1
|
Dong Y, Lau HX, Suaini NHA, Kee MZL, Ooi DSQ, Shek LPC, Lee BW, Godfrey KM, Tham EH, Ong MEH, Liu N, Wong L, Tan KH, Chan JKY, Yap FKP, Chong YS, Eriksson JG, Feng M, Loo EXL. A machine-learning exploration of the exposome from preconception in early childhood atopic eczema, rhinitis and wheeze development. ENVIRONMENTAL RESEARCH 2024; 250:118523. [PMID: 38382664 DOI: 10.1016/j.envres.2024.118523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Most previous research on the environmental epidemiology of childhood atopic eczema, rhinitis and wheeze is limited in the scope of risk factors studied. Our study adopted a machine learning approach to explore the role of the exposome starting already in the preconception phase. METHODS We performed a combined analysis of two multi-ethnic Asian birth cohorts, the Growing Up in Singapore Towards healthy Outcomes (GUSTO) and the Singapore PREconception Study of long Term maternal and child Outcomes (S-PRESTO) cohorts. Interviewer-administered questionnaires were used to collect information on demography, lifestyle and childhood atopic eczema, rhinitis and wheeze development. Data training was performed using XGBoost, genetic algorithm and logistic regression models, and the top variables with the highest importance were identified. Additive explanation values were identified and inputted into a final multiple logistic regression model. Generalised structural equation modelling with maternal and child blood micronutrients, metabolites and cytokines was performed to explain possible mechanisms. RESULTS The final study population included 1151 mother-child pairs. Our findings suggest that these childhood diseases are likely programmed in utero by the preconception and pregnancy exposomes through inflammatory pathways. We identified preconception alcohol consumption and maternal depressive symptoms during pregnancy as key modifiable maternal environmental exposures that increased eczema and rhinitis risk. Our mechanistic model suggested that higher maternal blood neopterin and child blood dimethylglycine protected against early childhood wheeze. After birth, early infection was a key driver of atopic eczema and rhinitis development. CONCLUSION Preconception and antenatal exposomes can programme atopic eczema, rhinitis and wheeze development in utero. Reducing maternal alcohol consumption during preconception and supporting maternal mental health during pregnancy may prevent atopic eczema and rhinitis by promoting an optimal antenatal environment. Our findings suggest a need to include preconception environmental exposures in future research to counter the earliest precursors of disease development in children.
Collapse
Affiliation(s)
- Yizhi Dong
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore.
| | - Hui Xing Lau
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore.
| | - Noor Hidayatul Aini Suaini
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore.
| | - Michelle Zhi Ling Kee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore.
| | - Delicia Shu Qin Ooi
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore.
| | - Lynette Pei-Chi Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Bee Wah Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Keith M Godfrey
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom; MRC Lifecourse Epidemiology Centre, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| | - Elizabeth Huiwen Tham
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Marcus Eng Hock Ong
- Department of Emergency Medicine, Singapore General Hospital, Singapore, Singapore; Health Services and Systems Research, Duke-NUS Graduate Medical School, Singapore, Singapore.
| | - Nan Liu
- Duke-NUS Medical School, National University of Singapore, Singapore; Health Services Research Centre, Singapore Health Services, Singapore, Singapore; Institute of Data Science, National University of Singapore, Singapore.
| | - Limsoon Wong
- School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore.
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital (KKH), Singapore.
| | - Jerry Kok Yen Chan
- Duke-NUS Medical School, National University of Singapore, Singapore; Department of Reproductive Medicine, KK Women's and Children's Hospital (KKH), Singapore.
| | - Fabian Kok Peng Yap
- Duke-NUS Medical School, National University of Singapore, Singapore; Department of Paediatrics, KK Women's and Children's Hospital (KKH), Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore.
| | - Johan Gunnar Eriksson
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore; Folkhälsan Research Center, Helsinki, Finland; Department of General Practice and Primary Health Care, University of Helsinki, Finland.
| | - Mengling Feng
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore.
| | - Evelyn Xiu Ling Loo
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Dean's Office, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|