1
|
Du D, Tian J, Huang Y, Liu J. The utilization of three-dimensional printing models for craniovertebral-junction deformities in medical education. Asian J Surg 2024; 47:4853-4854. [PMID: 38834482 DOI: 10.1016/j.asjsur.2024.05.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Affiliation(s)
- Dingyu Du
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Tian
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yukai Huang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinping Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Wang J, Li W, Dun A, Zhong N, Ye Z. 3D visualization technology for Learning human anatomy among medical students and residents: a meta- and regression analysis. BMC MEDICAL EDUCATION 2024; 24:461. [PMID: 38671399 PMCID: PMC11055294 DOI: 10.1186/s12909-024-05403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND 3D visualization technology applies computers and other devices to create a realistic virtual world for individuals with various sensory experiences such as 3D vision, touch, and smell to gain a more effective understanding of the relationships between real spatial structures and organizations. The purpose of this study was to comprehensively evaluate the effectiveness of 3D visualization technology in human anatomy teaching/training and explore the potential factors that affect the training effects to better guide the teaching of classroom/laboratory anatomy. METHODS We conducted a meta-analysis of randomized controlled studies on teaching human anatomy using 3D visualization technology. We extensively searched three authoritative databases, PubMed, Web of Science, and Embase; the main outcomes were the participants' test scores and satisfaction, while the secondary outcomes were time consumption and enjoyment. Heterogeneity by I² was statistically determined because I²> 50%; therefore, a random-effects model was employed, using data processing software such as RevMan, Stata, and VOSviewer to process data, apply standardized mean difference and 95% confidence interval, and subgroup analysis to evaluate test results, and then conduct research through sensitivity analysis and meta-regression analysis. RESULTS Thirty-nine randomized controlled trials (2,959 participants) were screened and included in this study. The system analysis of the main results showed that compared with other methods, including data from all regions 3D visualization technology moderately improved test scores as well as satisfaction and enjoyment; however, the time that students took to complete the test was not significantly reduced. Meta-regression analysis also showed that regional factorsaffected test scores, whereas other factors had no significant impact. When the literature from China was excluded, the satisfaction and happiness of the 3D virtual-reality group were statistically significant compared to those of the traditional group; however, the test results and time consumption were not statistically significant. CONCLUSION 3D visualization technology is an effective way to improve learners' satisfaction with and enjoyment of human anatomical learning, but it cannot reduce the time required for testers to complete the test. 3D visualization technology may struggle to improve the testers' scores. The literature test results from China are more prone to positive results and affected by regional bias.
Collapse
Affiliation(s)
- Junming Wang
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, 250013, Jinan, Shandong, China
- School of clinical and basic medicine, Shandong First Medical University, Jinan, China
| | - Wenjun Li
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, 250013, Jinan, Shandong, China
- School of clinical and basic medicine, Shandong First Medical University, Jinan, China
| | - Aishe Dun
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Ning Zhong
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, 250013, Jinan, Shandong, China.
| | - Zhen Ye
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, 250013, Jinan, Shandong, China.
| |
Collapse
|
3
|
Ito T, Yamazaki A. Authors' reply to: Comment on the article by Dr. Georgios P. Skandalakis: Patient-specific virtual and mixed reality for immersive, experiential anatomy education and for surgical planning in temporal bone surgery. Auris Nasus Larynx 2024; 51:411. [PMID: 34334218 DOI: 10.1016/j.anl.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Taku Ito
- Otorhinolaryngology Department, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan 113-8510
| | - Ayame Yamazaki
- Otorhinolaryngology Department, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan 113-8510
| |
Collapse
|
4
|
García-Robles P, Cortés-Pérez I, Nieto-Escámez FA, García-López H, Obrero-Gaitán E, Osuna-Pérez MC. Immersive virtual reality and augmented reality in anatomy education: A systematic review and meta-analysis. ANATOMICAL SCIENCES EDUCATION 2024; 17:514-528. [PMID: 38344900 DOI: 10.1002/ase.2397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 04/04/2024]
Abstract
The purpose of this review was to (1) analyze the effectiveness of immersive virtual reality (iVR) and augmented reality (AR) as teaching/learning resources (collectively called XR-technologies) for gaining anatomy knowledge compared to traditional approaches and (2) gauge students' perceptions of the usefulness of these technologies as learning tools. This meta-analysis, previously registered in PROSPERO (CRD42023423017), followed PRISMA guidelines. A systematic bibliographical search, without time parameters, was conducted through four databases until June 2023. A meta-analytic approach investigated knowledge gains and XR's usefulness for learning. Pooled effect sizes were estimated using Cohen's standardized mean difference (SMD) and 95% confidence intervals (95% CI). A single-group proportional meta-analysis was conducted to quantify the percentage of students who considered XR devices useful for their learning. Twenty-seven experimental studies, reporting data from 2199 health sciences students, were included for analysis. XR-technologies yielded higher knowledge gains than traditional approaches (SMD = 0.40; 95% CI = 0.22 to 0.60), especially when used as supplemental/complementary learning resources (SMD = 0.52; 95% CI = 0.40 to 0.63). Specifically, knowledge performance using XR devices outperformed textbooks and atlases (SMD = 0.32; 95% CI = 0.10 to 0.54) and didactic lectures (SMD = 1.00; 95% CI = 0.57 to 1.42), especially among undergraduate students (SMD = 0.41; 95% CI = 0.20 to 0.62). XR devices were perceived to be more useful for learning than traditional approaches (SMD = 0.54; 95% CI = 0.04 to 1), and 80% of all students who used XR devices reported these devices as useful for learning anatomy. Learners using XR technologies demonstrated increased anatomy knowledge gains and considered these technologies useful for learning anatomy.
Collapse
Affiliation(s)
- Paloma García-Robles
- FRATERNIDAD Muprespa, Linares, Spain
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | | | - Francisco Antonio Nieto-Escámez
- Department of Psychology, University of Almeria, Almeria, Spain
- Center for Neuropsychological Assessment and Rehabilitation (CERNEP), Almeria, Spain
| | - Héctor García-López
- Department of Nursing, Physiotherapy and Medicine, University of Almeria, Almeria, Spain
| | | | | |
Collapse
|
5
|
Chauhan P, Mehra S, Pandya A. Randomised controlled trial: role of virtual interactive 3-dimensional models in anatomical and medical education. J Vis Commun Med 2024; 47:39-45. [PMID: 38767329 DOI: 10.1080/17453054.2024.2352404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Purpose: Virtual interactive 3-dimensional models (VI3DM) and immersive virtual reality are implemented in medical education and surgical training. VI3DM allow learners to view and interact with a virtual 3D object and help in conceptualising learning objectives that demand high cognitive and visuo-spatial skills. However, the effects of VI3DM in medical education are unknown. We aimed to determine whether VI3DM are helpful in conceptualising complex anatomical structures. Materials and methods: We included 5 specimens, which were assessed by 200 first-year medical students categorised into experimental (n = 100) and control (n = 100) groups using a systemic randomisation method after matching for age and sex. The experimental group was given VI3DM as interventional learning resources while the control group was given 2-dimensional photographs as conventional learning resources for self-directed learning for 30 minutes. Participants completed a questionnaire before and after the learning session to assess their knowledge related to external features, attachments, and relations of anatomical specimens. Results: The scores of the experimental group improved significantly in the post-test compared to those of the control group for all 5 specimens included in the study (p < 0.05, confidence interval = 95%, unpaired student's t-test). Conclusions: VI3DM can help conceptualise external features, attachments, and relations of anatomical structures.
Collapse
Affiliation(s)
- Pradip Chauhan
- Department of Anatomy, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Simmi Mehra
- Department of Anatomy, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Ashish Pandya
- Department of Anatomy, Pandit Deendayal Upadhyay Government Medical College, Rajkot, Gujarat, India
| |
Collapse
|
6
|
Koucheki R, Lex JR, Morozova A, Ferri D, Hauer TM, Mirzaie S, Ferguson PC, Ballyk B. Immersive Virtual Reality and Cadaveric Bone are Equally Effective in Skeletal Anatomy Education: A Randomized Crossover Noninferiority Trial. JOURNAL OF SURGICAL EDUCATION 2023; 80:1028-1038. [PMID: 37150701 DOI: 10.1016/j.jsurg.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/10/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023]
Abstract
OBJECTIVE Immersive virtual reality (IVR) technology is transforming medical education. Our aim was to compare the effectiveness of IVR with cadaveric bone models in teaching skeletal anatomy. DESIGN A randomized crossover noninferiority trial was conducted. SETTING Anatomy laboratory of a large medical school. PARTICIPANTS Incoming first-year medical students. Participants were randomized to IVR or cadaveric groups studying upper limb skeletal anatomy, and then were crossed over to use the opposite tool, to study lower limb skeletal anatomy. Participants in both groups completed a pre-and postintervention knowledge test. The primary endpoint of the study was change in performance from the pre-to postintervention knowledge test. Surveys were completed to assess participant's impressions on IVR as an educational tool. RESULTS Fifty first-year medical students met inclusion criteria and were randomized. Among all students, the average score on the preintervention knowledge test was 14.6% (standard deviation (SD) = 18.2%) and 25.0% (SD = 17%) for upper and lower limbs, respectively. Percentage increase in scores between pre-and postintervention knowledge test, was 15.0% in the upper limb IVR group, and 16.7% for upper limb cadaveric bones (p = 0.286). For the lower limb, score increase was 22.6% in the IVR and 22.5% in the cadaveric bone group (p = 0.936). 79% of participants found that IVR was most valuable for teaching 3-dimensional orientation, anatomical relationships, and key landmarks. Majority of participants were favorable towards combination use of traditional methods and IVR technology for learning skeletal anatomy (LSM>3). CONCLUSIONS In this randomized controlled trial, there was no significant difference in knowledge after using IVR or cadaveric bones for skeletal anatomy education. These findings have further implications for medical schools that face challenges in acquiring human cadavers and cadaveric parts.
Collapse
Affiliation(s)
- Robert Koucheki
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Biomedical Engineering, Toronto, Ontario, Canada.
| | - Johnathan R Lex
- Institute of Biomedical Engineering, Toronto, Ontario, Canada; Division of Orthopaedic Surgery, University of Toronto, Ontario, Canada
| | - Alexandra Morozova
- Division of Anatomy, University of Toronto, Ontario, Canada; Department of Anatomy, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Dario Ferri
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tyler M Hauer
- Institute of Biomedical Engineering, Toronto, Ontario, Canada
| | - Sarah Mirzaie
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Peter C Ferguson
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Orthopaedic Surgery, University of Toronto, Ontario, Canada; Department of Orthopaedic Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Barbara Ballyk
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Anatomy, University of Toronto, Ontario, Canada
| |
Collapse
|
7
|
Adnan S, Xiao J. A scoping review on the trends of digital anatomy education. Clin Anat 2023; 36:471-491. [PMID: 36583721 DOI: 10.1002/ca.23995] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
Digital technologies are changing the landscape of anatomy education. To reveal the trend of digital anatomy education across medical science disciplines, searches were performed using PubMed, EMBASE, and MEDLINE bibliographic databases for research articles published from January 2010 to June 2021 (inclusive). The search was restricted to publications written in English language and to articles describing teaching tools in undergraduate and postgraduate anatomy and pre-vocational clinical anatomy training courses. Among 156 included studies across six health disciplines, 35% used three-dimensional (3D) digital printing tools, 24.2% augmented reality (AR), 22.3% virtual reality (VR), 11.5% web-based programs, and 4.5% tablet-based apps. There was a clear discipline-dependent preference in the choice and employment of digital anatomy education. AR and VR were the more commonly adopted digital tools for medical and surgical anatomy education, while 3D printing is more broadly used for nursing, allied health and dental health education compared to other digital resources. Digital modalities were predominantly adopted for applied interactive anatomy education and primarily in advanced anatomy curricula such as regional anatomy and neuroanatomy. Moreover, there was a steep increase in VR anatomy combining digital simulation for surgical anatomy training. There is a consistent increase in the adoption of digital modalities in anatomy education across all included health disciplines. AR and VR anatomy incorporating digital simulation will play a more prominent role in medical education of the future. Combining multimodal digital resources that supports blended and interactive learning will further modernize anatomy education, moving medical education further away from its didactic history.
Collapse
Affiliation(s)
- Sharmeen Adnan
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia
| | - Junhua Xiao
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia.,School of Allied Health, La Trobe University, Bundoora, Australia
| |
Collapse
|
8
|
Awori J, Friedman SD, Howard C, Kronmal R, Buddhe S. Comparative effectiveness of virtual reality (VR) vs 3D printed models of congenital heart disease in resident and nurse practitioner educational experience. 3D Print Med 2023; 9:2. [PMID: 36773171 PMCID: PMC9918815 DOI: 10.1186/s41205-022-00164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Medical trainees frequently note that cardiac anatomy is difficult to conceive within a two dimensional framework. The specific anatomic defects and the subsequent pathophysiology in flow dynamics may become more apparent when framed in three dimensional models. Given the evidence of improved comprehension using such modeling, this study aimed to contribute further to that understanding by comparing Virtual Reality (VR) and 3D printed models (3DP) in medical education. OBJECTIVES We sought to systematically compare the perceived subjective effectiveness of Virtual Reality (VR) and 3D printed models (3DP) in the educational experience of residents and nurse practitioners. METHODS Trainees and practitioners underwent individual 15-minute teaching sessions in which features of a developmentally typical heart as well as a congenitally diseased heart were demonstrated using both Virtual Reality (VR) and 3D printed models (3DP). Participants then briefly explored each modality before filling out a short survey in which they identified which model (3DP or VR) they felt was more effective in enhancing their understanding of cardiac anatomy and associated pathophysiology. The survey included a binary summative assessment and a series of Likert scale questions addressing usefulness of each model type and degree of comfort with each modality. RESULTS Twenty-seven pediatric residents and 3 nurse practitioners explored models of a developmentally typical heart and tetralogy of Fallot pathology. Most participants had minimal prior exposure to VR (1.1 ± 0.4) or 3D printed models (2.1 ± 1.5). Participants endorsed a greater degree of understanding with VR models (8.5 ± 1) compared with 3D Printed models (6.3 ± 1.8) or traditional models of instruction (5.5 ± 1.5) p < 0.001. Most participants felt comfortable with modern technology (7.6 ± 2.1). 87% of participants preferred VR over 3DP. CONCLUSIONS Our study shows that, overall, VR was preferred over 3DP models by pediatric residents and nurse practitioners for understanding cardiac anatomy and pathophysiology.
Collapse
Affiliation(s)
- Jonathan Awori
- Division of Pediatric Cardiology and Radiology, Seattle Children's Hospital, Seattle, WA, USA.
| | - Seth D. Friedman
- grid.240741.40000 0000 9026 4165Division of Pediatric Cardiology and Radiology, Seattle Children’s Hospital, Seattle, WA USA
| | - Christopher Howard
- grid.240741.40000 0000 9026 4165Division of Pediatric Cardiology and Radiology, Seattle Children’s Hospital, Seattle, WA USA
| | - Richard Kronmal
- grid.240741.40000 0000 9026 4165Division of Pediatric Cardiology and Radiology, Seattle Children’s Hospital, Seattle, WA USA
| | - Sujatha Buddhe
- grid.240741.40000 0000 9026 4165Division of Pediatric Cardiology and Radiology, Seattle Children’s Hospital, Seattle, WA USA
| |
Collapse
|
9
|
Sinha S, DeYoung V, Nehru A, Brewer-Deluce D, Wainman BC. Determinants of Learning Anatomy in an Immersive Virtual Reality Environment - A Scoping Review. MEDICAL SCIENCE EDUCATOR 2023; 33:287-297. [PMID: 36573211 PMCID: PMC9774061 DOI: 10.1007/s40670-022-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
UNLABELLED Given the decline of cadavers as anatomy teaching tools, immersive virtual reality (VR) technology has gained popularity as a potential alternative. To better understand how to maximize the educational potential of VR, this scoping review aimed to identify potential determinants of learning anatomy in an immersive VR environment. A literature search yielded 4523 studies, 25 of which were included after screening. Six common factors were derived from secondary outcomes in these papers: cognitive load, cybersickness, student perceptions, stereopsis, spatial understanding, and interactivity. Further objective research investigating the impact of these factors on anatomy examination performance is required. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40670-022-01701-y.
Collapse
Affiliation(s)
- Sakshi Sinha
- Education Program in Anatomy, Faculty of Health Sciences, McMaster University, 1280 Main St. W. HSC 1R1, Hamilton, ON L8S 4L8 Canada
| | - Veronica DeYoung
- Education Program in Anatomy, Faculty of Health Sciences, McMaster University, 1280 Main St. W. HSC 1R1, Hamilton, ON L8S 4L8 Canada
| | - Amit Nehru
- Education Program in Anatomy, Faculty of Health Sciences, McMaster University, 1280 Main St. W. HSC 1R1, Hamilton, ON L8S 4L8 Canada
| | - Danielle Brewer-Deluce
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON Canada
| | - Bruce C. Wainman
- Education Program in Anatomy, Faculty of Health Sciences, McMaster University, 1280 Main St. W. HSC 1R1, Hamilton, ON L8S 4L8 Canada
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| |
Collapse
|
10
|
Messer D, Atchapero M, Jensen MB, Svendsen MS, Galatius A, Olsen MT, Frisvad JR, Dahl VA, Conradsen K, Dahl AB, Bærentzen A. Using virtual reality for anatomical landmark annotation in geometric morphometrics. PeerJ 2022; 10:e12869. [PMID: 35186472 PMCID: PMC8830334 DOI: 10.7717/peerj.12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023] Open
Abstract
To study the shape of objects using geometric morphometrics, landmarks are oftentimes collected digitally from a 3D scanned model. The expert may annotate landmarks using software that visualizes the 3D model on a flat screen, and interaction is achieved with a mouse and a keyboard. However, landmark annotation of a 3D model on a 2D display is a tedious process and potentially introduces error due to the perception and interaction limitations of the flat interface. In addition, digital landmark placement can be more time-consuming than direct annotation on the physical object using a tactile digitizer arm. Since virtual reality (VR) is designed to more closely resemble the real world, we present a VR prototype for annotating landmarks on 3D models. We study the impact of VR on annotation performance by comparing our VR prototype to Stratovan Checkpoint, a commonly used commercial desktop software. We use an experimental setup, where four operators placed six landmarks on six grey seal (Halichoerus grypus) skulls in six trials for both systems. This enables us to investigate multiple sources of measurement error. We analyse both for the configuration and for single landmarks. Our analysis shows that annotation in VR is a promising alternative to desktop annotation. We find that annotation precision is comparable between the two systems, with VR being significantly more precise for one of the landmarks. We do not find evidence that annotation in VR is faster than on the desktop, but it is accurate.
Collapse
Affiliation(s)
- Dolores Messer
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael Atchapero
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Mark B. Jensen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Anders Galatius
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Morten T. Olsen
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe R. Frisvad
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Vedrana A. Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Knut Conradsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anders B. Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Andreas Bærentzen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Ito T. Authors' reply to: Comment on the article by Dr. Georgios P. Skandalakis: Patient-specific virtual and mixed reality for immersive, experiential anatomy education and for surgical planning in temporal bone surgery. Auris Nasus Larynx 2022; 49:164. [PMID: 35027227 DOI: 10.1016/j.anl.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Taku Ito
- Otorhinolaryngology Department, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
12
|
Zhang H, He Y, Chen Y, Liu J, Jin Q, Xu S, Fu X, Qiao J, Yu B, Niu F. Virtual Reality and Three-Dimensional Printed Models Improve the Morphological Understanding in Learning Mandibular Sagittal Split Ramus Osteotomy: A Randomized Controlled Study. Front Surg 2022; 8:705532. [PMID: 35004831 PMCID: PMC8727369 DOI: 10.3389/fsurg.2021.705532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/01/2021] [Indexed: 01/17/2023] Open
Abstract
Background: The mandibular sagittal split ramus osteotomy (SSRO) is a routine operation performed to correct mandibular deformity including mandibular retrusion, protrusion, deficiency, and asymmetry. The SSRO remains a challenging procedure for junior surgeons due to a lack of adequate morphological knowledge necessary for success in clinical practice. Virtual reality (VR) and three-dimensional printed (3DP) models have been widely applied in anatomy education. The present randomized, controlled study was performed to evaluate the effect of traditional educational instruments, VR models, and 3DP models on junior surgeons learning the morphological information required to perform SSRO. Methods: Eighty-one participants were randomly assigned to three learning groups: Control, VR, and 3DP. Objective and subjective tests were used to evaluate the learning effectiveness of each learning instrument. In the objective test, participants were asked to identify 10 anatomical landmarks on normal and deformed models, draw the osteotomy line, and determine the description of SSRO. In the subjective test, participants were asked to provide feedback regarding their subjective feelings about the learning instrument used in their group. Results: The objective test results showed that the VR and 3DP groups achieved better accuracy in drawing the osteotomy line (p = 0.027) and determining the description of SSRO (p = 0.023) than the Control group. However, there was no significant difference among the three groups regarding the identification of anatomical landmarks. The VR and 3DP groups gave satisfactory subjective feedback about the usefulness in learning, good presentation, and enjoyment. The Control and 3DP groups reported positive feelings about ease of use. Conclusion: The current findings suggest that VR and 3DP models were effective instruments that assisted in the morphological understanding of SSRO-related anatomical structures. Furthermore, 3DP models may be a promising supplementary instrument to bridge the gap between conventional learning and clinical practice.
Collapse
Affiliation(s)
- Henglei Zhang
- Department of Craniomaxillofacila Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu He
- Department of Craniomaxillofacila Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Chen
- Department of Craniomaxillofacila Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianfeng Liu
- Department of Craniomaxillofacila Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Jin
- Department of Craniomaxillofacila Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shixing Xu
- Department of Craniomaxillofacila Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xi Fu
- Department of Craniomaxillofacila Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jia Qiao
- Department of Craniomaxillofacila Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bing Yu
- Department of Craniomaxillofacila Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Feng Niu
- Department of Craniomaxillofacila Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Männer J, Markert M. The biography of specimen "09.04.1954, 3.4 mm" from the "Blechschmidt Collection of Human Embryos" at Göttingen University. With a special focus on the production and usage of enlarged 3D replicas of embryos in the anatomical research on human embryos. Cells Tissues Organs 2021; 210:311-325. [PMID: 34348255 DOI: 10.1159/000518247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/16/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Jörg Männer
- Institute of Anatomy and Embryology, UMG, Georg-August-University of Göttingen, Göttingen, Germany
| | - Michael Markert
- Professur für Materialität des Wissens, Kunstgeschichtliches Seminar, Georg-August-University of Göttingen, Göttingen, Germany
| |
Collapse
|