prevention of injuries in competitive ice speed skating-limited current evidence, multiple future priorities: A scoping review. Scand J Med Sci Sports 2024; 34:e14614. [PMID: 38610079 DOI: 10.1111/sms.14614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/13/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Long-track and short-track ice speed skating are integral to the Winter Olympics. The state of evidence-based injury prevention in these sports is unclear. Our goals were to summarize the current scientific knowledge, to determine the state of research, and to highlight future research areas for injury prevention in ice speed skating. We conducted a scoping review, searching all injury and injury prevention studies in competitive ice speed skaters. The six-stage Translating Research into Injury Prevention Practice (TRIPP) framework summarized the findings. The systematic search yielded 1109 citations. Nineteen studies were included, and additional searches yielded another 13 studies, but few had high-quality design. TRIPP stage 1 studies (n = 24) found competition injury rates from 2% to 18% of participants with various injury locations and types. Seasonal prevalence of physical complaints was up to 84% (for back pain) in long- and short-track. Ten studies covered information on TRIPP stage 2, with two small etiological studies linking injuries to functional strength deficits (short-track) and training load (long-track). Questionnaire studies identified various perceived risk factors for injuries but lacked further scientific evidence. Most TRIPP stage 3 studies (five out of eight) focused on developing protective measures, while two studies found short-track helmets performed poorly compared to helmets used in other sports. No study evaluated the efficacy, the intervention context, or the effectiveness (TRIPP stages 4-6) of the measures. Scientific knowledge on injury prevention in ice speed skating is limited. Future research should prioritize high-quality studies on injury epidemiology and etiology in the sports.
Collapse
Affiliation(s)
- Matthias Hendricks
- Amsterdam Collaboration on Health & Safety in Sports, Department of Public and Occupational Health, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Münster, Germany
| | - Evert Verhagen
- Amsterdam Collaboration on Health & Safety in Sports, Department of Public and Occupational Health, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alexander T M van de Water
- School of Allied Health, Human Services and Sport, La Trobe University, Melbourne/Bundoora, Victoria, Australia
- AdPhysio: Research, Training & Consultancy, Apeldoorn, The Netherlands
| |
Collapse
|
2
|
Describing headform pose and impact location for blunt impact testing. J Biomech 2020; 109:109923. [PMID: 32807308 DOI: 10.1016/j.jbiomech.2020.109923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 11/22/2022]
Abstract
Reproduction of anthropomorphic test device (ATD) head impact test methods is a critical element needed to develop guidance and technologies that reduce the risk for brain injury in sport. However, there does not appear to be a consensus for reporting ATD pose and impact location for industry and researchers to follow. Thus, the purpose of this article is to explore the various methods used to report impact location and ATD head pose for sport-related head impact testing and provide recommendations for standardizing these descriptions. A database search and exclusion process identified 137 articles that met the review criteria. Only 4 of the 137 articles provided a description similar to the method we propose to describe ATD pose and impact location. We thus propose a method to unambiguously convey the impact location and pose of the ATD based on the sequence, quantifiable design, and articulation of ATD mount joints. This reporting method has been used to a limited extent in the literature, but we assert that adoption of this method will help to standardize the reporting of ATD headform pose and impact location as well as aid in the replication of impact test protocols across laboratories.
Collapse
|
3
|
|
4
|
Chen K, Gu H, Zhu L, Feng DF. A New Model of Repetitive Traumatic Brain Injury in Mice. Front Neurosci 2020; 13:1417. [PMID: 32038131 PMCID: PMC6985558 DOI: 10.3389/fnins.2019.01417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Repetitive traumatic brain injury (rTBI) is a major health care concern that causes substantial neurological impairment. To better understand rTBI, we introduced a new model of rTBI in mice induced by sudden rotation in the coronal plane combined with lateral translation delivered twice at an interval of 24 h. By routine histology, histological examination of Prussian blue-stained sections revealed the presence of microbleed in the corpus callosum and brain stem. Amyloid precursor protein (β-APP) and neurofilament heavy-chain (NF-200) immunohistochemistry demonstrated axonal injury following rTBI. Swelling, waving, and enlargement axons were observed in the corpus callosum and brain stem 24 h after injury by Bielschowsky staining. Ultrastructural studies by electron microscopy provided further insights into the existence and progression of axonal injury. rTBI led to widespread astrogliosis and microgliosis in white matter, as well as significantly increased levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β. rTBI mice showed a significantly increased loss of righting reflex (LRR) duration within each time point compared with that of sham animals, which was under 15 min. rTBI mice exhibited depression-like behavior at 1 month. rTBI mice also demonstrated deficits in MWM testing. These results suggested that this model might be suitable for investigating rTBI pathophysiology and evaluating preclinical candidate therapeutics.
Collapse
Affiliation(s)
- Kui Chen
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Gu
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zhu
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Whyte T, Stuart C, Mallory A, Ghajari M, Plant D, Siegmund GP, Cripton PA. A review of impact testing methods for headgear in sports: Considerations for improved prevention of head injury through research and standards. J Biomech Eng 2019; 141:2728551. [PMID: 30861063 DOI: 10.1115/1.4043140] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Indexed: 11/08/2022]
Abstract
Standards for sports headgear were introduced as far back as the 1960s and many have remained substantially unchanged to present day. Since this time, headgear has virtually eliminated catastrophic head injuries such as skull fractures and changed the landscape of head injuries in sports. Mild traumatic brain injury (mTBI) is now a prevalent concern and the effectiveness of headgear in mitigating mTBI is inconclusive for most sports. Given that most current headgear standards are confined to attenuating linear head mechanics and recent brain injury studies have underscored the importance of angular mechanics in the genesis of mTBI, new or expanded standards are needed to foster headgear development and assess headgear performance that addresses all types of sport-related head and brain injuries. The aim of this review is to provide a basis for developing new sports headgear impact tests for standards by summarizing and critiquing: 1) impact testing procedures currently codified in published headgear standards for sports and 2) new or proposed headgear impact test procedures in published literature and/or relevant conferences. Research areas identified as needing further knowledge to support standards test development include defining sports-specific head impact conditions, establishing injury and age appropriate headgear assessment criteria, and the development of headgear specific head and neck surrogates for at-risk populations.
Collapse
Affiliation(s)
- Tom Whyte
- Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics, The University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, Vancouver, BC, Canada
| | - Cameron Stuart
- Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics, The University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, Vancouver, BC, Canada
| | - Ann Mallory
- Transportation Research Center Inc., OH, USA; The Department of Mechanical Engineering, Ohio State University, OH, USA
| | - Mazdak Ghajari
- Dyson School of Design Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, UK
| | - Daniel Plant
- Rheon Labs Ltd., 11S Hewlett House, Havelock Terrace, London, SW8 4AS, UK
| | - Gunter P Siegmund
- MEA Forensic Engineers & Scientists, 11-11151 Horseshoe Way, Richmond, BC V7A 4S5, Canada; School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
| | - Peter A Cripton
- Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics, The University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Sone JY, Kondziolka D, Huang JH, Samadani U. Helmet efficacy against concussion and traumatic brain injury: a review. J Neurosurg 2017; 126:768-781. [DOI: 10.3171/2016.2.jns151972] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helmets are one of the earliest and most enduring methods of personal protection in human civilization. Although primarily developed for combat purposes in ancient times, modern helmets have become highly diversified to sports, recreation, and transportation. History and the scientific literature exhibit that helmets continue to be the primary and most effective prevention method against traumatic brain injury (TBI), which presents high mortality and morbidity rates in the US. The neurosurgical and neurotrauma literature on helmets and TBI indicate that helmets provide effectual protection against moderate to severe head trauma resulting in severe disability or death. However, there is a dearth of scientific data on helmet efficacy against concussion in both civilian and military aspects. The objective of this literature review was to explore the historical evolution of helmets, consider the effectiveness of helmets in protecting against severe intracranial injuries, and examine recent evidence on helmet efficacy against concussion. It was also the goal of this report to emphasize the need for more research on helmet efficacy with improved experimental design and quantitative standardization of assessments for concussion and TBI, and to promote expanded involvement of neurosurgery in studying the quantitative diagnostics of concussion and TBI. Recent evidence summarized by this literature review suggests that helmeted patients do not have better relative clinical outcome and protection against concussion than unhelmeted patients.
Collapse
Affiliation(s)
- Je Yeong Sone
- 1Department of Neurosurgery, New York University School of Medicine, New York, New York
| | - Douglas Kondziolka
- 1Department of Neurosurgery, New York University School of Medicine, New York, New York
| | - Jason H. Huang
- 2Department of Neurosurgery, Baylor Scott & White Central Division, Temple, Texas; and
| | - Uzma Samadani
- 3Department of Neurosurgery, Hennepin County Medical Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|