1
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2-Metabolome, immunome, synaptome. Front Psychiatry 2023; 14:1182536. [PMID: 37854446 PMCID: PMC10579598 DOI: 10.3389/fpsyt.2023.1182536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, and synaptopathy. Cannabinoids are well-known to have bidirectional immunomodulatory activities on numerous parts of the immune system. Immune perturbations are well-known to impact the aging process, the epigenome, and intermediate metabolism. Cannabinoids also impact metabolism via many pathways. Metabolism directly impacts immune, genetic, and epigenetic processes. Synaptic activity, synaptic pruning, and, thus, the sculpting of neural circuits are based upon metabolic, immune, and epigenomic networks at the synapse, around the synapse, and in the cell body. Many neuropsychiatric disorders including depression, anxiety, schizophrenia, bipolar affective disorder, and autistic spectrum disorder have been linked with cannabis. Therefore, it is important to consider these features and their complex interrelationships in reaching a comprehensive understanding of cannabinoid dependence. Together these findings indicate that cannabinoid perturbations of the immunome and metabolome are important to consider alongside the well-recognized genomic and epigenomic perturbations and it is important to understand their interdependence and interconnectedness in reaching a comprehensive appreciation of the true nature of cannabinoid pathophysiology. For these reasons, a comprehensive appreciation of cannabinoid pathophysiology necessitates a coordinated multiomics investigation of cannabinoid genome-epigenome-transcriptome-metabolome-immunome, chromatin conformation, and 3D nuclear architecture which therefore form the proper mechanistic underpinning for major new and concerning epidemiological findings relating to cannabis exposure.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
2
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic dysregulation and aging, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 1-aging and epigenomics. Front Psychiatry 2023; 14:1182535. [PMID: 37732074 PMCID: PMC10507876 DOI: 10.3389/fpsyt.2023.1182535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Much recent attention has been directed toward the spatial organization of the cell nucleus and the manner in which three-dimensional topologically associated domains and transcription factories are epigenetically coordinated to precisely bring enhancers into close proximity with promoters to control gene expression. Twenty lines of evidence robustly implicate cannabinoid exposure with accelerated organismal and cellular aging. Aging has recently been shown to be caused by increased DNA breaks. These breaks rearrange and maldistribute the epigenomic machinery to weaken and reverse cellular differentiation, cause genome-wide DNA demethylation, reduce gene transcription, and lead to the inhibition of developmental pathways, which contribute to the progressive loss of function and chronic immune stimulation that characterize cellular aging. Both cell lineage-defining superenhancers and the superanchors that control them are weakened. Cannabis exposure phenocopies the elements of this process and reproduces DNA and chromatin breakages, reduces the DNA, RNA protein and histone synthesis, interferes with the epigenomic machinery controlling both DNA and histone modifications, induces general DNA hypomethylation, and epigenomically disrupts both the critical boundary elements and the cohesin motors that create chromatin loops. This pattern of widespread interference with developmental programs and relative cellular dedifferentiation (which is pro-oncogenic) is reinforced by cannabinoid impairment of intermediate metabolism (which locks in the stem cell-like hyper-replicative state) and cannabinoid immune stimulation (which perpetuates and increases aging and senescence programs, DNA damage, DNA hypomethylation, genomic instability, and oncogenesis), which together account for the diverse pattern of teratologic and carcinogenic outcomes reported in recent large epidemiologic studies in Europe, the USA, and elsewhere. It also accounts for the prominent aging phenotype observed clinically in long-term cannabis use disorder and the 20 characteristics of aging that it manifests. Increasing daily cannabis use, increasing use in pregnancy, and exponential dose-response effects heighten the epidemiologic and clinical urgency of these findings. Together, these findings indicate that cannabinoid genotoxicity and epigenotoxicity are prominent features of cannabis dependence and strongly indicate coordinated multiomics investigations of cannabinoid genome-epigenome-transcriptome-metabolome, chromatin conformation, and 3D nuclear architecture. Considering the well-established exponential dose-response relationships, the diversity of cannabinoids, and the multigenerational nature of the implications, great caution is warranted in community cannabinoid penetration.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
3
|
Reece AS, Hulse GK. Clinical Epigenomic Explanation of the Epidemiology of Cannabinoid Genotoxicity Manifesting as Transgenerational Teratogenesis, Cancerogenesis and Aging Acceleration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3360. [PMID: 36834053 PMCID: PMC9967951 DOI: 10.3390/ijerph20043360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 05/16/2023]
Abstract
As global interest in the therapeutic potential of cannabis and its' derivatives for the management of selected diseases increases, it is increasingly imperative that the toxic profile of cannabinoids be thoroughly understood in order to correctly assess the balance between the therapeutic risks and benefits. Modern studies across a number of jurisdictions, including Canada, Australia, the US and Europe have confirmed that some of the most worrying and severe historical reports of both congenital anomalies and cancer induction following cannabis exposure actually underestimate the multisystem thousand megabase-scale transgenerational genetic damage. These findings from teratogenic and carcinogenic literature are supported by recent data showing the accelerated patterns of chronic disease and the advanced DNA methylation epigenomic clock age in cannabis exposed patients. Together, the increased multisystem carcinogenesis, teratogenesis and accelerated aging point strongly to cannabinoid-related genotoxicity being much more clinically significant than it is widely supposed and, thus, of very considerable public health and multigenerational impact. Recently reported longitudinal epigenome-wide association studies elegantly explain many of these observed effects with considerable methodological sophistication, including multiple pathways for the inhibition of the normal chromosomal segregation and DNA repair, the inhibition of the basic epigenetic machinery for DNA methylation and the demethylation and telomerase acceleration of the epigenomic promoter hypermethylation characterizing aging. For cancer, 810 hits were also noted. The types of malignancy which were observed have all been documented epidemiologically. Detailed epigenomic explications of the brain, heart, face, uronephrological, gastrointestinal and limb development were provided, which amply explained the observed teratological patterns, including the inhibition of the key morphogenic gradients. Hence, these major epigenomic insights constituted a powerful new series of arguments which advanced both our understanding of the downstream sequalae of multisystem multigenerational cannabinoid genotoxicity and also, since mechanisms are key to the causal argument, inveighed strongly in favor of the causal nature of the relationship. In this introductory conceptual overview, we present the various aspects of this novel synthetic paradigmatic framework. Such concepts suggest and, indeed, indicate numerous fields for further investigation and basic science research to advance the exploration of many important issues in biology, clinical medicine and population health. Given this, it is imperative we correctly appraise the risk-benefit ratio for each potential cannabis application, considering the potency, severity of disease, stage of human development and duration of use.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
4
|
Kent A. Cannabis use in gynaecology: A bad idea? Aust N Z J Obstet Gynaecol 2023; 63:121-123. [PMID: 36471532 DOI: 10.1111/ajo.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Athol Kent
- University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Cannabis-Based Medicinal Products in the Management of Emotionally Unstable Personality Disorder (EUPD): A Narrative Review and Case Series. Brain Sci 2022; 12:brainsci12111467. [DOI: 10.3390/brainsci12111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Emotionally unstable personality disorder (EUPD) is a common mental health disorder, manifesting with a range of chronic and debilitating symptoms, including impaired social functioning, unstable mood, and risky impulsive or self-injurious behaviour. Whilst the exact aetiology has not been fully elucidated, implicated factors seem to include genetic factors, environmental causes such as trauma, and neurotransmitter deficits. The literature suggests that impaired functioning of the endocannabinoid system in key brain regions responsible for emotional processing and stress response may underlie the manifestation of EUPD symptoms. The National Institute for Health and Care Excellence (NICE) 2009 guidelines state that “no drugs have established efficacy in treating or managing EUPD”, and yet, patients are commonly prescribed medication which includes antipsychotics, antidepressants, and mood stabilisers. Here we present a case series of seven participants diagnosed with EUPD and treated with cannabis-based medicinal products (CBMPs). Participants were given an initial assessment and followed up one month after CBMPs prescription. Improvement in symptoms was assessed by the completion of ratified rating scales by the participant and psychiatrist. Our results indicate that CBMPs were effective and well tolerated, as six participants reported a noticeable improvement in their symptoms and functioning. Although promising, further research is needed to ascertain the long-term tolerability, efficacy, and dosing strategy for CBMPs in EUPD.
Collapse
|
6
|
Schlag AK, Lynskey M, Fayaz A, Athanasiou-Fragkouli A, Brandner B, Haja B, Iveson E, Nutt DJ. Characteristics of People Seeking Prescribed Cannabinoids for the Treatment of Chronic Pain: Evidence From Project Twenty 21. FRONTIERS IN PAIN RESEARCH 2022; 3:891498. [PMID: 35775024 PMCID: PMC9237624 DOI: 10.3389/fpain.2022.891498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
Background Prescribed cannabinoids are now legal in the UK and increasingly being used for a variety of conditions, with one of the most frequent conditions being chronic pain. This paper describes the characteristics of individuals seeking prescribed cannabinoids for the treatment of chronic pain in Project Twenty 21, a UK based real world data registry of prescribed cannabis patients. Method By 1st November 2021 data were available for 1,782 people who had sought treatment with medical cannabis as part of Project Twenty 21. The most common diagnosis among this cohort was chronic pain with 949 (53.5%) of the cohort reporting a primary condition related to chronic pain. Medical and self-report data on the characteristics of these patients, their health status and type/s of cannabinoid/s prescribed are summarized in this report. Results Of the 949 people reporting chronic pain as a primary condition 54.7% were male and their average age was 42.0 years (range = 18-84). Patients reported a low quality of life and high levels of comorbidity: people reported an average of 4.6 comorbid conditions with the most common comorbid conditions including anxiety, depression, insomnia and stress. A range of cannabinoid products were prescribed with the most common products being classified as high THC flower (48.5%). The majority of patients also reported using at least one other prescribed medication (68.7%). Conclusions Consistent with findings in other national and international databases, chronic pain was the most common primary condition in this real world study of prescribed cannabinoids. There was considerable variation in the types of chronic pain, comorbid pathology and in the characteristics of products being prescribed to treat these conditions. Together, this evidence supports the utility of real world evidence, as opposed to clinical trial approaches to studying the potential benefits of prescribed cannabinoids in treating chronic pain.
Collapse
Affiliation(s)
- Anne Katrin Schlag
- Drug Science, London, United Kingdom
- Department of Psychiatry, Imperial College London, London, United Kingdom
| | | | - Alan Fayaz
- Anaesthesia and Pain Medicine, University College London Hospital National Health Service (NHS) Foundation Trust, University College London, London, United Kingdom
| | | | - Brigitta Brandner
- Anaesthesia and Pain Medicine, University College London Hospital National Health Service (NHS) Foundation Trust, University College London, London, United Kingdom
| | | | - Elizabeth Iveson
- Stroke and Neurorehabilitation, Nuffield Health, London, United Kingdom
| | - David J. Nutt
- Drug Science, London, United Kingdom
- Department of Psychiatry, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Bradley L. Local regulatory systems hinder prescription of medical cannabis. BMJ 2022; 376:o440. [PMID: 35228256 DOI: 10.1136/bmj.o440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Lloyd Bradley
- University Hospitals Sussex, St Richard's Hospital, Chichester, UK
| |
Collapse
|
8
|
Hoeh NR, Menkes DB. Doctors' support of medical cannabis: an evidential rather than moral imperative. BMJ 2022; 376:o447. [PMID: 35228209 DOI: 10.1136/bmj.o447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Nicholas R Hoeh
- Auckland Clinical Campus, University of Auckland, Auckland, New Zealand
| | - David B Menkes
- Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
| |
Collapse
|
9
|
Braillon A, Bewley S. Underplaying the dangers of cannabis for women of childbearing age is sexist and pregnancy discrimination. BMJ 2022; 376:o464. [PMID: 35217508 DOI: 10.1136/bmj.o464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Susan Bewley
- Department of Women and Children's Health, King's College London, London, UK
| |
Collapse
|
10
|
|