1
|
Jones R, Ratnakumar N, Akbaş K, Zhou X. Delayed center of mass feedback in elderly humans leads to greater muscle co-contraction and altered balance strategy under perturbed balance: A predictive musculoskeletal simulation study. PLoS One 2024; 19:e0296548. [PMID: 38787871 PMCID: PMC11125460 DOI: 10.1371/journal.pone.0296548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Falls are one of the leading causes of non-disease death and injury in the elderly, often due to delayed sensory neural feedback essential for balance. This delay, challenging to measure or manipulate in human studies, necessitates exploration through neuromusculoskeletal modeling to reveal its intricate effects on balance. In this study, we developed a novel three-way muscle feedback control approach, including muscle length feedback, muscle force feedback, and enter of mass feedback, for balancing and investigated specifically the effects of center of mass feedback delay on elderly people's balance strategies. We conducted simulations of cyclic perturbed balance at different magnitudes ranging from 0 to 80 mm and with three center of mass feedback delays (100, 150 & 200 ms). The results reveal two key points: 1) Longer center of mass feedback delays resulted in increased muscle activations and co-contraction, 2) Prolonged center of mass feedback delays led to noticeable shifts in balance strategies during perturbed standing. Under low-amplitude perturbations, the ankle strategy was predominantly used, while higher amplitude disturbances saw more frequent employment of hip and knee strategies. Additionally, prolonged center of mass delays altered balance strategies across different phases of perturbation, with a noticeable increase in overall ankle strategy usage. These findings underline the adverse effects of prolonged feedback delays on an individual's stability, necessitating greater muscle co-contraction and balance strategy adjustment to maintain balance under perturbation. Our findings advocate for the development of training programs tailored to enhance balance reactions and mitigate muscle feedback delays within clinical or rehabilitation settings for fall prevention in elderly people.
Collapse
Affiliation(s)
- Rachel Jones
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Neethan Ratnakumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Kübra Akbaş
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Xianlian Zhou
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
| |
Collapse
|
2
|
Walsh JA, Bos S, McAndrew DJ, Stapley PJ. Can eccentric cycling be used to treat patellar tendinopathy? Br J Sports Med 2023; 57:832-833. [PMID: 36963806 DOI: 10.1136/bjsports-2022-106498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 03/26/2023]
Affiliation(s)
- Joel A Walsh
- Faculty of Science, Medicine and Health, University of Wollongong School of Medical Indigenous and Health Sciences, Wollongong, New South Wales, Australia
| | - Sophie Bos
- Independent Occupational Therapy, University of Wollongong-Innovation Campus, North Wollongong, New South Wales, Australia
| | - Darryl J McAndrew
- Faculty of Science, Medicine and Health, University of Wollongong Graduate School of Medicine, Wollongong, New South Wales, Australia
| | - Paul J Stapley
- Faculty of Science, Medicine and Health, University of Wollongong School of Medical Indigenous and Health Sciences, Wollongong, New South Wales, Australia
| |
Collapse
|
3
|
Differences between vastus medialis and lateralis excitation onsets are dependent on the relative distance of surface electrodes placement from the innervation zone location. J Electromyogr Kinesiol 2022; 67:102713. [PMID: 36215780 DOI: 10.1016/j.jelekin.2022.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022] Open
Abstract
Conflictual results between the onset of vastus medialis (VM) and vastus lateralis (VL) excitation may arise from methodological aspects related to the detection of surface electromyograms. In this study we used an array of surface electrodes to assess the effect of detection site, relative to the muscle innervation zone, on the difference between VM and VL excitation onsets. Ten healthy males performed moderate isometric knee extension at 40 % of their maximal voluntary isometric contraction. After the actual VM-VL onset was defined (estimated when action potentials were generated at the neuromuscular junctions of both muscles), we calculated the largest bias that the detection site may introduce in the VM-VL onset estimation. We also assessed whether the location often considered for positioning bipolar electrodes on each muscle leads to VM-VL onset estimations comparable to the actual VM-VL onset. Our main results revealed that a maximum absolute bias of 20.48 ms may be introduced in VM-VL onset estimations due to the electrodes' detection site. In addition, mean differences of ∼ 12 ms in VM-VL onset estimations were attributable to largest possible discrepancies in the paired position of channels with respect to the innervation zone for VL and VM. When considering the classical location for positioning the bipolar electrodes over these muscles, differences error was subtle (∼3.4 ms) when compared with the actual VM-VL onset. Nonetheless, when accounting for the effect of relative differences in electrode position between muscles is not possible, our results suggest that a systematic absolute error of ∼ 12 ms should be considered in future studies regarding VM-VL onset estimations, suggesting that onset differences lower than that might not be clinically relevant.
Collapse
|
4
|
Koelewijn AD, Ijspeert AJ. Exploring the Contribution of Proprioceptive Reflexes to Balance Control in Perturbed Standing. Front Bioeng Biotechnol 2020; 8:866. [PMID: 32984265 PMCID: PMC7485384 DOI: 10.3389/fbioe.2020.00866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/06/2020] [Indexed: 11/17/2022] Open
Abstract
Humans control balance using different feedback loops involving the vestibular system, the visual system, and proprioception. In this article, we focus on proprioception and explore the contribution of reflexes based on force and length feedback to standing balance. In particular, we address the questions of how much proprioception alone could explain balance control, and whether one modality, force or length feedback, is more important than the other. A sagittal plane neuro-musculoskeletal model was developed with six degrees of freedom and nine muscles in each leg. A controller was designed using proprioceptive reflexes and a dead zone. No feedback control was applied inside the dead zone. Reflexes were active once the center of mass moved outside the dead zone. Controller parameters were found by solving an optimization problem, where effort was minimized while the neuro-musculoskeletal model should remain standing upright on a perturbed platform. The ground was perturbed with random square pulses in the sagittal plane with different amplitudes and durations. The optimization was solved for three controllers: using force and length feedback (base model), using only force feedback, and using only length feedback. Simulations were compared to human data from previous work, where an experiment with the same perturbation signal was performed. The optimized controller yielded a similar posture, since average joint angles were within 5 degrees of the experimental average joint angles. The joint angles of the base model, the length only model, and the force only model correlated weakly (ankle) to moderately with the experimental joint angles. The ankle moment correlated weakly to moderately with the experimental ankle moment, while the hip and knee moment were only weakly correlated, or not at all. The time series of the joint angles showed that the length feedback model was better able to explain the experimental joint angles than the force feedback model. Changes in time delay affected the correlation of the joint angles and joint moments. The objective of effort minimization yielded lower joint moments than in the experiment, suggesting that other objectives are also important in balance control, which cause an increase in effort and thus larger joint moments.
Collapse
Affiliation(s)
- Anne D Koelewijn
- Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Machine Learning and Data Analytics Lab, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Auke J Ijspeert
- Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Alsultan F, Cescon C, Heneghan NR, Rushton A, Barbero M, Falla D. Eccentric exercise and delayed onset muscle soreness reduce the variability of active cervical movements. J Biomech 2020; 111:109962. [PMID: 32882522 DOI: 10.1016/j.jbiomech.2020.109962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/18/2022]
Abstract
People with acute neck pain commonly present with restricted neck movement. However, it is unknown whether the presence of acute pain affects the quality of neck movement, specifically neck movement variability. We examined the effects of acute neck muscle soreness induced via eccentric exercise in healthy volunteers, on the variability of neck movement by examining changes in parameters of the helical axis during active neck movements. An experimental, single-arm repeated measures study recruited 32 healthy participants, male and female, aged between 18 and 55 years. Repetitive active neck movements (flexion-extension, bilateral lateral flexion and bilateral rotation) were performed at different speeds, either at full range of motion (RoM) or restricted to 45° RoM at baseline, pre-exercise (T0), immediately following eccentric neck exercise (T1), 24 h (T2) and 48 h post-exercise (T3). The mean distance (MD) and mean angle (MA) parameters of the helical axis were extracted to quantify movement variability. MD, measured during movements performed at full RoM, reduced significantly at T2 compared to T0 (P = 0.001) regardless of direction or speed of movement. MA was significantly lower at T2 and T3 compared to T1 (P = 0.029 and P = 0.033, respectively). When RoM was restricted to 45°, significantly lower MD values were observed at T3 compared to T1 (P = 0.034), and significantly lower MA values were measured at T3 compared to T0, T1 and T2 (all P < 0.0001). This study uniquely demonstrates that neck movement variability is reduced immediately after, 24 h and 48 h after eccentric exercise, indicating that acute neck muscle soreness modifies the quality of neck movement.
Collapse
Affiliation(s)
- Feras Alsultan
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK; Physical Therapy Department, College of Medical Rehabilitation, Qassim University, Buraidah, Saudi Arabia
| | - Corrado Cescon
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno/Landquart, Switzerland
| | - Nicola R Heneghan
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - Alison Rushton
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - Marco Barbero
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno/Landquart, Switzerland
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK.
| |
Collapse
|
6
|
Gallina A, Wakeling JM, Hodges PW, Hunt MA, Garland SJ. Regional Vastus Medialis and Vastus Lateralis Activation in Females with Patellofemoral Pain. Med Sci Sports Exerc 2018; 51:411-420. [PMID: 30339659 DOI: 10.1249/mss.0000000000001810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION This study aimed to investigate whether regional activation patterns in the vasti muscles differ between females with and without patellofemoral pain (PFP), and whether muscle activation patterns correlate with knee extension strength. METHODS Thirty-six females with PFP and 20 pain-free controls performed a standardized knee flexion-extension task. The activation of vastus medialis (VM) and vastus lateralis (VL) was collected using high-density surface EMG and analyzed using principal component (PC) analysis. Spatial locations and temporal coefficients of the PC, and the percent variance they explain, were compared between groups and between the concentric and the eccentric phases of the movement. Correlations were assessed between PC features and knee extension strength. RESULTS The spatial weights of PC1 (general vasti activation) and PC2 (reflecting vastus-specific activation) were similar between groups (R > 0.95). Activation patterns in PFP were less complex than controls. Fewer PC features were necessary to reconstruct 90% of the signal for PFP participants in the concentric phase (P < 0.05), and the difference in bias of activation to VM (concentric phase) or VL (eccentric phase) was less between phases for PFP participants (P < 0.05). Smaller difference in vastus-specific activation in concentric and eccentric phases (less task specificity of VM/VL coordination) was related to greater maximal knee extension strength (P < 0.05, R < -0.43). CONCLUSION These data suggest PFP involves a simpler control strategy of VM and VL. The inverse association between task specificity and maximal knee extension strength suggests different presentations of PFP: lower knee extension strength but VM/VL coordination task specificity comparable with controls, or knee extension strength comparable with controls but lower VM/VL coordination task specificity.
Collapse
Affiliation(s)
- Alessio Gallina
- Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, British Columbia, CANADA
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, CANADA
| | - Paul W Hodges
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, St. Lucia, AUSTRALIA
| | - Michael A Hunt
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, CANADA
| | - S Jayne Garland
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, CANADA.,Faculty of Health Sciences, University of Western Ontario, London, Ontario, CANADA
| |
Collapse
|
7
|
Nasrabadi R, Izanloo Z, Sharifnezad A, Hamedinia MR, Hedayatpour N. Muscle fiber conduction velocity of the vastus medilais and lateralis muscle after eccentric exercise induced-muscle damage. J Electromyogr Kinesiol 2018; 43:118-126. [PMID: 30273919 DOI: 10.1016/j.jelekin.2018.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 06/06/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022] Open
Abstract
Change in muscle fiber conduction velocity (MFCV) has been reported after eccentric exercise induces muscle fiber damage, most likely due to a change in membrane permeability of the injured fiber. The extent of damage to the muscle fiber depends on the morphological and architectural characteristics of the muscle fibers. Morphological and architectural characteristics of the VMO muscle fibers are different from VL muscle. Thus, it is expected that eccentric exercise of quadriceps muscle results in a non-uniform fiber damage within the VMO and VL muscle and, as a consequence, non-uniform changes in membrane excitability and conduction velocity. The aim of the study was to investigate MFCV of the VMO and VL muscles before and 24 h after eccentric exercise. Multichannel surface EMG signals were concurrently recorded from the right VMO and VL muscles of 15 healthy men during sustained isometric contractions at 50% of the maximal force. Maximal voluntary force significantly reduced after eccentric exercise with respect to the pre-exercise condition (P < 0.0001). MFCV decreased over time during the sustained contractions at faster rates when assessed 24 h after exercise (VMO = -26.1; VL = -20.1) with respect to the pre-exercise condition (VMO = -9.1; VL = -13.7, P < 0.0001). Moreover, VMO showed a greater rate of reduction in MFCV over sustained contraction (26.1 ± 10.7%) in comparison with VL muscle (20.1 ± 8.5%, P < 0.025) 24 h after eccentric exercise. The result indicates that eccentric exercise contributes to a larger reduction in MFCV within the VMO muscle as compared to the VL muscle. This may abolish the ability of VMO to counteract the lateral pull of the VL muscle during knee extension, thereby leaving the knee complex more vulnerable to injury.
Collapse
Affiliation(s)
- Razieh Nasrabadi
- Department of Sports Sciences, Islamic Azad University of Bojnourd, Iran
| | - Zahra Izanloo
- Center for Biomechanics and Motor Control (BMC), Department of Sports Sciences, University of Bojnord, Bojnord, Iran
| | - Ali Sharifnezad
- Department of Sports Biomechanics, Sports Sciences Research Institute of Iran, Iran
| | | | - Nosratollah Hedayatpour
- Center for Biomechanics and Motor Control (BMC), Department of Sports Sciences, University of Bojnord, Bojnord, Iran.
| |
Collapse
|
8
|
Location-specific responses to nociceptive input support the purposeful nature of motor adaptation to pain. Pain 2018; 159:2192-2200. [DOI: 10.1097/j.pain.0000000000001317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Hedayatpour N, Izanloo Z, Falla D. The effect of eccentric exercise and delayed onset muscle soreness on the homologous muscle of the contralateral limb. J Electromyogr Kinesiol 2018; 41:154-159. [PMID: 29902705 DOI: 10.1016/j.jelekin.2018.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/30/2022] Open
Abstract
High intensity eccentric exercise induces muscle fiber damage and associated delayed-onset muscle soreness (DOMS) resulting in an impaired ability of the muscle to generate voluntary force. This study investigates the extent to which DOMS, induced by high intensity eccentric exercise, can affect the activation and performance of the non-exercised homologous muscle of the contralateral limb. Healthy volunteers performed maximal voluntary contractions of knee extension and sustained isometric knee extension at 50% of maximal force until task failure on both the ipsilateral exercised limb and the contralateral limb. Surface electromyography (EMG) was recorded from the ipsilateral and contralateral knee extensor muscles (vastus medialis, rectus femoris, and vastus lateralis). Maximal isometric knee extension force (13.7% reduction) and time to task failure (38.1% reduction) of the contralateral non-exercised leg decreased immediately after eccentric exercise, and persisted 24 h and 48 h later (p < 0.05). Moreover, the amplitude of muscle activity recorded from the contralateral knee extensor muscles was significantly lower during the post exercise maximal and submaximal contractions following high intensity eccentric exercise of the opposite limb (p < 0.05). Unilateral high intensity eccentric exercise of the quadriceps can contribute to reduced neuromuscular activity and physical work capacity of the non-exercised homologous muscle in the contralateral limb.
Collapse
Affiliation(s)
- Nosratollah Hedayatpour
- Center for Biomechanics and Motor Control (BMC), Department of Physical Education and Sport Science, University of Bojnord, Bojnord, Iran
| | - Zahra Izanloo
- Center for Biomechanics and Motor Control (BMC), Department of Physical Education and Sport Science, University of Bojnord, Bojnord, Iran
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, United Kingdom.
| |
Collapse
|
10
|
Gallina A, Hunt MA, Hodges PW, Garland SJ. Vastus Lateralis Motor Unit Firing Rate Is Higher in Women With Patellofemoral Pain. Arch Phys Med Rehabil 2018; 99:907-913. [DOI: 10.1016/j.apmr.2018.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/08/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
|
11
|
Maeo S, Saito A, Otsuka S, Shan X, Kanehisa H, Kawakami Y. Localization of muscle damage within the quadriceps femoris induced by different types of eccentric exercises. Scand J Med Sci Sports 2017; 28:95-106. [DOI: 10.1111/sms.12880] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 01/22/2023]
Affiliation(s)
- S. Maeo
- Faculty of Sport Sciences; Waseda University; Tokorozawa Saitama Japan
- Research Fellow of Japan Society for the Promotion of Science; Chiyoda Tokyo Japan
| | - A. Saito
- Faculty of Sport Sciences; Waseda University; Tokorozawa Saitama Japan
| | - S. Otsuka
- Faculty of Sport Sciences; Waseda University; Tokorozawa Saitama Japan
| | - X. Shan
- Faculty of Sport Sciences; Waseda University; Tokorozawa Saitama Japan
| | - H. Kanehisa
- Department of Sports and Life Science; National Institute of Fitness and Sports in Kanoya; Kanoya Kagoshima Japan
| | - Y. Kawakami
- Faculty of Sport Sciences; Waseda University; Tokorozawa Saitama Japan
| |
Collapse
|
12
|
The Analgesic Efficacy of Kinesiology Taping in Delayed Onset Muscle Soreness (DOMS). CENTRAL EUROPEAN JOURNAL OF SPORT SCIENCES AND MEDICINE 2016. [DOI: 10.18276/cej.2016.1-07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training. BIOMED RESEARCH INTERNATIONAL 2015; 2015:193741. [PMID: 26543850 PMCID: PMC4620252 DOI: 10.1155/2015/193741] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/13/2015] [Accepted: 02/09/2015] [Indexed: 11/08/2022]
Abstract
Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural adaptations to training. Eccentric exercise-induced adaptations include muscle hypertrophy, increased cortical activity, and changes in motor unit behavior, all of which contribute to improved muscle function. In this brief review, neuromuscular adaptations to different forms of exercise are reviewed, the positive training effects of eccentric exercise are presented, and the implications for training are considered.
Collapse
|
14
|
Kargarfard M, Lam ET, Shariat A, Shaw I, Shaw BS, Tamrin SB. Efficacy of massage on muscle soreness, perceived recovery, physiological restoration and physical performance in male bodybuilders. J Sports Sci 2015; 34:959-65. [DOI: 10.1080/02640414.2015.1081264] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|