1
|
Marchandot B, Faller E, Akladios C, Matsushita K, Bäck M, Jesel L, Schini-Kerth V, Morel O. Fostering cardio-endometriosis: a call to action for a comprehensive understanding of cardiovascular disease in endometriosis. Eur J Prev Cardiol 2024; 31:1574-1582. [PMID: 38421615 DOI: 10.1093/eurjpc/zwae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
Recently, a growing body of evidence has highlighted a concerning link between endometriosis and cardiovascular disease. Endometriosis, a chronic, inflammatory, hormone-dependent condition affecting 5-10% of reproductive-aged women worldwide, has long been associated with reproductive and gynaecological consequences. However, emerging research has suggested that it may also contribute to adverse cardiovascular outcomes. This paper aims to shed light on the importance of recognizing cardio-endometriosis as a new and developing sphere of research in the field of cardiology, thereby urging the medical community to address this pressing issue.
Collapse
Affiliation(s)
- Benjamin Marchandot
- Division of Cardiovascular Medicine, Strasbourg University Hospital, 1 Place de l'Hopital, 67000 Strasbourg, France
- UR 3074 Médecine Cardiovasculaire Translationnelle, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Emilie Faller
- Department of Obstetrics and Gynecology, Hautepierre Hospital, University Hospital, 1 Avenue Molière, 67000 Strasbourg, France
- ENDOALSACE, Strasbourg Expert Center for Endometriosis, Hautepierre Hospital, University Hospital, 1 Avenue Molière, 67000 Strasbourg, France
| | - Cherif Akladios
- Department of Obstetrics and Gynecology, Hautepierre Hospital, University Hospital, 1 Avenue Molière, 67000 Strasbourg, France
- ENDOALSACE, Strasbourg Expert Center for Endometriosis, Hautepierre Hospital, University Hospital, 1 Avenue Molière, 67000 Strasbourg, France
| | - Kensuke Matsushita
- UR 3074 Médecine Cardiovasculaire Translationnelle, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Magnus Bäck
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
- Section of Translational Cardiology, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
- Université de Lorraine, Institut National de la Sante et de la Recherche Medicale U1116, Nancy, France
| | - Laurence Jesel
- Division of Cardiovascular Medicine, Strasbourg University Hospital, 1 Place de l'Hopital, 67000 Strasbourg, France
- UR 3074 Médecine Cardiovasculaire Translationnelle, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Valérie Schini-Kerth
- UR 3074 Médecine Cardiovasculaire Translationnelle, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Olivier Morel
- Division of Cardiovascular Medicine, Strasbourg University Hospital, 1 Place de l'Hopital, 67000 Strasbourg, France
- UR 3074 Médecine Cardiovasculaire Translationnelle, CRBS, 1 Rue Eugène Boeckel, 67000 Strasbourg, France
- Hanoï Medical University, Vietnam
| |
Collapse
|
2
|
Lipoprotein(a), high-sensitivity C-reactive protein, and cardiovascular risk in patients undergoing percutaneous coronary intervention. Atherosclerosis 2022; 363:109-116. [PMID: 36357218 DOI: 10.1016/j.atherosclerosis.2022.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS In patients with coronary artery disease (CAD) undergoing percutaneous coronary intervention (PCI), the effects of high-sensitivity C-reactive protein (hsCRP) on Lipoprotein(a) (Lp(a))-associated cardiovascular risk remains unclear. This study aimed to investigate the independent and combined association of Lp(a) and hsCRP with cardiovascular events in this specific population. METHODS A total of 10,424 patients with measurements of both Lp(a) and hsCRP were included in this prospective cohort study. Cox proportional hazards models and Kaplan-Meier analysis were performed to evaluate the relationship between Lp(a), hsCRP and adverse cardiac and cerebrovascular events (MACCE; all-cause death, myocardial infarction, ischemic stroke and revascularization). RESULTS During 5 years of follow-up, 2140 (20.5%) MACCE occurred. Elevated Lp(a) and hsCRP levels were associated with increased risks of MACCE (p<0.05). Notably, there might be a significant interaction between Lp(a) and hsCRP (P for interaction = 0.019). In the setting of hsCRP≥2 mg/L, significant higher risk of MACCE was observed with Lp(a) 15-29.9 mg/dL (HR: 1.18; 95% CI 1.01-1.39) and Lp(a) ≥30 mg/dL (HR: 1.20; 95% CI 1.04-1.39), whereas such association was attenuated when hsCRP was <2 mg/L with Lp(a) 15-29.9 mg/dL (HR: 0.94; 95% CI 0.80-1.10) and Lp(a) ≥30 mg/dL (HR: 1.12; 95% CI 0.98-1.28). Moreover, when Lp(a) and hsCRP were combined for risk stratification, patients with dual elevation of these two biomarkers had a significant higher risk of MACCE compared with the reference group (Lp(a) < 15 mg/dL and hsCRp<2 mg/L) (p<0.05). CONCLUSIONS In patients with CAD undergoing PCI, high Lp(a) level was associated with worse outcomes, and this association might be stronger in those with elevated hsCRP concomitantly. Evaluation of Lp(a) and hsCRP together may help identify high-risk individuals for targeted intervention in clinical utility.
Collapse
|
4
|
Kronenberg F, Mora S, Stroes ESG, Ference BA, Arsenault BJ, Berglund L, Dweck MR, Koschinsky M, Lambert G, Mach F, McNeal CJ, Moriarty PM, Natarajan P, Nordestgaard BG, Parhofer KG, Virani SS, von Eckardstein A, Watts GF, Stock JK, Ray KK, Tokgözoğlu LS, Catapano AL. Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: a European Atherosclerosis Society consensus statement. Eur Heart J 2022; 43:3925-3946. [PMID: 36036785 PMCID: PMC9639807 DOI: 10.1093/eurheartj/ehac361] [Citation(s) in RCA: 385] [Impact Index Per Article: 192.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022] Open
Abstract
This 2022 European Atherosclerosis Society lipoprotein(a) [Lp(a)] consensus statement updates evidence for the role of Lp(a) in atherosclerotic cardiovascular disease (ASCVD) and aortic valve stenosis, provides clinical guidance for testing and treating elevated Lp(a) levels, and considers its inclusion in global risk estimation. Epidemiologic and genetic studies involving hundreds of thousands of individuals strongly support a causal and continuous association between Lp(a) concentration and cardiovascular outcomes in different ethnicities; elevated Lp(a) is a risk factor even at very low levels of low-density lipoprotein cholesterol. High Lp(a) is associated with both microcalcification and macrocalcification of the aortic valve. Current findings do not support Lp(a) as a risk factor for venous thrombotic events and impaired fibrinolysis. Very low Lp(a) levels may associate with increased risk of diabetes mellitus meriting further study. Lp(a) has pro-inflammatory and pro-atherosclerotic properties, which may partly relate to the oxidized phospholipids carried by Lp(a). This panel recommends testing Lp(a) concentration at least once in adults; cascade testing has potential value in familial hypercholesterolaemia, or with family or personal history of (very) high Lp(a) or premature ASCVD. Without specific Lp(a)-lowering therapies, early intensive risk factor management is recommended, targeted according to global cardiovascular risk and Lp(a) level. Lipoprotein apheresis is an option for very high Lp(a) with progressive cardiovascular disease despite optimal management of risk factors. In conclusion, this statement reinforces evidence for Lp(a) as a causal risk factor for cardiovascular outcomes. Trials of specific Lp(a)-lowering treatments are critical to confirm clinical benefit for cardiovascular disease and aortic valve stenosis.
Collapse
Affiliation(s)
- Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Samia Mora
- Center for Lipid Metabolomics, Division of Preventive Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK
| | - Benoit J Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, and Department of Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Lars Berglund
- Department of Internal Medicine, School of Medicine, University of California-Davis, Davis, Sacramento, CA, USA
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Heart Centre, University of Edinburgh, Chancellors Building, Little France Crescent, Edinburgh EH16 4SB, UK
| | - Marlys Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Gilles Lambert
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint-Denis de La Reunion, France
| | - François Mach
- Department of Cardiology, Geneva University Hospital, Geneva, Switzerland
| | - Catherine J McNeal
- Division of Cardiology, Department of Internal Medicine, Baylor Scott & White Health, 2301 S. 31st St., USA
| | | | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, and Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klaus G Parhofer
- Medizinische Klinik und Poliklinik IV, Ludwigs- Maximilians University Klinikum, Munich, Germany
| | - Salim S Virani
- Section of Cardiovascular Research, Baylor College of Medicine & Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerald F Watts
- Medical School, University of Western Australia, and Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Jane K Stock
- European Atherosclerosis Society, Mässans Gata 10, SE-412 51 Gothenburg, Sweden
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| | - Lale S Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy.,IRCCS Multimedica, Milano, Italy
| |
Collapse
|
5
|
Apolipoprotein (a)/Lipoprotein(a)-Induced Oxidative-Inflammatory α7-nAChR/p38 MAPK/IL-6/RhoA-GTP Signaling Axis and M1 Macrophage Polarization Modulate Inflammation-Associated Development of Coronary Artery Spasm. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9964689. [PMID: 35096275 PMCID: PMC8793348 DOI: 10.1155/2022/9964689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/21/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Objective. Apolipoprotein (a)/lipoprotein(a) (Lp(a)), a major carrier of oxidized phospholipids, and α7-nicotinic acetylcholine receptor (α7-nAChR) may play an important role in the development of coronary artery spasm (CAS). In CAS, the association between Lp(a) and the α7-nAChR-modulated inflammatory macrophage polarization and activation and smooth muscle cell dysfunction remains unknown. Methods. We investigated the relevance of Lp(a)/α7-nAChR signaling in patient monocyte-derived macrophages and human coronary artery smooth muscle cells (HCASMCs) using expression profile correlation analyses, fluorescence-assisted cell sorting flow cytometry, immunoblotting, quantitative real-time polymerase chain reaction, and clinicopathological analyses. Results. There are increased serum Lp(a) levels (3.98-fold,
) and macrophage population (3.30-fold,
) in patients with CAS compared with patients without CAS. Serum Lp(a) level was positively correlated with high-sensitivity C-reactive protein (
,
), IL-6 (
,
), and α7-nAChR (
,
) in patients with CAS, but not in patients without CAS. Compared with untreated or low-density lipoprotein- (LDL-) treated macrophages, Lp(a)-treated macrophages exhibited markedly enhanced α7-nAChR mRNA expression (
) and activity (
), in vitro and ex vivo. Lp(a) but not LDL preferentially induced CD80+ macrophage (M1) polarization and reduced the inducible nitric oxide synthase expression and the subsequent NO production. While shRNA-mediated loss of α7-nAChR function reduced the Lp(a)-induced CD80+ macrophage pool, both shRNA and anti-IL-6 receptor tocilizumab suppressed Lp(a)-upregulated α7-nAChR, p-p38 MAPK, IL-6, and RhoA-GTP protein expression levels in cultures of patient monocyte-derived macrophages and HCASMCs. Conclusions. Elevated Lp(a) levels upregulate α7-nAChR/IL-6/p38 MAPK signaling in macrophages of CAS patients and HCASMC, suggesting that Lp(a)-triggered inflammation mediates CAS through α7-nAChR/p38 MAPK/IL-6/RhoA-GTP signaling induction, macrophage M1 polarization, and HCASMC activation.
Collapse
|