1
|
Streeter J, Persaud L, Gao J, Manika D, Fairman W, García-Peña LM, Marti A, Manika C, Gaddi S, Schickling B, Pereira RO, Abel ED. ATF4-dependent and independent mitokine secretion from OPA1 deficient skeletal muscle in mice is sexually dimorphic. Front Endocrinol (Lausanne) 2024; 15:1325286. [PMID: 39381436 PMCID: PMC11458430 DOI: 10.3389/fendo.2024.1325286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Reducing Optic Atrophy 1 (OPA1) expression in skeletal muscle in male mice induces Activation Transcription Factor 4 (ATF4) and the integrated stress response (ISR). Additionally, skeletal muscle secretion of Fibroblast Growth Factor 21 (FGF21) is increased, which mediates metabolic adaptations including resistance to diet-induced obesity (DIO) and glucose intolerance in these mice. Although FGF21 induction in this model can be reversed with pharmacological attenuation of ER stress, it remains to be determined if ATF4 is responsible for FGF21 induction and its metabolic benefits in this model. Methods We generated mice with homozygous floxed Opa1 and Atf4 alleles and a tamoxifen-inducible Cre transgene controlled by the human skeletal actin promoter to enable simultaneous depletion of OPA1 and ATF4 in skeletal muscle (mAO DKO). Mice were fed high fat (HFD) or control diet and evaluated for ISR activation, body mass, fat mass, glucose tolerance, insulin tolerance and circulating concentrations of FGF21 and growth differentiation factor 15 (GDF15). Results In mAO DKO mice, ATF4 induction is absent. Other indices of ISR activation, including XBP1s, ATF6, and CHOP were induced in mAO DKO males, but not in mOPA1 or mAO DKO females. Resistance to diet-induced obesity was not reversed in mAO DKO mice of both sexes. Circulating FGF21 and GDF15 illustrated sexually dimorphic patterns. Loss of OPA1 in skeletal muscle increases circulating FGF21 in mOPA1 males, but not in mOPA1 females. Additional loss of ATF4 decreased circulating FGF21 in mAO DKO male mice, but increased circulating FGF21 in female mAO DKO mice. Conversely, circulating GDF15 was increased in mAO DKO males and mOPA1 females, but not in mAO DKO females. Conclusion Sex differences exist in the transcriptional outputs of the ISR following OPA deletion in skeletal muscle. Deletion of ATF4 in male and female OPA1 KO mice does not reverse the resistance to DIO. Induction of circulating FGF21 is ATF4 dependent in males, whereas induction of circulating GDF15 is ATF4 dependent in females. Elevated GDF15 in males and FGF21 in females could reflect activation by other transcriptional outputs of the ISR, that maintain mitokine-dependent metabolic protection in an ATF4-independent manner.
Collapse
Affiliation(s)
- Jennifer Streeter
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Luis Persaud
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Jason Gao
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Deeraj Manika
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Will Fairman
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Luis Miguel García-Peña
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Alex Marti
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Chethan Manika
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Shreya Gaddi
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Brandon Schickling
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Renata O. Pereira
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - E. Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Abdel-Wahab BA, Zafaar D, Habeeb MS, El-Shoura EAM. Nicorandil mitigates arsenic trioxide-induced lung injury via modulating vital signalling pathways SIRT1/PGC-1α/TFAM, JAK1/STAT3, and miRNA-132 expression. Br J Pharmacol 2024; 181:3215-3231. [PMID: 38741475 DOI: 10.1111/bph.16414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/13/2024] [Accepted: 03/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Nicorandil, a selective opener of potassium channels, used to treat angina, has drawn attention for its potential in mitigating lung injury, positioning it as a promising therapeutic approach to treat drug-induced lung toxicity. This study aimed to explore the protective role of nicorandil in arsenic trioxide (ATO)-induced lung injury and to elucidate the underlying mechanistic pathways. EXPERIMENTAL APPROACH We assessed the effects of nicorandil (15 mg·kg-1, p.o.) in a rat model of pulmonary injury induced by ATO (5 mg·kg-1, i.p.). The assessment included oxidative stress biomarkers, inflammatory cytokine levels, and other biomarkers, including sirtuin-1, sirtuin-3, STAT3, TFAM, and JAK in lung tissue. Histological examination using H&E staining and molecular investigations using western blotting and PCR techniques were conducted. KEY RESULTS In our model of lung injury, treatment with nicorandil ameliorated pathological changes as seen with H&E staining, reduced tissue levels of toxicity markers, and exerted significant antioxidant and anti-inflammatory actions. On a molecular level, treatment with nicorandil down-regulated JAK, STAT3, PPARγ, Nrf2, VEGF, p53, and micro-RNA 132 while up-regulating Sirt1, 3, TFAM, AMPK, and ERR-α in lung tissue. CONCLUSIONS AND IMPLICATIONS The results presented here show nicorandil as a significant agent in attenuating lung injury induced by ATO in a rodent model. Nonetheless, further clinical studies are warranted to strengthen these findings.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Dalia Zafaar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University of Technology, and Information, Cairo, Egypt
| | | | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| |
Collapse
|
3
|
Tang J, Chen L, Chang Y, Hang D, Chen G, Wang Y, Feng L, Xu M. ZBTB7A interferes with the RPL5-P53 feedback loop and reduces endoplasmic reticulum stress-induced apoptosis of pancreatic cancer cells. Mol Carcinog 2024; 63:1783-1799. [PMID: 38896079 DOI: 10.1002/mc.23772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Endoplasmic reticulum (ER) stress is a primary mechanism leading to cell apoptosis, making it of great research interests in cancer management. This study delves into the function of ribosomal protein L5 (RPL5) in ER stress within pancreatic cancer (PCa) cells and investigates its regulatory mechanisms. Bioinformatics predictions pinpointed RPL5 as an ER stress-related gene exhibiting diminished expression in PCa. Indeed, RPL5 was found to be poorly expressed in PCa tissues and cells, with this reduced expression correlating with an unfavorable prognosis. Moreover, RPL5 overexpression led to heightened levels of p-PERK, p-eIF2α, and CHOP, bolstering the proapoptotic effect of Tunicamycin, an ER stress activator, on PCa cells. Additionally, the RPL5 overexpression curbed cell proliferation, migration, and invasion. Tunicamycin enhanced the binding between RPL5 and murine double minute 2 (MDM2), thus suppressing MDM2-mediated ubiquitination and degradation of P53. Consequently, P53 augmentation intensified ER stress, which further enhanced the binding between RPL5 and MDM2 through PERK-dependent eIF2α phosphorylation, thereby establishing a positive feedback loop. Zinc finger and BTB domain containing 7A (ZBTB7A), conspicuously overexpressed in PCa samples, repressed RPL5 transcription, thereby reducing P53 expression. Silencing of ZBTB7A heightened ER stress and subdued the malignant attributes of PCa cells, effects counteracted upon RPL5 silencing. Analogous outcomes were recapitulated in vivo employing a xenograft tumor mouse model, where ZBTB7A silencing dampened the tumorigenic potential of PCa cells, an effect reversed by additional RPL5 silencing. In conclusion, this study suggests that ZBTB7A represses RPL5 transcription, thus impeding the RPL5-P53 feedback loop and mitigating ER-induced apoptosis in PCa cells.
Collapse
Affiliation(s)
- Jie Tang
- Department of Gastroenterology, Shanghai Hongkou District Jiangwan Hospital, Shanghai, P.R. China
| | - Lingling Chen
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Yunli Chang
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Dongyun Hang
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Guoyu Chen
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Ying Wang
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Lingmei Feng
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Ming Xu
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| |
Collapse
|
4
|
Cui J, Zhu M, Sun X, Yang J, Guo M. Microplastics induced endoplasmic reticulum stress to format an inflammation and cell death in hepatocytes of carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106870. [PMID: 38395010 DOI: 10.1016/j.aquatox.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Microplastics (MPs) are a serious threat to the living environment of aquatic organisms. However, there are fewer studies on the toxicity of microplastics to freshwater organisms. This study aimed to establish a polystyrene microplastics (PS-MPs) model by feeding carp (Cyprinus carpio) PS-MP (1000 ng/L) particles 8 μm in size. HE staining revealed a mass of inflammatory cells infiltrated in the carp hepatopancreas. The activities of alkaline phosphatase (AKP), aspartate transaminase (AST), lactate dehydrogenase (LDH), and alanine transaminase (ALT) were strengthened considerably, suggesting that PS-MPs cause injury to the hepatopancreas of carp. Real-Time polymerase chain reaction and western blotting results indicated increased levels of glucose-regulated protein 78 (GRP78), (PKR)-like ER kinase (PERK), eukaryotic translation initiation Factor 2α (EIF2α) and activating transcription Factor 4 (ATF4) genes and increased levels of inflammatory factors downstream of endoplasmic reticulum stress (ERs) thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), interleukin-18 (IL-18), interleukin-1β (IL-1β), and caspase 1. Increased expression of microtubule-associated protein-2 (LC3II), autophagy-related 5 (ATG5) and autophagy-related 12 (ATG12) genes revealed that PS-MPs promoted autophagy in carp hepatocytes. The enhanced expression of the Caspase 12, Caspase 3, and Bax genes suggested that PS-MPs led to the apoptosis of carp hepatocytes. These results suggest that PS-MPs result in serious injury to the hepatopancreas of carp. The present study of PS-MPs in freshwater fish from the aspect of endoplasmic reticulum stress was conducted to provide references and suggestions for toxicological studies of PS-MPs in freshwater environments.
Collapse
Affiliation(s)
- Jie Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengran Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoran Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
5
|
Du H, Ma Y, Wang X, Zhang Y, Zhu L, Shi S, Pan S, Liu Z. Advanced glycation end products induce skeletal muscle atrophy and insulin resistance via activating ROS-mediated ER stress PERK/FOXO1 signaling. Am J Physiol Endocrinol Metab 2023; 324:E279-E287. [PMID: 36724125 DOI: 10.1152/ajpendo.00218.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Skeletal muscle atrophy is often found in patients with type 2 diabetes mellitus (T2DM), which is characterized by insulin resistance. As the largest tissue in the body, skeletal muscle plays important roles in insulin resistance. Advanced glycation end products (AGEs) are a type of toxic metabolite that are representative of multiple pathophysiological changes associated with T2DM. Mice were exposed to AGEs. Forkhead box O1 (FOXO1) was silenced by using a constructed viral vector carrying siRNA. Skeletal muscle atrophy was evaluated by using hematoxylin-eosin (H&E), oil red O, myosin skeletal heavy chain (MHC), and laminin immunofluorescent stains. Reactive oxygen species (ROS) generation was assessed by using the dihydroethidium (DHE) stain. Western blotting was used to evaluate protein expression and phosphorylation. Insulin resistance was monitored via the insulin tolerance test and the glucose infusion rate (GIR). Mice exposed to AGEs showed insulin resistance, which was evidenced by reduced insulin tolerance and GIR. H&E and MHC immunofluorescent stains suggested reduced cross-sectional muscle fiber area. Laminin immunofluorescent and oil red O stains indicated increased intramuscular fibrosis and lipid deposits, respectively. Exposure to AGEs induced ROS generation, increased phosphorylation of protein kinase RNA-like endoplasmic reticulum kinase (PERK) and FOXO1, facilitated FOXO1 nuclear translocation, and elevated expression of muscle atrophy F-box (MAFbx) in gastrocnemius muscle. foxo1 silencing significantly suppressed skeletal muscle atrophy and insulin resistance without affecting ROS production. AGEs exacerbated skeletal muscle atrophy and insulin resistance by activating the PERK/FOXO1 signaling pathway in skeletal muscle.NEW & NOTEWORTHY In this study, we proposed a molecular mechanism underlying the skeletal muscle atrophy-associated insulin resistance in type 2 diabetes mellitus (T2DM). Our investigation suggests that exposure to AGEs, which are characteristic metabolites of T2DM pathology, induces the activation of reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress, leading to the upregulation of the protein kinase RNA-like ER kinase (PERK)/forkhead box O1 (FOXO1)/muscle atrophy F-box pathway and subsequent skeletal muscle atrophy, ultimately resulting in insulin resistance.
Collapse
Affiliation(s)
- Haixia Du
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Metabolic and Cardiovascular Diseases Laboratories, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Department 403, PLA Rocket Force University of Engineering, Xi'an, People's Republic of China
| | - Yanpeng Ma
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Metabolic and Cardiovascular Diseases Laboratories, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Xiqiang Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Metabolic and Cardiovascular Diseases Laboratories, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Metabolic and Cardiovascular Diseases Laboratories, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Ling Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Metabolic and Cardiovascular Diseases Laboratories, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Shuang Shi
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Metabolic and Cardiovascular Diseases Laboratories, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Shuo Pan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Metabolic and Cardiovascular Diseases Laboratories, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Metabolic and Cardiovascular Diseases Laboratories, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, People's Republic of China
| |
Collapse
|
6
|
Alghanem L, Zhang X, Jaiswal R, Seyoum B, Mallisho A, Msallaty Z, Yi Z. Effect of Insulin and Pioglitazone on Protein Phosphatase 2A Interaction Partners in Primary Human Skeletal Muscle Cells Derived from Obese Insulin-Resistant Participants. ACS OMEGA 2022; 7:42763-42773. [PMID: 36467954 PMCID: PMC9713796 DOI: 10.1021/acsomega.2c04473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/01/2022] [Indexed: 05/16/2023]
Abstract
Skeletal muscle insulin resistance is a major contributor to type-2 diabetes (T2D). Pioglitazone is a potent insulin sensitizer of peripheral tissues by targeting peroxisome proliferator-activated receptor gamma. Pioglitazone has been reported to protect skeletal muscle cells from lipotoxicity by promoting fatty acid mobilization and insulin signaling. However, it is unclear whether pioglitazone increases insulin sensitivity through changes in protein-protein interactions involving protein phosphatase 2A (PP2A). PP2A regulates various cell signaling pathways such as insulin signaling. Interaction of the catalytic subunit of PP2A (PP2Ac) with protein partners is required for PP2A specificity and activity. Little is known about PP2Ac partners in primary human skeletal muscle cells derived from lean insulin-sensitive (Lean) and obese insulin-resistant (OIR) participants. We utilized a proteomics method to identify PP2Ac interaction partners in skeletal muscle cells derived from Lean and OIR participants, with or without insulin and pioglitazone treatments. In this study, 216 PP2Ac interaction partners were identified. Furthermore, 26 PP2Ac partners exhibited significant differences in their interaction with PP2Ac upon insulin treatments between the two groups. Multiple pathways and molecular functions are significantly enriched for these 26 interaction partners, such as nonsense-mediated decay, metabolism of RNA, RNA binding, and protein binding. Interestingly, pioglitazone restored some of these abnormalities. These results provide differential PP2Ac complexes in Lean and OIR in response to insulin/pioglitazone, which may help understand molecular mechanisms underpinning insulin resistance and the insulin-sensitizing effects of pioglitazone treatments, providing multiple targets in various pathways to reverse insulin resistance and prevent and/or manage T2D with less drug side effects.
Collapse
Affiliation(s)
- Lana Alghanem
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan48201, United States
| | - Xiangmin Zhang
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan48201, United States
| | - Ruchi Jaiswal
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan48201, United States
| | - Berhane Seyoum
- Division
of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan48201, United States
| | - Abdullah Mallisho
- Division
of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan48201, United States
| | - Zaher Msallaty
- Division
of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan48201, United States
| | - Zhengping Yi
- Department
of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan48201, United States
| |
Collapse
|
7
|
Endoplasmic Reticulum Stress-Related Signature for Predicting Prognosis and Immune Features in Hepatocellular Carcinoma. J Immunol Res 2022; 2022:1366508. [PMID: 36003068 PMCID: PMC9393196 DOI: 10.1155/2022/1366508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) with cancer cells under endoplasmic reticulum (ER) stress has a poor prognosis. This study is aimed at discovering credible biomarkers for predicting the prognosis of HCC based on ER stress-related genes (ERSRGs). We constructed a novel four-ERSRG prognostic risk model, including PON1, AGR2, SSR2, and TMCC1, through a series of bioinformatic approaches, which can accurately predict survival outcomes in HCC patients. Higher risk scores were linked to later grade, recurrence, advanced TNM stage, later T stage, and HBV infection. In addition, 20 fresh frozen tumors and normal tissues from HCC patients were collected and used to validate the genes expressed in the signature by qRT-PCR and immunohistochemical (IHC) assays. Moreover, we found the ER stress-related signature could reflect the infiltration levels of different immune cells in the tumor microenvironment (TME) and forecast the efficacy of immune checkpoint inhibitor (ICI) treatment. Finally, we created a nomogram incorporating this ER stress-related signature. In conclusion, our constructed four-gene risk model associated with ER stress can accurately predict survival outcomes in HCC patients, and the model's risk score is associated with the poor clinical classification.
Collapse
|
8
|
Zhou Y, Murugan DD, Khan H, Huang Y, Cheang WS. Roles and Therapeutic Implications of Endoplasmic Reticulum Stress and Oxidative Stress in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10081167. [PMID: 34439415 PMCID: PMC8388996 DOI: 10.3390/antiox10081167] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
In different pathological states that cause endoplasmic reticulum (ER) calcium depletion, altered glycosylation, nutrient deprivation, oxidative stress, DNA damage or energy perturbation/fluctuations, the protein folding process is disrupted and the ER becomes stressed. Studies in the past decade have demonstrated that ER stress is closely associated with pathogenesis of obesity, insulin resistance and type 2 diabetes. Excess nutrients and inflammatory cytokines associated with metabolic diseases can trigger or worsen ER stress. ER stress plays a critical role in the induction of endothelial dysfunction and atherosclerosis. Signaling pathways including AMP-activated protein kinase and peroxisome proliferator-activated receptor have been identified to regulate ER stress, whilst ER stress contributes to the imbalanced production between nitric oxide (NO) and reactive oxygen species (ROS) causing oxidative stress. Several drugs or herbs have been proved to protect against cardiovascular diseases (CVD) through inhibition of ER stress and oxidative stress. The present article reviews the involvement of ER stress and oxidative stress in cardiovascular dysfunction and the potential therapeutic implications.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| | - Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
- Correspondence: ; Tel.: +853-8822-4914
| |
Collapse
|