1
|
van Furth LA, Huijink TM, van Leeuwen LL, Maassen H, Lantinga VA, Ogurlu B, Hamelink TL, Pool MBF, Schutter R, Veldhuis SZJ, Ottens PJ, Moers C, Berger SP, Leuvenink HGD, Posma RA, Venema LH. The association between hemoglobin levels and renal function parameters during normothermic machine perfusion: A retrospective cohort study using porcine kidneys. Artif Organs 2024; 48:862-875. [PMID: 38546373 DOI: 10.1111/aor.14750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Ex vivo normothermic machine perfusion (NMP) is a promising tool for assessing an isolated kidney prior to transplantation. However, there is no consensus on the perfusate's optimal oxygen-carrying capacity to support renal function. To investigate the association of hemoglobin levels with renal function parameters, a retrospective analysis of isolated, normothermically, perfused porcine kidneys was performed. METHODS Between 2015 and 2021, a total of 228 kidneys underwent 4 h of NMP with perfusates that varied in hemoglobin levels. A generalized linear model was used to determine the association of hemoglobin levels with time-weighted means of renal function markers, such as fractional sodium excretion (FENa) and creatinine clearance (CrCl). Stratified by baseline hemoglobin level (<4.5, 4.5-6, or >6 mmol/L), these markers were modeled over time using a generalized linear mixed-effects model. All models were adjusted for potential confounders. RESULTS Until a hemoglobin level of around 5 mmol/L was reached, increasing hemoglobin levels were associated with superior FENa and CrCl. Thereafter, this association plateaued. When hemoglobin levels were categorized, hemoglobin <4.5 mmol/L was associated with worse renal function. Hemoglobin levels were neither significantly associated with proteinuria during NMP nor with ATP levels at the end of NMP. Hemoglobin levels >6 mmol/L showed no additional benefits in renal function. CONCLUSION In conclusion, we found an association between baseline hemoglobin levels and superior renal function parameters, but not injury, during NMP of porcine kidneys. Furthermore, we show that performing a retrospective cohort study of preclinical data is feasible and able to answer additional questions, reducing the potential use of laboratory animals.
Collapse
Affiliation(s)
- L Annick van Furth
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Tobias M Huijink
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - L Leonie van Leeuwen
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
- Recanati/Miller Transplantation Institute, Mt. Sinai, New York City, New York, USA
| | - Hanno Maassen
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Veerle A Lantinga
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Baran Ogurlu
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Tim L Hamelink
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Merel B F Pool
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Rianne Schutter
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Susanne Z J Veldhuis
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Petra J Ottens
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan P Berger
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Rene A Posma
- Department of Critical Care, University Medical Center Groningen, Groningen, The Netherlands
| | - Leonie H Venema
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Jeddou H, Tzedakis S, Boudjema K. Biliary tract viability assessment and sequential hypothermic-normothermic perfusion in liver transplantation. Hepatobiliary Surg Nutr 2024; 13:505-508. [PMID: 38911200 PMCID: PMC11190507 DOI: 10.21037/hbsn-24-144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/15/2024] [Indexed: 06/25/2024]
Affiliation(s)
- Heithem Jeddou
- Department of Hepatobiliary and Digestive Surgery, University Hospital, Rennes 1 University, Rennes, France
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 1 University, Rennes, France
| | - Stylianos Tzedakis
- Department of Digestive, Pancreatic, Hepato-biliary and Endocrine Surgery, Cochin Hospital, Assistance Publique - Hopitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, Paris, France
| | - Karim Boudjema
- Department of Hepatobiliary and Digestive Surgery, University Hospital, Rennes 1 University, Rennes, France
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 1 University, Rennes, France
| |
Collapse
|
3
|
Watson CJ, Gaurav R, Swift L, Fear C, Allison ME, Upponi SS, Brais R, Butler AJ. Bile Chemistry During Ex Situ Normothermic Liver Perfusion Does Not Always Predict Cholangiopathy. Transplantation 2024; 108:1383-1393. [PMID: 38409681 PMCID: PMC11115455 DOI: 10.1097/tp.0000000000004944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Bile chemistry during normothermic ex situ liver perfusion (NESLiP) has been suggested to be an indicator of cholangiopathy. The normal range of biochemical variables in bile of livers undergoing NESLiP has not been defined, nor have published biliary viability criteria been assessed against instances of posttransplant nonanastomotic bile strictures (NASs). METHODS The bile and perfusate chemistry of 200 livers undergoing NESLiP between February 1, 2018, and October 30, 2023, was compared. In addition, 11 livers that underwent NESLiP and later developed NAS were selected and their bile chemistry was also examined. RESULTS In livers that did not develop cholangiopathy, concentrations of sodium, potassium, and chloride were slightly higher in bile than in perfusate, whereas the concentration of calcium was slightly lower. Bile was alkali and had a lower glucose concentration than perfusate. Cholangiocyte glucose reabsorption was shown to saturate at high perfusate concentrations and was more impaired in livers donated after circulatory death than in livers donated after brain death. Published criteria failed to identify all livers that went on to develop NASs. CONCLUSIONS A significant false-negative rate exists with current biliary viability criteria, probably reflecting the patchy and incomplete nature of the development of NASs in the biliary tree. The data presented here provide a benchmark for future assessment of bile duct chemistry during NESLiP.
Collapse
Affiliation(s)
- Christopher J.E. Watson
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- The National Institute of Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- The National Institute for Health Research Blood and Transplant Research Unit at the University of Cambridge in collaboration with Newcastle University and in partnership with National Health Service (NHS) Blood and Transplant, Cambridge, United Kingdom
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Rohit Gaurav
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Lisa Swift
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Corrina Fear
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Michael E.D. Allison
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Sara S. Upponi
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Rebecca Brais
- Department of Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Andrew J. Butler
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- The National Institute of Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- The National Institute for Health Research Blood and Transplant Research Unit at the University of Cambridge in collaboration with Newcastle University and in partnership with National Health Service (NHS) Blood and Transplant, Cambridge, United Kingdom
- The Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
4
|
Cox DR, Lee E, Wong BK, McClure T, Zhang F, Goh SK, Vago A, Jackett L, Fink M, Jones R, Perini MV, Dobrovic A, Testro A, Starkey G, Muralidharan V. Graft-derived cfDNA Monitoring in Plasma and Bile During Normothermic Machine Perfusion in Liver Transplantation Is Feasible and a Potential Tool for Assessing Graft Viability. Transplantation 2024; 108:958-962. [PMID: 37902630 PMCID: PMC10962428 DOI: 10.1097/tp.0000000000004842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/12/2023] [Accepted: 08/09/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND Ex vivo normothermic machine perfusion (NMP) is an organ preservation technique that enables an extended assessment of graft suitability before liver transplantation (LT). Established monitoring protocols used during NMP vary significantly in their assessment of transplant suitability when applied to the same grafts. Graft-derived cell-free DNA (gdcfDNA) analysis is an emerging tool for monitoring graft health post-transplantation. We investigated the feasibility of monitoring gdcfDNA during NMP for LT in a proof-of-concept, observational study. METHODS Serial plasma and bile samples were collected during NMP for 10 consecutive grafts, at 15 min post-machine reperfusion and then 2-h intervals. Digital polymerase chain reaction was used to quantify gdcfDNA at each time point. RESULTS Five grafts were suitable for LT, there were no cases of primary nonfunction or death in the recipients. gdcfDNA was quantified in all bile and plasma samples (n > 100). In plasma, gdcfDNA concentrations climbed post-machine reperfusion until 4.25 h (median 2.25 h = 15.98 × 10 6 copies/mL, 4.25 h = 40.21 × 10 6 copies/mL). gdcfDNA levels then diverged significantly when comparing the viable and non-viable graft groups (6.25 h, median viable: 117.15 × 10 6 copies/mL versus non-viable: 16.72 × 10 6 copies/mL, P = 0.01). These opposing trends correlated in each graft and in all cases with the viable/non-viable outcome. There was a trend of gradual decline in bile gdcfDNA from viable grafts post-machine reperfusion; discarded grafts showed more variable patterns of release. CONCLUSIONS gdcfDNA analysis during NMP is a feasible and potential tool to inform viability assessment during NMP for LT. Bile gdcfDNA monitoring offers the prospect of an objective means to assess the degree of biliary injury associated with organ procurement.
Collapse
Affiliation(s)
- Daniel R.A. Cox
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- Hepatopancreatobiliary and Liver Transplant Surgery Unit, Austin Health, Melbourne, VIC, Australia
- Translational Genomics and Epigenomics Laboratory, Department of Surgery (Austin), University of Melbourne, Melbourne, VIC, Australia
| | - Eunice Lee
- Hepatopancreatobiliary and Liver Transplant Surgery Unit, Austin Health, Melbourne, VIC, Australia
| | - Boris K.L. Wong
- Translational Genomics and Epigenomics Laboratory, Department of Surgery (Austin), University of Melbourne, Melbourne, VIC, Australia
| | - Tess McClure
- Translational Genomics and Epigenomics Laboratory, Department of Surgery (Austin), University of Melbourne, Melbourne, VIC, Australia
- Liver Transplant Unit, Austin Health, Melbourne, VIC, Australia
| | - Fan Zhang
- Translational Genomics and Epigenomics Laboratory, Department of Surgery (Austin), University of Melbourne, Melbourne, VIC, Australia
| | - Su Kah Goh
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
| | - Angela Vago
- Liver Transplant Unit, Austin Health, Melbourne, VIC, Australia
| | - Louise Jackett
- Department of Anatomical Pathology, Austin Health, Melbourne, VIC, Australia
| | - Michael Fink
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- Hepatopancreatobiliary and Liver Transplant Surgery Unit, Austin Health, Melbourne, VIC, Australia
| | - Robert Jones
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- Hepatopancreatobiliary and Liver Transplant Surgery Unit, Austin Health, Melbourne, VIC, Australia
- Liver Transplant Unit, Austin Health, Melbourne, VIC, Australia
| | - Marcos V. Perini
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- Hepatopancreatobiliary and Liver Transplant Surgery Unit, Austin Health, Melbourne, VIC, Australia
| | - Alexander Dobrovic
- Translational Genomics and Epigenomics Laboratory, Department of Surgery (Austin), University of Melbourne, Melbourne, VIC, Australia
| | - Adam Testro
- Liver Transplant Unit, Austin Health, Melbourne, VIC, Australia
| | - Graham Starkey
- Hepatopancreatobiliary and Liver Transplant Surgery Unit, Austin Health, Melbourne, VIC, Australia
- Liver Transplant Unit, Austin Health, Melbourne, VIC, Australia
| | - Vijayaragavan Muralidharan
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- Hepatopancreatobiliary and Liver Transplant Surgery Unit, Austin Health, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Kim SC, Foley DP. Strategies to Improve the Utilization and Function of DCD Livers. Transplantation 2024; 108:625-633. [PMID: 37496117 DOI: 10.1097/tp.0000000000004739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Despite the increased usage of livers from donation after circulatory death (DCD) donors in the last decade, many patients remaining on the waitlist who need a liver transplant. Recent efforts have focused on maximizing the utilization and outcomes of these allografts using advances in machine perfusion technology and other perioperative strategies such as normothermic regional perfusion (NRP). In addition to the standard donor and recipient matching that is required with DCD donation, new data regarding the impact of graft steatosis, extensive European experience with NRP, and the increasing use of normothermic and hypothermic machine perfusion have shown immense potential in increasing DCD organ overall utilization and improved outcomes. These techniques, along with viability testing of extended criteria donors, have generated early promising data to consider the use of higher-risk donor organs and more widespread adoption of these techniques in the United States. This review explores the most recent international literature regarding strategies to optimize the utilization and outcomes of DCD liver allografts, including donor-recipient matching, perioperative strategies including NRP versus rapid controlled DCD recovery, viability assessment of discarded livers, and postoperative strategies including machine perfusion versus pharmacologic interventions.
Collapse
Affiliation(s)
- Steven C Kim
- Division of Transplantation, Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - David P Foley
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
6
|
Krendl FJ, Bellotti R, Sapisochin G, Schaefer B, Tilg H, Scheidl S, Margreiter C, Schneeberger S, Oberhuber R, Maglione M. Transplant oncology - Current indications and strategies to advance the field. JHEP Rep 2024; 6:100965. [PMID: 38304238 PMCID: PMC10832300 DOI: 10.1016/j.jhepr.2023.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 02/03/2024] Open
Abstract
Liver transplantation (LT) was originally described by Starzl as a promising strategy to treat primary malignancies of the liver. Confronted with high recurrence rates, indications drifted towards non-oncologic liver diseases with LT finally evolving from a high-risk surgery to an almost routine surgical procedure. Continuously improving outcomes following LT and evolving oncological treatment strategies have driven renewed interest in transplant oncology. This is not only reflected by constant refinements to the criteria for LT in patients with HCC, but especially by efforts to expand indications to other primary and secondary liver malignancies. With new patient-centred oncological treatments on the rise and new technologies to expand the donor pool, the field has the chance to come full circle. In this review, we focus on the concept of transplant oncology, current indications, as well as technical and ethical aspects in the context of donor organs as precious resources.
Collapse
Affiliation(s)
- Felix J. Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Austria
| | - Ruben Bellotti
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Austria
| | - Gonzalo Sapisochin
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Benedikt Schaefer
- Department of Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Austria
| | - Herbert Tilg
- Department of Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Austria
| | - Stefan Scheidl
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Austria
| | - Christian Margreiter
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Austria
| | - Manuel Maglione
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Austria
| |
Collapse
|
7
|
Riveros S, Marino C, Ochoa G, Soto D, Alegría L, Zenteno MJ, San Martín S, Brañes A, Achurra P, Rebolledo R. Customized normothermic machine perfusion decreases ischemia-reperfusion injury compared with static cold storage in a porcine model of liver transplantation. Artif Organs 2023; 47:148-159. [PMID: 36007920 DOI: 10.1111/aor.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Liver transplantation has been demonstrated to be the best treatment for several liver diseases, while grafts are limited. This has caused an increase in waiting lists, making it necessary to find ways to expand the number of organs available for transplantation. Normothermic perfusion (NMP) of liver grafts has been established as an alternative to static cold storage (SCS), but only a small number of perfusion machines are commercially available. METHODS Using a customized ex situ machine perfusion, we compared the results between ex situ NMP and SCS preservation in a porcine liver transplant model. RESULTS During NMP, lactate concentrations were 80% lower after the 3-h perfusion period, compared with SCS. Bile production had a 2.5-fold increase during the NMP period. After transplantation, aspartate transaminase (AST) and alanine transaminase (ALT) levels were 35% less in the NMP group, compared to the SCS group. In pathologic analyses of grafts after transplant, tissue oxidation did not change between groups, but the ischemia-reperfusion injury score was lower in the NMP group. CONCLUSION NMP reduced hepatocellular damage and ischemia-reperfusion injury when compared to SCS using a customized perfusion machine. This could be an alternative for low-income countries to include machine perfusion in their therapeutic options.
Collapse
Affiliation(s)
- Sergio Riveros
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlo Marino
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gabriela Ochoa
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dagoberto Soto
- Department of Intensive Care Unit, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leyla Alegría
- Department of Intensive Care Unit, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Sebastián San Martín
- Biomedical Research Center, School of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Alejandro Brañes
- Hepato-Pancreato-Biliary Surgery Unit, Surgery Service, Complejo Asistencial Dr. Sótero Del Río, Santiago, Chile
| | - Pablo Achurra
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rolando Rebolledo
- Hepato-Pancreato-Biliary Surgery Unit, Surgery Service, Complejo Asistencial Dr. Sótero Del Río, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Riediger C, Schweipert J, Weitz J. Prädiktoren für erfolgreiche Lebertransplantationen und Risikofaktoren. Zentralbl Chir 2022; 147:369-380. [DOI: 10.1055/a-1866-4197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ZusammenfassungDie Lebertransplantation ist die einzige kurative Therapieoption einer chronischen Leberinsuffizienz im Endstadium. Daneben stellen onkologische Lebererkrankungen wie das HCC eine weitere
Indikation für die Lebertransplantation dar, ebenso wie das akute Leberversagen.Seit der ersten erfolgreichen Lebertransplantation durch Professor Thomas E. Starzl im Jahr 1967 haben sich nicht nur die chirurgischen, immunologischen und anästhesiologischen Techniken
und Möglichkeiten geändert, sondern auch die Indikationen und das Patientengut. Hinzu kommt, dass die Empfänger ein zunehmendes Lebensalter und damit einhergehend mehr Begleiterkrankungen
aufweisen.Die Zahl an Lebertransplantationen ist weltweit weiter ansteigend. Es benötigen aber mehr Menschen eine Lebertransplantation, als Organe zur Verfügung stehen. Dies liegt am zunehmenden
Bedarf an Spenderorganen bei gleichzeitig weiter rückläufiger Zahl postmortaler Organspenden.Diese Diskrepanz zwischen Spenderorganen und Empfängern kann nur zu einem kleinen Teil durch Split-Lebertransplantationen oder die Leberlebendspende kompensiert werden.Um den Spenderpool zu erweitern, werden zunehmend auch marginale Organe, die nur die erweiterten Spenderkriterien („extended donor criteria [EDC]“) erfüllen, allokiert. In manchen Ländern
zählen hierzu auch die sogenannten DCD-Organe (DCD: „donation after cardiac death“), d. h. Organe, die erst nach dem kardiozirkulatorischen Tod des Spenders entnommen werden.Es ist bekannt, dass marginale Spenderorgane mit einem erhöhten Risiko für ein schlechteres Transplantat- und Patientenüberleben nach Lebertransplantation einhergehen.Um die Qualität marginaler Spenderorgane zu verbessern, hat sich eine rasante Entwicklung der Techniken der Organkonservierung über die letzten Jahre gezeigt. Mit der maschinellen
Organperfusion besteht beispielsweise die Möglichkeit, die Organqualität deutlich zu verbessern. Insgesamt haben sich die Risikokonstellationen von Spenderorgan und Transplantatempfänger
deutlich geändert.Aus diesem Grunde ist es von großer Bedeutung, spezifische Prädiktoren für eine erfolgreiche Lebertransplantation sowie die entsprechenden Risikofaktoren für einen schlechten postoperativen
Verlauf zu kennen, um das bestmögliche Transplantat- und Patientenüberleben nach Lebertransplantation zu ermöglichen.Diese Einflussfaktoren, inklusive möglicher Risiko-Scores, sollen hier ebenso wie die neuen technischen Möglichkeiten in der Lebertransplantation beleuchtet werden.
Collapse
Affiliation(s)
- Carina Riediger
- Klinik und Poliklinik für Viszeral-, Thorax-, und Gefäßchirurgie, Technische Universität Dresden, Dresden, Deutschland
- Klinik und Poliklinik für Viszeral-, Thorax-, und Gefäßchirurgie, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Deutschland
| | - Johannes Schweipert
- Klinik und Poliklinik für Viszeral-, Thorax-, und Gefäßchirurgie, Technische Universität Dresden, Dresden, Deutschland
- Klinik und Poliklinik für Viszeral-, Thorax-, und Gefäßchirurgie, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Deutschland
| | - Jürgen Weitz
- Klinik und Poliklinik für Viszeral-, Thorax-, und Gefäßchirurgie, Technische Universität Dresden, Dresden, Deutschland
- Klinik und Poliklinik für Viszeral-, Thorax-, und Gefäßchirurgie, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Deutschland
| |
Collapse
|
9
|
Utilization of dielectric properties for assessment of liver ischemia-reperfusion injury in vivo and during machine perfusion. Sci Rep 2022; 12:11183. [PMID: 35778457 PMCID: PMC9249774 DOI: 10.1038/s41598-022-14817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
There is a shortage of donor livers and patients consequently die on waiting lists worldwide. Livers are discarded if they are clinically judged to have a high risk of non-function following transplantation. With the aim of extending the pool of available donor livers, we assessed the condition of porcine livers by monitoring the microwave dielectric properties. A total of 21 livers were divided into three groups: control with no injury (CON), biliary injury by hepatic artery occlusion (AHEP), and overall hepatic injury by static cold storage (SCS). All were monitored for four hours in vivo, followed by ex vivo plurithermic machine perfusion (PMP). Permittivity data was modeled with a two-pole Cole–Cole equation, and dielectric properties from one-hour intervals were analyzed during in vivo and normothermic machine perfusion (NMP). A clear increasing trend in the conductivity was observed in vivo in the AHEP livers compared to the control livers. After four hours of NMP, separations in the conductivity were observed between the three groups. Our results indicate that dielectric relaxation spectroscopy (DRS) can be used to detect and differentiate liver injuries, opening for a standardized and reliable point of evaluation for livers prior to transplantation.
Collapse
|
10
|
van Leeuwen OB, Bodewes SB, Lantinga VA, Haring MP, Thorne AM, Brüggenwirth IM, van den Berg AP, de Boer MT, de Jong IE, de Kleine RH, Lascaris B, Nijsten MW, Reyntjens KM, de Meijer VE, Porte RJ. Sequential hypothermic and normothermic machine perfusion enables safe transplantation of high-risk donor livers. Am J Transplant 2022; 22:1658-1670. [PMID: 35286759 PMCID: PMC9325426 DOI: 10.1111/ajt.17022] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/01/2022] [Accepted: 02/24/2022] [Indexed: 01/25/2023]
Abstract
Ex situ normothermic machine perfusion (NMP) is increasingly used for viability assessment of high-risk donor livers, whereas dual hypothermic oxygenated machine perfusion (DHOPE) reduces ischemia-reperfusion injury. We aimed to resuscitate and test the viability of initially-discarded, high-risk donor livers using sequential DHOPE and NMP with two different oxygen carriers: an artificial hemoglobin-based oxygen carrier (HBOC) or red blood cells (RBC). In a prospective observational cohort study of 54 livers that underwent DHOPE-NMP, the first 18 procedures were performed with a HBOC-based perfusion solution and the subsequent 36 procedures were performed with an RBC-based perfusion solution for the NMP phase. All but one livers were derived from extended criteria donation after circulatory death donors, with a median donor risk index of 2.84 (IQR 2.52-3.11). After functional assessment during NMP, 34 livers (63% utilization), met the viability criteria and were transplanted. One-year graft and patient survival were 94% and 100%, respectively. Post-transplant cholangiopathy occurred in 1 patient (3%). There were no significant differences in utilization rate and post-transplant outcomes between the HBOC and RBC group. Ex situ machine perfusion using sequential DHOPE-NMP for resuscitation and viability assessment of high-risk donor livers results in excellent transplant outcomes, irrespective of the oxygen carrier used.
Collapse
Affiliation(s)
- Otto B. van Leeuwen
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands,Surgical Research LaboratoryDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Silke B. Bodewes
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Veerle A. Lantinga
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Martijn P.D. Haring
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Adam M. Thorne
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Isabel M.A. Brüggenwirth
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Aad P. van den Berg
- Department of Gastroenterology and HepatologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Marieke T. de Boer
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Iris E.M. de Jong
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands,Surgical Research LaboratoryDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Ruben H.J. de Kleine
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Bianca Lascaris
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Maarten W.N. Nijsten
- Department of Intensive CareUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Koen M.E.M. Reyntjens
- Department of AnesthesiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Vincent E. de Meijer
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Robert J. Porte
- Department of SurgerySection of Hepatobiliary Surgery & Liver TransplantationUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
11
|
Mergental H, Laing RW, Hodson J, Boteon YL, Attard JA, Walace LL, Neil DAH, Barton D, Schlegel A, Muiesan P, Abradelo M, Isaac JR, Roberts K, Perera MTPR, Afford SC, Mirza DF. Introduction of the Concept of Diagnostic Sensitivity and Specificity of Normothermic Perfusion Protocols to Assess High-Risk Donor Livers. Liver Transpl 2022; 28:794-806. [PMID: 34619014 DOI: 10.1002/lt.26326] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022]
Abstract
Normothermic machine perfusion (NMP) allows objective assessment of donor liver transplantability. Several viability evaluation protocols have been established, consisting of parameters such as perfusate lactate clearance, pH, transaminase levels, and the production and composition of bile. The aims of this study were to assess 3 such protocols, namely, those introduced by the teams from Birmingham (BP), Cambridge (CP), and Groningen (GP), using a cohort of high-risk marginal livers that had initially been deemed unsuitable for transplantation and to introduce the concept of the viability assessment sensitivity and specificity. To demonstrate and quantify the diagnostic accuracy of these protocols, we used a composite outcome of organ use and 24-month graft survival as a surrogate endpoint. The effects of assessment modifications, including the removal of the most stringent components of the protocols, were also assessed. Of the 31 organs, 22 were transplanted after a period of NMP, of which 18 achieved the outcome of 24-month graft survival. The BP yielded 94% sensitivity and 50% specificity when predicting this outcome. The GP and CP both seemed overly conservative, with 1 and 0 organs, respectively, meeting these protocols. Modification of the GP and CP to exclude their most stringent components increased this to 11 and 8 organs, respectively, and resulted in moderate sensitivity (56% and 44%) but high specificity (92% and 100%, respectively) with respect to the composite outcome. This study shows that the normothermic assessment protocols can be useful in identifying potentially viable organs but that the balance of risk of underuse and overuse varies by protocol.
Collapse
Affiliation(s)
- Hynek Mergental
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Richard W Laing
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - James Hodson
- Department of Statistics, Institute for Translational Medicine, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Yuri L Boteon
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Joseph A Attard
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Laine L Walace
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Desley A H Neil
- Department of Cellular Pathology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Darren Barton
- D3B Team, Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Andrea Schlegel
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Paolo Muiesan
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Manuel Abradelo
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - John R Isaac
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Keith Roberts
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - M Thamara P R Perera
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Simon C Afford
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Darius F Mirza
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Machine perfusion of the liver: applications in transplantation and beyond. Nat Rev Gastroenterol Hepatol 2022; 19:199-209. [PMID: 34997204 DOI: 10.1038/s41575-021-00557-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/14/2022]
Abstract
The shortage of donor livers considered suitable for transplantation has driven the development of novel methods for organ preservation and reconditioning. Machine perfusion techniques can improve the quality of marginal livers, extend the time for which they can be preserved and enable an objective assessment of their quality and viability. These benefits can help avoid the needless wastage of organs based on hypothetical concerns regarding quality. As machine perfusion techniques are gaining traction in clinical practice, attention has now shifted to their potential applications beyond transplantation. As well as providing an update on the current status of machine perfusion in clinical practice, this Perspective discusses how this technology is being used as a tool for therapeutic interventions including defatting of steatotic livers, immunomodulation and gene therapies.
Collapse
|
13
|
Lascaris B, Thorne AM, Lisman T, Nijsten MWN, Porte RJ, de Meijer VE. Long-term normothermic machine preservation of human livers: what is needed to succeed? Am J Physiol Gastrointest Liver Physiol 2022; 322:G183-G200. [PMID: 34756122 DOI: 10.1152/ajpgi.00257.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although short-term machine perfusion (≤24 h) allows for resuscitation and viability assessment of high-risk donor livers, the donor organ shortage might be further remedied by long-term perfusion machines. Extended preservation of injured donor livers may allow reconditioning, repairing, and regeneration. This review summarizes the necessary requirements and challenges for long-term liver machine preservation, which requires integrating multiple core physiological functions to mimic the physiological environment inside the body. A pump simulates the heart in the perfusion system, including automatically controlled adjustment of flow and pressure settings. Oxygenation and ventilation are required to account for the absence of the lungs combined with continuous blood gas analysis. To avoid pressure necrosis and achieve heterogenic tissue perfusion during preservation, diaphragm movement should be simulated. An artificial kidney is required to remove waste products and control the perfusion solution's composition. The perfusate requires an oxygen carrier, but will also be challenged by coagulation and activation of the immune system. The role of the pancreas can be mimicked through closed-loop control of glucose concentrations by automatic injection of insulin or glucagon. Nutrients and bile salts, generally transported from the intestine to the liver, have to be supplemented when preserving livers long term. Especially for long-term perfusion, the container should allow maintenance of sterility. In summary, the main challenge to develop a long-term perfusion machine is to maintain the liver's homeostasis in a sterile, carefully controlled environment. Long-term machine preservation of human livers may allow organ regeneration and repair, thereby ultimately solving the shortage of donor livers.
Collapse
Affiliation(s)
- Bianca Lascaris
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adam M Thorne
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten W N Nijsten
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J Porte
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Section of Hepatopancreatobiliary Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Hypothermic Oxygenated Machine Perfusion (HOPE) Reduces Early Allograft Injury and Improves Post-Transplant Outcomes in Extended Criteria Donation (ECD) Liver Transplantation from Donation After Brain Death (DBD): Results from a Multicenter Randomized Controlled Trial (HOPE ECD-DBD). Ann Surg 2021; 274:705-712. [PMID: 34334635 DOI: 10.1097/sla.0000000000005110] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To evaluate peak serum alanine aminotransferase (ALT) and postoperative clinical outcomes after hypothermic oxygenated machine perfusion (HOPE) versus static cold storage (SCS) in extended criteria donation (ECD) liver transplantation (LT) from donation after brain death (DBD). BACKGROUND HOPE might improve outcomes in LT, particularly in high-risk settings such as ECD organs after DBD, but this hypothesis has not yet been tested in a randomized controlled clinical trial (RCT). METHODS Between 09/2017-09/2020 46 patients undergoing ECD-DBD LT from four centers were randomly assigned to HOPE (n=23) or SCS (n=23). Peak-ALT levels within seven days following LT constituted the primary endpoint. Secondary endpoints included incidence of postoperative complications (Clavien-Dindo classification (CD), Comprehensive Complication Index (CCI)), length of intensive care- (ICU) and hospital-stay, and incidence of early allograft dysfunction (EAD). RESULTS Demographics were equally distributed between both groups (donor age: 72 [IQR:59-78] years, recipient age: 62 [IQR:55-65] years, labMELD: 15 [IQR:9-25], 38 male and 8 female recipients). HOPE resulted in a 47% decrease in serum peak ALT (418 [IQR: 221-828] vs. 796 [IQR:477-1195] IU/L, p=0.030), a significant reduction in 90-day complications (44% vs. 74% CD grade ≥3, p=0.036; 32 [IQR:12-56] vs. 52 [IQR:35-98] CCI, p=0.021), and shorter ICU- and hospital-stays (5 [IQR:4-8] vs. 8 [IQR:5-18] days, p=0.045; 20 [IQR:16-27] vs. 36 [IQR:23-62] days, p=0.002) compared to SCS. A trend towards reduced EAD was observed for HOPE (17% vs. 35%; p=0.314). CONCLUSION This multicenter RCT demonstrates that HOPE, in comparison to SCS, significantly reduces early allograft injury and improves post-transplant outcomes in ECD-DBD liver transplantation.
Collapse
|
15
|
Ivanics T, Abreu P, De Martin E, Sapisochin G. Changing Trends in Liver Transplantation: Challenges and Solutions. Transplantation 2021; 105:743-756. [PMID: 32910093 DOI: 10.1097/tp.0000000000003454] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite improvements in postliver transplant outcomes through refinements in perioperative management and surgical techniques, several changing trends in liver transplantation have presented challenges. Mortality on the waitlist remains high. In the United States, Europe, and the United Kingdom, there is an increasing need for liver transplantation, primarily as a result of increased incidence of nonalcoholic steatohepatitis-related cirrhosis and cancer indications. Meanwhile, donor suitability has decreased, as donors are often older and have more comorbidities. Despite a mismatch between organ need and availability, many organs are discarded. Notwithstanding this, many solutions have been developed to overcome these challenges. Innovative techniques in allograft preservation, viability assessment, and reconditioning have allowed the use of suboptimal organs with adequate results. Refinements in surgical procedures, including live donor liver transplantations, have increased the organ pool and are decreasing the time and mortality on the waitlist. Despite many challenges, a similar number of solutions and prospects are on the horizon. This review seeks to explore the changing trends and challenges in liver transplantation and highlight possible solutions and future directions.
Collapse
Affiliation(s)
- Tommy Ivanics
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Phillipe Abreu
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Eleonora De Martin
- APHP, Hôpital Paul Brousse, Centre Hépato-Biliaire, INSERM 1193, Université Paris-Sud, DHU Hepatinov, Villejuif, France
| | - Gonzalo Sapisochin
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|
16
|
Current review of machine perfusion in liver transplantation from the Japanese perspective. Surg Today 2021; 52:359-368. [PMID: 33754175 DOI: 10.1007/s00595-021-02265-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Abstract
In light of the present evidence, machine perfusion is opening up new horizons in the field of liver transplantation. Although many advances have been made in liver transplantation, organ preservation methods have so far changed very little. Static cold storage is universally used for graft preservation in liver transplantation; however, there is a need for better preservation methods, such as ex vivo machine perfusion, to improve the outcomes by decreasing warm ischemic damage. Based on the findings of basic and clinical trials, hypothermic and normothermic machine perfusion techniques are now commercially available and include the OrganOx metra, Liver Assist, Cleveland NMP device, Organ Care System, and LifePort Liver. Recent clinical trials have provided further evidence for the potential role of normothermic machine perfusion to resuscitate and subsequently improve utilization of marginal or currently discarded livers. Further studies are required to explore the longer-term outcomes, late biliary complications, outcomes in specific high-risk groups, viability biomarkers, optimum and maximum perfusion duration, perfusate composition, and liver-directed therapeutic interventions during normothermic machine perfusion. The use of organs from marginal donors after brain death, such as fatty livers and the livers from elderly donors with multiple comorbidities, may be accepted for machine perfusion in Japan in the near future.
Collapse
|
17
|
van Leeuwen OB, de Vries Y, de Meijer VE, Porte RJ. Hypothermic machine perfusion before viability testing of previously discarded human livers. Nat Commun 2021; 12:1008. [PMID: 33579908 PMCID: PMC7881206 DOI: 10.1038/s41467-021-21182-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Otto B van Leeuwen
- Department of Surgery, Section of Hepatobiliary Surgery & Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yvonne de Vries
- Department of Surgery, Section of Hepatobiliary Surgery & Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery & Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert J Porte
- Department of Surgery, Section of Hepatobiliary Surgery & Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
18
|
Panconesi R, Flores Carvalho M, Mueller M, Meierhofer D, Dutkowski P, Muiesan P, Schlegel A. Viability Assessment in Liver Transplantation-What Is the Impact of Dynamic Organ Preservation? Biomedicines 2021; 9:biomedicines9020161. [PMID: 33562406 PMCID: PMC7915925 DOI: 10.3390/biomedicines9020161] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Based on the continuous increase of donor risk, with a majority of organs classified as marginal, quality assessment and prediction of liver function is of utmost importance. This is also caused by the notoriously lack of effective replacement of a failing liver by a device or intensive care treatment. While various parameters of liver function and injury are well-known from clinical practice, the majority of specific tests require prolonged diagnostic time and are more difficult to assess ex situ. In addition, viability assessment of procured organs needs time, because the development of the full picture of cellular injury and the initiation of repair processes depends on metabolic active tissue and reoxygenation with full blood over several hours or days. Measuring injury during cold storage preservation is therefore unlikely to predict the viability after transplantation. In contrast, dynamic organ preservation strategies offer a great opportunity to assess organs before implantation through analysis of recirculating perfusates, bile and perfused liver tissue. Accordingly, several parameters targeting hepatocyte or cholangiocyte function or metabolism have been recently suggested as potential viability tests before organ transplantation. We summarize here a current status of respective machine perfusion tests, and report their clinical relevance.
Collapse
Affiliation(s)
- Rebecca Panconesi
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
| | - Mauricio Flores Carvalho
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
| | - Matteo Mueller
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, 8091 Zurich, Switzerland; (M.M.); (P.D.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, 14195 Berlin, Germany;
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, 8091 Zurich, Switzerland; (M.M.); (P.D.)
| | - Paolo Muiesan
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50134 Florence, Italy; (R.P.); (M.F.C.); (P.M.)
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, 8091 Zurich, Switzerland; (M.M.); (P.D.)
- Correspondence:
| |
Collapse
|
19
|
Gao J, He K, Xia Q, Zhang J. Research progress on hepatic machine perfusion. Int J Med Sci 2021; 18:1953-1959. [PMID: 33850464 PMCID: PMC8040389 DOI: 10.7150/ijms.56139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Nowadays, liver transplantation is the most effective treatment for end-stage liver disease. However, the increasing imbalance between growing demand for liver transplantation and the shortage of donor pool restricts the development of liver transplantation. How to expand the donor pool is a significant problem to be solved clinically. Many doctors have devoted themselves to marginal grafting, which introduces livers with barely passable quality but a high risk of transplant failure into the donor pool. However, existing common methods of preserving marginal grafts lead to both high risk of postoperative complications and high mortality. The application of machine perfusion allows surgeons to make marginal livers meet the standard criteria for transplant, which shows promising prospect in preserving and repairing donor livers and improving ischemia reperfusion injury. This review summarizes the progress of recent researches on hepatic machine perfusion.
Collapse
Affiliation(s)
- Junda Gao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Line PD, Dueland S. Liver transplantation for secondary liver tumours: The difficult balance between survival and recurrence. J Hepatol 2020; 73:1557-1562. [PMID: 32896581 DOI: 10.1016/j.jhep.2020.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Assessing the balance between survival and recurrence after transplantation for secondary liver tumours should be based on the type of cancer in question. For neuroendocrine liver metastases, high recurrence rates are clearly related to reduced long-term survival. For colorectal liver metastases, experience to date indicates that pulmonary recurrence alone has a modest impact on survival outcomes. Further studies focusing on this group of patients will be important for the development of this field of transplant oncology. Liver transplantation for secondary liver tumours should be implemented in accordance with stringent transplant criteria and preferably in the context of prospective trials. Expansion of the donor pool by utilising extended criteria donors and partial liver transplantation could be considered for this indication.
Collapse
Affiliation(s)
- Pål-Dag Line
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway; Experimental Transplantation and Malignancy Research Group, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Svein Dueland
- Experimental Transplantation and Malignancy Research Group, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
21
|
Parente A, Osei-Bordom DC, Ronca V, Perera MTPR, Mirza D. Organ Restoration With Normothermic Machine Perfusion and Immune Reaction. Front Immunol 2020; 11:565616. [PMID: 33193335 PMCID: PMC7641637 DOI: 10.3389/fimmu.2020.565616] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Liver transplantation is the only recognized effective treatment for end-stage liver disease. However, organ shortages have become the main challenge for patients and physicians within the transplant community. Waiting list mortality remains an issue with around 10% of patients dying whilst waiting for an available organ. The post-transplantation period is also associated with an adverse complication rate for these specific cohorts of high-risk patients, particularly regarding patient and graft survival. Ischaemia reperfusion injury (IRI) has been highlighted as the mechanism of injury that increases parenchymal damage, which eventually lead to significant graft dysfunction and other poor outcome indicators. The consequences of IRI in clinical practice such as reperfusion syndrome, primary non-function of graft, allograft dysfunction, ischaemic biliary damage and early biliary complications can be life-threatening. IRI dictates the development of a significant inflammatory response that drives the pathway to eventual cell death. The main mechanisms of IRI are mitochondrial damage due to low oxygen tension within the hepatic micro-environment and severe adenosine triphosphate (ATP) depletion during the ischaemic period. After the restoration of normal blood flow, this damage is further enhanced by reoxygenation as the mitochondria respond to reperfusion by releasing reactive oxygen species (ROS), which in turn activate Kupffer cells within the hepatic micro-environment, leading to a pro-inflammatory response and eventual parenchymal cell apoptosis and associated tissue degradation. Machine perfusion (MP) is one emergent strategy considered to be one of the most important advances in organ preservation, restoration and transplantation. Indeed, MP has the potential to rescue frequently discarded organs and has been shown to limit the extent of IRI, leading to suppression of the deleterious pro-inflammatory response. This immunomodulation reduces the prevalence of allograft rejection, the use of immunosuppression therapy and minimizes post-transplant complications. This review aims to update the current knowledge of MP with a focus on normothermic machine liver perfusion (NMLP) and its potential role in immune response pathways.
Collapse
Affiliation(s)
- Alessandro Parente
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Daniel-Clement Osei-Bordom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,National Institute for Health Research Birmingham Liver Biomedical Research Centre, University Hospitals Birmingham National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Vincenzo Ronca
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Division of Gastroenterology and Centre for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - M Thamara P R Perera
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Darius Mirza
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
22
|
Kvietkauskas M, Zitkute V, Leber B, Strupas K, Stiegler P, Schemmer P. The Role of Metabolomics in Current Concepts of Organ Preservation. Int J Mol Sci 2020; 21:ijms21186607. [PMID: 32927605 PMCID: PMC7555311 DOI: 10.3390/ijms21186607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
In solid organ transplantation (Tx), both survival rates and quality of life have improved dramatically over the last few decades. Each year, the number of people on the wait list continues to increase, widening the gap between organ supply and demand. Therefore, the use of extended criteria donor grafts is growing, despite higher susceptibility to ischemia-reperfusion injury (IRI) and consecutive inferior Tx outcomes. Thus, tools to characterize organ quality prior to Tx are crucial components for Tx success. Innovative techniques of metabolic profiling revealed key pathways and mechanisms involved in IRI occurring during organ preservation. Although large-scale trials are needed, metabolomics appears to be a promising tool to characterize potential biomarkers, for the assessment of graft quality before Tx and evaluate graft-related outcomes. In this comprehensive review, we summarize the currently available literature on the use of metabolomics in solid organ Tx, with a special focus on metabolic profiling during graft preservation to assess organ quality prior to Tx.
Collapse
Affiliation(s)
- Mindaugas Kvietkauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Viktorija Zitkute
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Correspondence: ; Tel.: +43-316-385-84094
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
| |
Collapse
|
23
|
Ishihara Y, Bochimoto H, Kondoh D, Obara H, Matsuno N. The ultrastructural characteristics of bile canaliculus in porcine liver donated after cardiac death and machine perfusion preservation. PLoS One 2020; 15:e0233917. [PMID: 32470051 PMCID: PMC7259665 DOI: 10.1371/journal.pone.0233917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
The effects of each type of machine perfusion preservation (MP) of liver grafts donated after cardiac death on the bile canaliculi of hepatocytes remain unclear. We analyzed the intracellular three-dimensional ultrastructure of the bile canaliculi and hepatocyte endomembrane systems in porcine liver grafts after warm ischemia followed by successive MP with modified University of Wisconsin gluconate solution. Transmission and osmium-maceration scanning electron microscopy revealed that lumen volume of the bile canaliculi decreased after warm ischemia. In liver grafts preserved by hypothermic MP condition, bile canaliculi tended to recover in terms of lumen volume, while their microvilli regressed. In contrast, midthermic MP condition preserved the functional form of the microvilli of the bile canaliculi. Machine perfusion preservation potentially restored the bile canaliculus lumen and alleviated the cessation of cellular endocrine processes due to warm ischemia. In addition, midthermic MP condition prevented the retraction of the microvilli of bile canaliculi, suggesting further mitigation of the damage of the bile canaliculi.
Collapse
Affiliation(s)
- Yo Ishihara
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroki Bochimoto
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa, Japan
- Division of Aerospace Medicine, Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Japan
- * E-mail:
| | - Daisuke Kondoh
- Laboratory of Veterinary Anatomy, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hiromichi Obara
- Department of Mechanical Engineering, Tokyo Metropolitan University, Hachioji, Japan
| | - Naoto Matsuno
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Asahikawa, Japan
- Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
24
|
Matton APM, Selten JW, Roest HP, de Jonge J, IJzermans JNM, de Meijer VE, Porte RJ, van der Laan LJW. Cell-free microRNAs as early predictors of graft viability during ex vivo normothermic machine perfusion of human donor livers. Clin Transplant 2020; 34:e13790. [PMID: 31984571 PMCID: PMC7154637 DOI: 10.1111/ctr.13790] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/20/2019] [Accepted: 01/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cell-free microRNAs (miRs) have emerged as early and sensitive biomarkers for tissue injury and function. This study aimed to investigate whether the release of hepatocyte-derived microRNAs (HDmiRs) and cholangiocyte-derived miRs (CDmiRs) correlates with hepato-cholangiocellular injury and function during oxygenated, normothermic machine perfusion (NMP) of human liver grafts. METHODS Donor livers (n = 12), declined for transplantation, were subjected to oxygenated NMP (6 hours) after a period of static cold storage (median 544 minutes (IQR 421-674)). Perfusate and bile samples were analyzed by qRT-PCR for HDmiR-122 and CDmiR-222. Spearman correlations were performed between miR levels and currently available indicators and classic markers. RESULTS Both HDmiR-122 and CDmiR-222 levels in perfusate at 30 minutes of NMP strongly correlated with hepatocyte injury (peak perfusate AST) and cholangiocyte injury (peak biliary LDH). In bile, only CDmiR-222 correlated with these injury markers. For hepato-cholangiocellular function, both miRs in perfusate correlated with total bilirubin, while HDmiR-122 (in perfusate) and CDmiR-222 (in bile) correlated with bicarbonate secretion. Both the relative ratio of HDmiR-122/CDmiR-222 and AST in perfusate at 30 minutes significantly correlated with cumulative bile production, but only the relative ratio was predictive of histopathological injury after 6 hours NMP. CONCLUSION Early levels of HDmiR-122 and CDmiR-222, in perfusate and/or bile, are predictive of excretory functions and hepato-cholangiocellular injury after 6 hours NMP. These miRs may represent new biomarkers for graft viability and function during machine perfusion.
Collapse
Affiliation(s)
- Alix P. M. Matton
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Surgical Research LaboratoryDepartment of SurgeryUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Jasmijn W. Selten
- Department of SurgeryErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
| | - Henk P. Roest
- Department of SurgeryErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
| | - Jeroen de Jonge
- Department of SurgeryErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
| | - Jan N. M. IJzermans
- Department of SurgeryErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
| | - Vincent E. de Meijer
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Robert J. Porte
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Luc J. W. van der Laan
- Department of SurgeryErasmus MC – University Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
25
|
Bhogal RH, Mirza DF, Afford SC, Mergental H. Biomarkers of Liver Injury during Transplantation in an Era of Machine Perfusion. Int J Mol Sci 2020; 21:ijms21051578. [PMID: 32106626 PMCID: PMC7084877 DOI: 10.3390/ijms21051578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Liver ischaemia–reperfusion injury (IRI) is an intrinsic part of the transplantation process and damages the parenchymal cells of the liver including hepatocytes, endothelial cells and cholangiocytes. Many biomarkers of IRI have been described over the past two decades that have attempted to quantify the extent of IRI involving different hepatic cellular compartments, with the aim to allow clinicians to predict the suitability of donor livers for transplantation. The advent of machine perfusion has added an additional layer of complexity to this field and has forced researchers to re-evaluate the utility of IRI biomarkers in different machine preservation techniques. In this review, we summarise the current understanding of liver IRI biomarkers and discuss them in the context of machine perfusion.
Collapse
Affiliation(s)
- Ricky H. Bhogal
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (D.F.M.); (S.C.A.)
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- The Royal Marsden Hospital NHS Foundation Trust, London SW3 6JJ, UK
- Correspondence: (R.H.B.); (H.M.); Tel.: +44-20-7468-3000 (R.H.B.); +44-121-371-4638 (H.M.)
| | - Darius F. Mirza
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (D.F.M.); (S.C.A.)
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Simon C. Afford
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (D.F.M.); (S.C.A.)
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Hynek Mergental
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK; (D.F.M.); (S.C.A.)
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
- Correspondence: (R.H.B.); (H.M.); Tel.: +44-20-7468-3000 (R.H.B.); +44-121-371-4638 (H.M.)
| |
Collapse
|