1
|
Langhi C, Vallier M, Bron A, Otero YF, Maura M, Le Joubioux F, Blomberg N, Giera M, Guigas B, Maugard T, Chassaing B, Peltier S, Blanquet-Diot S, Bard JM, Sirvent P. A polyphenol-rich plant extract prevents hypercholesterolemia and modulates gut microbiota in western diet-fed mice. Front Cardiovasc Med 2024; 11:1342388. [PMID: 38317864 PMCID: PMC10839041 DOI: 10.3389/fcvm.2024.1342388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Totum-070 is a combination of five plant extracts enriched in polyphenols to target hypercholesterolemia, one of the main risk factors for cardiovascular diseases. The aim of this study was to investigate the effects of Totum-070 on cholesterol levels in an animal model of diet-induced hypercholesterolemia. Methods C57BL/6JOlaHsd male mice were fed a Western diet and received Totum-070, or not, by daily gavage (1g/kg and 3g/kg body weight) for 6 weeks. Results The Western diet induced obesity, fat accumulation, hepatic steatosis and increased plasma cholesterol compared with the control group. All these metabolic perturbations were alleviated by Totum-070 supplementation in a dose-dependent manner. Lipid excretion in feces was higher in mice supplemented with Totum-070, suggesting inhibition of intestinal lipid absorption. Totum-070 also increased the fecal concentration of short chain fatty acids, demonstrating a direct effect on intestinal microbiota. Discussion The characterization of fecal microbiota by 16S amplicon sequencing showed that Totum-070 supplementation modulated the dysbiosis associated with metabolic disorders. Specifically, Totum-070 increased the relative abundance of Muribaculum (a beneficial bacterium) and reduced that of Lactococcus (a genus positively correlated with increased plasma cholesterol level). Together, these findings indicate that the cholesterol-lowering effect of Totum-070 bioactive molecules could be mediated through multiple actions on the intestine and gut microbiota.
Collapse
Affiliation(s)
| | | | - Auriane Bron
- UMR 454 Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | | | | | | | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Thierry Maugard
- Equipe BCBS (Biotechnologies et Chimie des Bioressources Pour la Santé), UMR CNRS 7266 LIENSs, La Rochelle Université, La Rochelle, France
| | - Benoit Chassaing
- Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, Paris, France
| | | | - Stéphanie Blanquet-Diot
- UMR 454 Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jean-Marie Bard
- Laboratoire de Biochimie Générale et Appliquée, UFR de Pharmacie, ISOMer-UE 2160, IUML-Institut Universitaire Mer et Littoral-FR3473 CNRS, Université de Nantes, Nantes, France
| | | |
Collapse
|
2
|
Langhi C, Vallier M, Otero YF, Maura M, Le Joubioux F, Groult H, Achour O, Pebriana RB, Giera M, Guigas B, Maugard T, Chassaing B, Peltier S, Bard JM, Sirvent P. Totum-070, a Polyphenol-Rich Plant Extract, Prevents Hypercholesterolemia in High-Fat Diet-Fed Hamsters by Inhibiting Intestinal Cholesterol Absorption. Nutrients 2023; 15:5056. [PMID: 38140315 PMCID: PMC10746001 DOI: 10.3390/nu15245056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of mortality worldwide, and hypercholesterolemia is a central risk factor for atherosclerosis. This study evaluated the effects of Totum-070, a plant-based polyphenol-rich supplement, in hamsters with high-fat diet (HFD)-induced dyslipidemia. The molecular mechanisms of action were explored using human Caco2 enterocytes. Totum-070 supplementation reduced the total cholesterol (-41%), non-HDL cholesterol (-47%), and triglycerides (-46%) in a dose-dependent manner, compared with HFD. HFD-induced hepatic steatosis was also significantly decreased by Totum-070, an effect associated with the reduction in various lipid and inflammatory gene expression. Upon challenging with olive oil gavage, the post-prandial triglyceride levels were strongly reduced. The sterol excretion in the feces was increased in the HFD-Totum-070 groups compared with the HFD group and associated with reduction of intestinal cholesterol absorption. These effects were confirmed in the Caco2 cells, where incubation with Totum-070 inhibited cholesterol uptake and apolipoprotein B secretion. Furthermore, a microbiota composition analysis revealed a strong effect of Totum-070 on the alpha and beta diversity of bacterial species and a significant decrease in the Firmicutes to Bacteroidetes ratio. Altogether, our findings indicate that Totum-070 lowers hypercholesterolemia by reducing intestinal cholesterol absorption, suggesting that its use as dietary supplement may be explored as a new preventive strategy for cardiovascular diseases.
Collapse
Affiliation(s)
- Cédric Langhi
- R&D Riom Center, Valbiotis, 20-22 rue Henri et Gilberte Goudier, 63200 Riom, France
| | - Marie Vallier
- R&D Riom Center, Valbiotis, 20-22 rue Henri et Gilberte Goudier, 63200 Riom, France
| | - Yolanda F. Otero
- R&D Riom Center, Valbiotis, 20-22 rue Henri et Gilberte Goudier, 63200 Riom, France
| | - Maheva Maura
- R&D Center, Valbiotis, 23 Avenue Albert Einstein, 17000 La Rochelle, France
| | | | - Hugo Groult
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), UMR (Unité Mixte de Recherche) CNRS (Centre National de la Recherche Scientifique) 7266 LIENSs (LIttoral ENvironnement Et Sociétés), La Rochelle Université, 17042 La Rochelle, France
| | - Oussama Achour
- BioAqtiv, Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), LIENSs (LIttoral ENvironnement Et Sociétés), UMR (Unité Mixte de Recherche) 7266 CNRS (Centre National de la Recherche Scientifique), La Rochelle Université, 17042 La Rochelle, France
| | - Ratna Budhi Pebriana
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albi-nusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albi-nusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Thierry Maugard
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), UMR (Unité Mixte de Recherche) CNRS (Centre National de la Recherche Scientifique) 7266 LIENSs (LIttoral ENvironnement Et Sociétés), La Rochelle Université, 17042 La Rochelle, France
| | - Benoit Chassaing
- Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, Institut Cochin, INSERM (Institut National de la Santé et de la Recherche Médicale) U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
| | - Sébastien Peltier
- R&D Périgny Center, Valbiotis, 12F rue Paul Vatine, 17180 Périgny, France
| | - Jean-Marie Bard
- Laboratoire de Biochimie Générale et Appliquée, UFR (Unité de Formation et de Recherche) de Pharmacie, ISOMer-UE 2160, IUML-Institut Universitaire Mer et Littoral-FR3473 CNRS, Université de Nantes, 44035 Nantes, France
| | - Pascal Sirvent
- R&D Riom Center, Valbiotis, 20-22 rue Henri et Gilberte Goudier, 63200 Riom, France
| |
Collapse
|
3
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
4
|
Osadnik T, Goławski M, Lewandowski P, Morze J, Osadnik K, Pawlas N, Lejawa M, Jakubiak GK, Mazur A, Schwingschackl L, Gąsior M, Banach M. A network meta-analysis on the comparative effect of nutraceuticals on lipid profile in adults. Pharmacol Res 2022; 183:106402. [PMID: 35988871 DOI: 10.1016/j.phrs.2022.106402] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
It is estimated that 2.6 million deaths worldwide can be attributed to hypercholesterolemia. The main reason for non-adherence to statin therapy are the statin-associated muscle symptoms (including nocebo/drucebo effect). In this case, apart from ezetimibe, nutraceuticals are prescribed. We aimed to assess the comparative efficacy of different nutraceuticals in terms of lowering low density lipoprotein cholesterol (LDL-C) and improving lipid profile. Electronic and hand searches were performed until February 2021. The inclusion criteria were the following: (1) randomized trial with any of the reportedly LDL-C lowering nutraceutical: artichoke, berberine, bergamot, garlic, green tea extract, plant sterols/stanols, policosanols, red yeast rice (RYR), silymarin or spirulina. (2) outcome either LDL-C (primary outcome), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C) or serum triglycerides (TG). Random effects network meta-analysis (NMA) was performed to rank the effect of each intervention using frequentist approach. Finally, a total of 131 trials enrolling 13,062 participants were included. All analysed nutraceuticals except for policosanols were more effective in lowering LDL-C (-1.21 [-46.8 mg/dL] to -0.17 [-6.6 mg/dL] mmol/l reduction) and TC (-1.75 [-67.7 mg/dL] to -0.18 [7 mg/dL] mmol/l reduction) than placebo/no intervention. The most effective approaches in terms of LDL-C- and TC-lowering were bergamot and RYR (-1.21 [-46.8 mg/dl] and -0.94 [-36.4 mg/dl] mmol/l) reduction respectively. In conclusion, bergamot and RYR appear to be the most effective nutraceuticals in terms of LDL-C and TC reduction. Evidence for bergamot effect was based on relatively small study group and may require further investigations. Policosanols have no effect on the lipid profile.
Collapse
Affiliation(s)
- Tadeusz Osadnik
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Marcin Goławski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Piotr Lewandowski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jakub Morze
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Kamila Osadnik
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Natalia Pawlas
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Mateusz Lejawa
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Grzegorz K Jakubiak
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland; Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poland
| | - Agnieszka Mazur
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Lucas Schwingschackl
- German Institute for Evidence in Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Mariusz Gąsior
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland.
| |
Collapse
|
5
|
Abstract
Brewed tea (Camellia sinensis) is a major dietary source of flavonoids, in particular flavan-3-ols. Tea consumption has been suggested to be inversely associated with a decreased risk of cardiovascular disease (CVD). Several biological mechanisms support the inverse relationship between tea flavonoid intake and CVD risk. Given the recent accumulating evidence from various systematic reviews regarding the role of tea as a beverage in reducing CVD risk and severity, we conducted an umbrella review to describe and critically evaluate the totality of evidence to date. We searched the PubMed, Web of Science, Cochrane Database of Systematic Reviews, and BIOSIS databases for systematic reviews published between January 1, 2010 and February 22, 2020 reporting relationships between tea (C. sinensis) consumption and CVD mortality, CVD diagnosis or incidence, CVD events, stroke events, blood pressure, endothelial function, blood lipids and triglycerides, and inflammatory markers. Herein, we describe results from 23 included systematic reviews. Consistently consuming 2 cups of unsweet tea per day offers the right levels of flavonoids to potentially decrease CVD risk and its progression. This is supported by the consistency between a recent high-quality systematic review and dose-response meta-analyses of population-based studies demonstrating beneficial effects of consumption on CVD mortality, CVD events and stroke events and medium- to high-quality systematic reviews of intervention studies that further elucidate potential benefits on both validated (i.e., SBP, DBP, total cholesterol, and LDL-cholesterol) and emerging risk biomarkers of CVD (TNF-ɑ and IL-6). On the basis of this umbrella review, the consumption of tea as a beverage did not seem to be harmful to health; therefore, the benefits of moderate consumption likely outweigh risk. Future large, clinical intervention studies will provide better mechanistic insight with the ability to confirm the outcome effects shown across observational studies. The review protocol was registered on PROSPERO (https://www.crd.york.ac.uk/PROSPERO/) as CRD42020218159.KEY MESSAGESIt is reasonable to judge that 2 cups of unsweet tea per day has the potential to decrease CVD risk and progression due to its flavonoid content.The primary side effects of tea documented in human studies are hepatotoxicity and gastrointestinal disturbances (i.e., vomiting and diarrhea) after high-dose supplemental intake.Additional clinical research is needed to fully elucidate the effects of tea flavonoids on markers of CVD, as many studies were under-powered to detect changes.[Figure: see text].
Collapse
Affiliation(s)
- Abby Keller
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA, USA
| | | |
Collapse
|