1
|
Le Guillou R, Froger J, Morin M, Couderc M, Cormier C, Azevedo-Coste C, Gasq D. Specifications and functional impact of a self-triggered grasp neuroprosthesis developed to restore prehension in hemiparetic post-stroke subjects. Biomed Eng Online 2024; 23:129. [PMID: 39709421 DOI: 10.1186/s12938-024-01323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Stroke is the leading cause of acquired motor deficiencies in adults. Restoring prehension abilities is challenging for individuals who have not recovered active hand opening capacities after their rehabilitation. Self-triggered functional electrical stimulation applied to finger extensor muscles to restore grasping abilities in daily life is called grasp neuroprosthesis (GNP) and remains poorly accessible to the post-stroke population. Thus, we developed a GNP prototype with self-triggering control modalities adapted to the characteristics of the post-stroke population and assessed its impact on abilities. METHODS Through two clinical research protocols, 22 stroke participants used the GNP and its control modalities (EMG activity of a pre-defined muscle, IMU motion detection, foot switches and voice commands) for 3 to 5 sessions over a week. The NeuroPrehens software interpreted user commands through input signals from electromyographic, inertial, foot switches or microphone sensors to trigger an external electrical stimulator using two bipolar channels with surface electrodes. Users tested a panel of 9 control modalities, subjectively evaluated in ease-of-use and reliability with scores out of 10 and selected a preferred one before training with the GNP to perform functional unimanual standardized prehension tasks in a seated position. The responsiveness and functional impact of the GNP were assessed through a posteriori analysis of video recordings of these tasks across the two blinded evaluation multi-crossover N-of-1 randomized controlled trials. RESULTS Non-paretic foot triggering, whether from EMG or IMU, received the highest scores in both ease-of-use (median scores out of 10: EMG 10, IMU 9) and reliability (EMG 9, IMU 9) and were found viable and appreciated by users, like voice control and head lateral inclination modalities. The assessment of the system's general responsiveness combined with the control modalities latencies revealed median (95% confidence interval) durations between user intent and FES triggering of 333 ms (211 to 561), 217 ms (167 to 355) and 467 ms (147 to 728) for the IMU, EMG and voice control types of modalities, respectively. The functional improvement with the use of the GNP was significant in the two prehension tasks evaluated, with a median (95% confidence interval) improvement of 3 (- 1 to 5) points out of 5. CONCLUSIONS The GNP prototype and its control modalities were well suited to the post-stroke population in terms of self-triggering, responsiveness and restoration of functional grasping abilities. A wearable version of this device is being developed to improve prehension abilities at home. TRIAL REGISTRATION Both studies are registered on clinicaltrials.gov: NCT03946488, registered May 10, 2019 and NCT04804384, registered March 18, 2021.
Collapse
Affiliation(s)
- R Le Guillou
- Department of Clinical Physiology, Motion Analysis Center, University Hospital of Toulouse, Hôpital de Purpan, Toulouse, France.
- INRIA, University of Montpellier, Montpellier, France.
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France.
| | - J Froger
- Department of Physical Medicine and Rehabilitation, University Hospital Center of Nîmes, University of Montpellier, Le Grau du Roi, France
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| | - M Morin
- Department of Clinical Physiology, Motion Analysis Center, University Hospital of Toulouse, Hôpital de Purpan, Toulouse, France
| | - M Couderc
- Department of Clinical Physiology, Motion Analysis Center, University Hospital of Toulouse, Hôpital de Purpan, Toulouse, France
| | - C Cormier
- Department of Clinical Physiology, Motion Analysis Center, University Hospital of Toulouse, Hôpital de Purpan, Toulouse, France
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | | | - D Gasq
- Department of Clinical Physiology, Motion Analysis Center, University Hospital of Toulouse, Hôpital de Purpan, Toulouse, France
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
2
|
Egger M, Bergmann J, Krewer C, Jahn K, Müller F. Sensory Stimulation and Robot-Assisted Arm Training After Stroke: A Randomized Controlled Trial. J Neurol Phys Ther 2024; 48:178-187. [PMID: 38912852 DOI: 10.1097/npt.0000000000000486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND PURPOSE Functional recovery after stroke is often limited, despite various treatment methods such as robot-assisted therapy. Repetitive sensory stimulation (RSS) might be a promising add-on therapy that is thought to directly drive plasticity processes. First positive effects on sensorimotor function have been shown. However, clinical studies are scarce, and the effect of RSS combined with robot-assisted training has not been evaluated yet. Therefore, our objective was to investigate the feasibility and sensorimotor effects of RSS (compared to a control group receiving sham stimulation) followed by robot-assisted arm therapy. METHODS Forty participants in the subacute phase (4.4-23.9 weeks) after stroke with a moderate to severe arm paresis were randomized to RSS or control group. Participants received 12 sessions of (sham-) stimulation within 3 weeks. Stimulation of the fingertips and the robot-assisted therapy were each applied in 45-min sessions. Motor and sensory outcome assessments (e.g. Fugl-Meyer-Assessment, grip strength) were measured at baseline, post intervention and at a 3-week follow-up. RESULTS Participants in both groups improved their sensorimotor function from baseline to post and follow-up measurements, as illustrated by most motor and sensory outcome assessments. However, no significant group effects were found for any measures at any time ( P > 0.058). Stimulations were well accepted, no safety issues arose. DISCUSSION AND CONCLUSIONS Feasibility of robot-assisted therapy with preceding RSS in persons with moderate to severe paresis was demonstrated. However, RSS preceding robot-assisted training failed to show a preliminary effect compared to the control intervention. Participants might have been too severely affected to identify changes driven by the RSS, or these might have been diluted or more difficult to identify because of the additional robotic training and neurorehabilitation. VIDEO ABSTRACT AVAILABLE for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A478 ).
Collapse
Affiliation(s)
- Marion Egger
- Department of Neurology, Research Group, Schoen Clinic Bad Aibling, Bad Aibling, Germany (M.E., J.B., C.K., K.J., F.M.); Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany (M.E.); German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-Universität in Munich, Munich, Germany (J.B., K.J.); and Chair of Human Movement Science, Department of Sports and Health Sciences, Technical University of Munich, Munich, Germany (C.K.)
| | | | | | | | | |
Collapse
|
3
|
Chiu YT, Liang CC, Yu Cheng H, Lin CH, Chen JC. Alternating Hot-Cold Water Immersion Facilitates Motor Function Recovery in the Paretic Upper Limb After Stroke: A Pilot Randomized Controlled Trial. Arch Phys Med Rehabil 2024; 105:1642-1648. [PMID: 38734047 DOI: 10.1016/j.apmr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVE To assess the effectiveness of alternating hot-cold water immersion (AHCWI) in patients with acute stroke. DESIGN A single-blind pilot randomized controlled trial. SETTING Department of Rehabilitation Medicine of a medical center. PARTICIPANTS Early stroke survivors (N=24) with moderate-to-severe arm paresis. INTERVENTIONS In addition to conventional rehabilitation, eligible patients were randomly assigned to an AHCWI group (n=12, for AHCWI) or a control group (n=12, for upper limb [UL] cycling exercises) 5 times per week for 6 weeks. MAIN OUTCOME MEASURES The Fugl-Meyer Assessment motor-UL (FMA-UL) score, Motricity Index-UL (MI-UL) score, modified Motor Assessment Scale (MMAS; including its UL sections, MMAS-UL) score, Berg Balance Scale score, Barthel Index (BI), and modified Ashworth Scale score were assessed by the same uninvolved physical therapist at baseline and after 4 and 6 weeks of intervention. RESULTS Compared with the control group, the AHCWI group performed better, with significant group effects (P<.05), and exhibited significant improvements in FMA-UL, MI-UL, and MMAS-UL scores at 4 and 6 weeks (P<.05). Although the remaining outcomes were not significantly different, they favored the AHCWI group. Notably, a significant difference was observed in the BI at 4 weeks (P=.032). Significant changes in the muscle tone or adverse effects were not observed in either group after the intervention. CONCLUSIONS AHCWI with stroke rehabilitation is feasible and may facilitate motor function recovery of the paretic UL after a stroke.
Collapse
Affiliation(s)
- Yu-Ting Chiu
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chung-Chao Liang
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hung- Yu Cheng
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chun-Hsiang Lin
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Physical Therapy, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jia-Ching Chen
- Department of Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Physical Therapy, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
4
|
Lu Y, Lin Z, Li M, Zhuang Y, Nie B, Lei J, Zhao Y, Zhao H. Three-phase Enriched Environment Improves Post-stroke Gait Dysfunction via Facilitating Neuronal Plasticity in the Bilateral Sensorimotor Cortex: A Multimodal MRI/PET Analysis in Rats. Neurosci Bull 2024; 40:719-731. [PMID: 38055107 PMCID: PMC11178725 DOI: 10.1007/s12264-023-01155-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/22/2023] [Indexed: 12/07/2023] Open
Abstract
The three-phase Enriched Environment (EE) paradigm has been shown to promote post-stroke functional improvement, but the neuronal mechanisms are still unclear. In this study, we applied a multimodal neuroimaging protocol combining magnetic resonance imaging (MRI) and positron emission tomography (PET) to examine the effects of post-ischemic EE treatment on structural and functional neuroplasticity in the bilateral sensorimotor cortex. Rats were subjected to permanent middle cerebral artery occlusion. The motor function of the rats was examined using the DigiGait test. MRI was applied to investigate the EE-induced structural modifications of the bilateral sensorimotor cortex. [18F]-fluorodeoxyglucose PET was used to detect glucose metabolism. Blood oxygen level-dependent (BOLD)-functional MRI (fMRI) was used to identify the regional brain activity and functional connectivity (FC). In addition, the expression of neuroplasticity-related signaling pathways including neurotrophic factors (BDNF/CREB), axonal guidance proteins (Robo1/Slit2), and axonal growth-inhibitory proteins (NogoA/NgR) as well as downstream proteins (RhoA/ROCK) in the bilateral sensorimotor cortex were measured by Western blots. Our results showed the three-phase EE improved the walking ability. Structural T2 mapping imaging and diffusion tensor imaging demonstrated that EE benefited structure integrity in the bilateral sensorimotor cortex. PET-MRI fused images showed improved glucose metabolism in the corresponding regions after EE intervention. Specifically, the BOLD-based amplitude of low-frequency fluctuations showed that EE increased spontaneous activity in the bilateral motor cortex and ipsilateral sensory cortex. In addition, FC results showed increased sensorimotor connectivity in the ipsilateral hemisphere and increased interhemispheric motor cortical connectivity and motor cortical-thalamic connectivity following EE intervention. In addition, a strong correlation was found between increased functional connectivity and improved motor performance of limbs. Specifically, EE regulated the expression of neuroplasticity-related signaling, involving BDNF/CREB, Slit2/Robo1, as well as the axonal growth-inhibitory pathways Nogo-A/Nogo receptor and RhoA/ROCK in the bilateral sensorimotor cortex. Our results indicated that the three-phase enriched environment paradigm enhances neuronal plasticity of the bilateral sensorimotor cortex and consequently ameliorates post-stroke gait deficits. These findings might provide some new clues for the development of EE and thus facilitate the clinical translation of EE.
Collapse
Affiliation(s)
- Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Ziyue Lin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Mingcong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yuming Zhuang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianfeng Lei
- Medical Imaging Laboratory of Core Facility Center, Capital Medical University, Beijing, 100069, China
| | - Yuanyuan Zhao
- Medical Imaging Laboratory of Core Facility Center, Capital Medical University, Beijing, 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
5
|
Chen S, Zhang X, Chen X, Zhou Z, Cong W, Chong K, Xu Q, Wu J, Li Z, Lin W, Shan C. The assessment of interhemispheric imbalance using functional near-infrared spectroscopic and transcranial magnetic stimulation for predicting motor outcome after stroke. Front Neurosci 2023; 17:1231693. [PMID: 37655011 PMCID: PMC10466792 DOI: 10.3389/fnins.2023.1231693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Objective To investigate changes in interhemispheric imbalance of cortical excitability during motor recovery after stroke and to clarify the relationship between motor function recovery and alterations in interhemispheric imbalance, with the aim to establish more effective neuromodulation strategies. Methods Thirty-one patients underwent assessments of resting motor threshold (RMT) using transcranial magnetic stimulation (TMS); the cortical activity of the primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA) using functional near-infrared spectroscopy (fNIRS); as well as motor function using upper extremity Fugl-Meyer (FMA-UE). The laterality index (LI) of RMT and fNIRS were also calculated. All indicators were measured at baseline(T1) and 1 month later(T2). Correlations between motor function outcome and TMS and fNIRS metrics at baseline were analyzed using bivariate correlation. Results All the motor function (FMA-UE1, FMA-UE2, FMA-d2) and LI-RMT (LI-RMT1 and LI-RMT2) had a moderate negative correlation. The higher the corticospinal excitability of the affected hemisphere, the better the motor outcome of the upper extremity, especially in the distal upper extremity (r = -0.366, p = 0.043; r = -0.393, p = 0.029). The greater the activation of the SMA of the unaffected hemisphere, the better the motor outcome, especially in the distal upper extremity (r = -0.356, p = 0.049; r = -0.367, p = 0.042). There was a significant moderate positive correlation observed between LI-RMT2 and LI-SMA1 (r = 0.422, p = 0.018). The improvement in motor function was most significant when both LI-RMT1 and LI-SMA1 were lower. Besides, in patients dominated by unaffected hemisphere corticospinal excitability during motor recovery, LI-(M1 + SMA + PMC)2 exhibited a significant moderate positive association with the proximal upper extremity function 1 month later (r = 0.642, p = 0.007). Conclusion The combination of both TMS and fNIRS can infer the prognosis of motor function to some extent. Which can infer the role of both hemispheres in recovery and may contribute to the development of effective individualized neuromodulation strategies.
Collapse
Affiliation(s)
- Songmei Chen
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolin Zhang
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
| | - Xixi Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqing Zhou
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiqin Cong
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
| | - KaYee Chong
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Xu
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
| | - Jiali Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaoyuan Li
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
| | - Wanlong Lin
- Department of Rehabilitation Medicine, Shanghai No.3 Rehabilitation Hospital, Shanghai, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Institute of rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Wang H, Xiang Y, Wang C, Wang Y, Chen S, Ding L, Liu Q, Wang X, Zhao K, Jia J, Chen Y. Effects of transcutaneous electrical acupoint stimulation on upper-limb impairment after stroke: A randomized, controlled, single-blind trial. Clin Rehabil 2023; 37:667-678. [PMID: 36380681 PMCID: PMC10041575 DOI: 10.1177/02692155221138916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To evaluate the effects of transcutaneous electrical acupoint stimulation (TEAS) on upper limb motor recovery during post-stroke rehabilitation. DESIGN Single-blind, randomized controlled trial. SETTING Four inpatient rehabilitation facilities. SUBJECTS A total of 204 stroke patients with unilateral upper limb motor impairment were randomly 1:1 allocated to TEAS or sham TEAS group. Baseline demographic and clinical characteristics were comparable between the two groups. INTERVENTIONS Both groups received conventional physical and occupational therapies. TEAS and sham TEAS therapy were administered to two acupoints (LI10 and TE5) with a pulse duration of 300 µs at 2 Hz on the affected forearm for 30 times over 6 weeks. OUTCOME MEASURES The upper-extremity Fugl-Meyer score (primary outcome), manual muscle testing, modified Ashworth scale, Lindmark hand function score, and Barthel index were evaluated by blinded assessors at baseline, 2, 4, 6, 10, and 18 weeks. RESULTS The number of patients who completed the treatment was 99 and 97 in the TEAS and the sham group. No significant between-group difference was found in the Upper-Extremity Fugl-Meyer score, Modified Ashworth Scale, Lindmark hand function score, and Barthel Index after intervention and during follow-up. However, the TEAS group exhibited 0.29 (95% CI 0.02 to 0.55) greater improvements in Manual Muscle Testing of wrist extension than the sham group (p = 0.037) at 18 weeks. CONCLUSIONS Administration of TEAS therapy to hemiplegic forearm could not improve the upper extremity motor recovery. However, TEAS on the forearm might provide potential benefits for strength improvement of the wrist.
Collapse
Affiliation(s)
- Hewei Wang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuzhi Xiang
- Department of Rehabilitation, Shanghai Third Rehabilitation Hospital, Shanghai, China
| | - Chuankai Wang
- Department of Rehabilitation Medicine, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yingying Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Department of Epidemiology, Key Laboratory of Public Health Safety of Ministry of Education, Shanghai, China
| | - Shugeng Chen
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Ding
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Liu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaowen Wang
- Department of Rehabilitation, Shanghai Third Rehabilitation Hospital, Shanghai, China
| | - Kun Zhao
- Department of Rehabilitation, Shanghai Third Rehabilitation Hospital, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Yao Chen
- Department of Rehabilitation, Shanghai Third Rehabilitation Hospital, Shanghai, China
| |
Collapse
|
7
|
Park CB, Park HS. Portable 3D-printed hand orthosis with spatial stiffness distribution personalized for assisting grasping in daily living. Front Bioeng Biotechnol 2023; 11:895745. [PMID: 36815899 PMCID: PMC9932545 DOI: 10.3389/fbioe.2023.895745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Stroke survivors having limited finger coordination require an active hand orthosis to assist them with grasping tasks for daily activities. The orthosis should be portable for constant use; however, portability imposes constraints on the number, size, and weight of the actuators, which increase the difficulty of the design process. Therefore, a tradeoff exists between portability and the assistive force. In this study, a personalized spatial stiffness distribution design is presented for a portable and strengthful hand orthosis. The spatial stiffness distribution of the orthosis was optimized based on measurements of individual hand parameters to satisfy the functional requirements of achieving sufficient grip aperture in the pre-grasping phase and minimal assistive force in the grasping phase. Ten stroke survivors were recruited to evaluate the system. Sufficient grip aperture and high grip strength-to-weight ratio were achieved by the orthosis via a single motor. Moreover, the orthosis significantly restored the range of motion and improved the performance of daily activities. The proposed spatial stiffness distribution can suggest a design solution to make strengthful hand orthoses with reduced weight.
Collapse
Affiliation(s)
| | - Hyung-Soon Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
8
|
Wang H, Xiong X, Zhang K, Wang X, Sun C, Zhu B, Xu Y, Fan M, Tong S, Guo X, Sun L. Motor network reorganization after motor imagery training in stroke patients with moderate to severe upper limb impairment. CNS Neurosci Ther 2022; 29:619-632. [PMID: 36575865 PMCID: PMC9873524 DOI: 10.1111/cns.14065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Motor imagery training (MIT) has been widely used to improve hemiplegic upper limb function in stroke rehabilitation. The effectiveness of MIT is associated with the functional neuroplasticity of the motor network. Currently, brain activation and connectivity changes related to the motor recovery process after MIT are not well understood. AIM We aimed to investigate the neural mechanisms of MIT in stroke rehabilitation through a longitudinal intervention study design with task-based functional magnetic resonance imaging (fMRI) analysis. METHODS We recruited 39 stroke patients with moderate to severe upper limb motor impairment and randomly assigned them to either the MIT or control groups. Patients in the MIT group received 4 weeks of MIT therapy plus conventional rehabilitation, while the control group only received conventional rehabilitation. The assessment of Fugl-Meyer Upper Limb Scale (FM-UL) and Barthel Index (BI), and fMRI scanning using a passive hand movement task were conducted on all patients before and after treatment. The changes in brain activation and functional connectivity (FC) were analyzed. Pearson's correlation analysis was conducted to evaluate the association between neural functional changes and motor improvement. RESULTS The MIT group achieved higher improvements in FM-UL and BI relative to the control group after the treatment. Passive movement of the affected hand evoked an abnormal bilateral activation pattern in both groups before intervention. A significant Group × Time interaction was found in the contralesional S1 and ipsilesional M1, showing a decrease of activation after intervention specifically in the MIT group, which was negatively correlated with the FM-UL improvement. FC analysis of the ipsilesional M1 displayed the motor network reorganization within the ipsilesional hemisphere, which correlated with the motor score changes. CONCLUSIONS MIT could help decrease the compensatory activation at both hemispheres and reshape the FC within the ipsilesional hemisphere along with functional recovery in stroke patients.
Collapse
Affiliation(s)
- Hewei Wang
- Department of Rehabilitation MedicineHuashan Hospital Fudan UniversityShanghaiChina
| | - Xin Xiong
- School of Biomedical EngineeringShanghai Jiaotong UniversityShanghaiChina
| | - Kexu Zhang
- School of Biomedical EngineeringShanghai Jiaotong UniversityShanghaiChina
| | - Xu Wang
- School of Biomedical EngineeringShanghai Jiaotong UniversityShanghaiChina
| | - Changhui Sun
- Department of Rehabilitation MedicineHuashan Hospital Fudan UniversityShanghaiChina
| | - Bing Zhu
- Department of Rehabilitation MedicineHuashan Hospital Fudan UniversityShanghaiChina
| | - Yiming Xu
- Department of Rehabilitation MedicineHuashan Hospital Fudan UniversityShanghaiChina
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic ResonanceEast China Normal UniversityShanghaiChina
| | - Shanbao Tong
- School of Biomedical EngineeringShanghai Jiaotong UniversityShanghaiChina
| | - Xiaoli Guo
- School of Biomedical EngineeringShanghai Jiaotong UniversityShanghaiChina
| | - Limin Sun
- Department of Rehabilitation MedicineHuashan Hospital Fudan UniversityShanghaiChina
| |
Collapse
|
9
|
Le VC, Nguyen NH, Le SH. Intra-arterial infusion of autologous bone marrow mononuclear cells combined with intravenous injection of cerebrolysin in the treatment of middle cerebral artery ischemic stroke: Case report. SAGE Open Med Case Rep 2021; 9:2050313X211002313. [PMID: 33796315 PMCID: PMC7975445 DOI: 10.1177/2050313x211002313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
We present a patient with severe middle cerebral artery occlusion who received an
intra-arterial infusion of autologous bone marrow stem cells combined with
Cerebrolysin IV. The patient was evaluated before and after treatment using the
National Institutes of Health Stroke Scale, the Medical Research Council Muscle
Scale, Modified Brunnstrom Classification, Barthel Index and modified Rankin
Scale. After the therapy, the patient showed good outcome with functional as
well as neurological improvements especially in terms of functional motor
recovery without any side effects. Further controlled studies are needed to find
possible side effects and establish net efficacy.
Collapse
Affiliation(s)
- Vien C Le
- Stroke Center, 108 Military Central Hospital, Ha Noi, Vietnam
| | - Ngoc H Nguyen
- Stroke Center, 108 Military Central Hospital, Ha Noi, Vietnam
| | - Song H Le
- 108 Military Central Hospital, Ha Noi, Vietnam
| |
Collapse
|