1
|
Gaudreault M, Bucknell N, Woon B, Kron T, Hofman MS, Siva S, Hardcastle N. Dose-Response Relationship Between Radiation Therapy and Loss of Lung Perfusion Comparing Positron Emission Tomography and Dual-Energy Computed Tomography in Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2024; 118:1135-1143. [PMID: 37914141 DOI: 10.1016/j.ijrobp.2023.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/22/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE Radiation therapy treatment for non-small cell lung cancer (NSCLC) may result in radiation damage to the perfused lung. The loss in perfusion may be measured from positron tomography emission (PET) perfusion imaging; however, this modality may not be widely available. Dual-energy computed tomography (DECT) with contrast may be an alternative to PET/CT. The purpose of this work is to investigate the equivalence of dose-response curves (DRCs) determined from PET and DECT in NSCLC. METHODS AND MATERIALS PET and DECT data sets from the prospective clinical trial HI-FIVE (NTC03569072) were included in this preplanned trial analysis. Patients underwent 68Ga-macroaggregated albumin PET/CT examination and DECT with contrast on the same day at baseline and at 3 and 12 months after treatment. The perfused lung was defined from a threshold based on the maximum standardized uptake value (%SUVmax)/iodine concentration (%IoMax) in PET/DECT. The equivalence between PET and DECT DRC was established by comparing (1) the average of the normalized overlap of the 2 DRCs ranging from 0 (no overlap) to 1 (perfect overlap) and (2) the slope of a linear model applied to DRCs. RESULTS Of the 19 patients enrolled in the clinical trial, 14/10 patients had a posttreatment imaging session at a median of 4.5/13.5 months, respectively. With 30%SUVmax/35%IoMax, the average normalized overlap was maximized, and the difference between PET and DECT slopes of the linear model was minimized at each time point (slope = 0.76%/Gy / 0.75%/Gy at 3 months and 0.86%/Gy / 0.87%/Gy at 12 months determined from PET/DECT). CONCLUSIONS The dose-response relationship determined from DECT was comparable to that from PET at 3 and 12 months after treatment in patients with NSCLC.
Collapse
Affiliation(s)
- Mathieu Gaudreault
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Nicholas Bucknell
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Beverley Woon
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Michael S Hofman
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Molecular Imaging and Therapeutic Nuclear Medicine, Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
2
|
Bucknell NW, Hardcastle N, Woon B, Selbie L, Bressel M, Byrne K, Callahan J, Hanna GG, Hofman MS, Ball D, Kron T, Siva S. The HI-FIVE Trial: A Prospective Trial Using 4-Dimensional 68Ga Ventilation-Perfusion Positron Emission Tomography-Computed Tomography for Functional Lung Avoidance in Locally Advanced Non-small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2023; 117:887-892. [PMID: 37245537 DOI: 10.1016/j.ijrobp.2023.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE Functional lung avoidance (FLA) radiation therapy aims to spare regions of functional lung to reduce toxicity. We report the results of the first prospective trial of FLA using 4-dimensional gallium 68 ventilation-perfusion positron emission tomography-computed tomography (68Ga-4D-V/Q PET/CT). METHODS AND MATERIALS Inclusion criteria required a diagnosis of stage III non-small cell lung cancer and the ability to undergo radical-intent chemoradiation therapy. Functional volumes were generated using planning 68Ga-4D-V/Q PET/CT. These volumes were used to generate a clinical FLA plan to 60 Gy in 30 fractions. The primary tumor was boosted to 69 Gy. A comparison anatomic plan was generated for each patient. Feasibility was met if FLA plans (compared with anatomic plans) allowed (1) a reduction in functional mean lung dose of ≥2% and a reduction in the functional lung volume receiving 20 Gy (fV20Gy) of ≥4%, and (2) a mean heart dose ≤30 Gy and relative heart volume receiving 50 Gy of <25%. RESULTS In total, 19 patients were recruited; 1 withdrew consent. Eighteen patients underwent chemoradiation with FLA. Of the 18 patients, 15 met criteria for feasibility. All patients completed the entire course of chemoradiation therapy. Using FLA resulted in an average reduction of the functional mean lung dose of 12.4% (SD, ±12.8%) and a mean relative reduction of the fV20Gy of 22.9% (SD, ±11.9%). At 12 months, Kaplan-Meier estimates for overall survival were 83% (95% CI, 56%-94%) and estimates for progression-free survival were 50% (95% CI, 26%-70%). Quality-of-life scores were stable across all time points. CONCLUSIONS Using 68Ga-4D-V/Q PET/CT to image and avoid functional lung is feasible.
Collapse
Affiliation(s)
- Nicholas W Bucknell
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Nicholas Hardcastle
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Beverley Woon
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Lisa Selbie
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Mathias Bressel
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Keelan Byrne
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jason Callahan
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Gerard G Hanna
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Michael S Hofman
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David Ball
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Tomas Kron
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Thorwarth D. Clinical use of positron emission tomography for radiotherapy planning - Medical physics considerations. Z Med Phys 2023; 33:13-21. [PMID: 36272949 PMCID: PMC10068574 DOI: 10.1016/j.zemedi.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
PET/CT imaging plays an increasing role in radiotherapy treatment planning. The aim of this article was to identify the major use cases and technical as well as medical physics challenges during integration of these data into treatment planning. Dedicated aspects, such as (i) PET/CT-based radiotherapy simulation, (ii) PET-based target volume delineation, (iii) functional avoidance to optimized organ-at-risk sparing and (iv) functionally adapted individualized radiotherapy are discussed in this article. Furthermore, medical physics aspects to be taken into account are summarized and presented in form of check-lists.
Collapse
Affiliation(s)
- Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Xenon-Enhanced Ventilation Computed Tomography for Functional Lung Avoidance Radiation Therapy in Patients With Lung Cancer. Int J Radiat Oncol Biol Phys 2023; 115:356-365. [PMID: 36029910 DOI: 10.1016/j.ijrobp.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE This phase 2 trial aimed to determine whether xenon-enhanced ventilation computed tomography (XeCT)-guided functional-lung-avoidance radiation therapy could reduce the radiation pneumonitis (RP) rate in patients with lung cancer undergoing definitive chemoradiation therapy. METHODS AND MATERIALS Functional lung ventilation was measured via pulmonary function testing (PFT) and XeCT. A standard plan (SP) without reference to XeCT and a functional-lung-avoidance plan (fAP) optimized for lowering the radiation dose to the functional lung at the guidance of XeCT were designed. Dosimetric parameters and predicted RP risks modeled by biological evaluation were compared between the 2 plans in a treatment planning system (TPS). All patients received the approved fAP. The primary endpoint was the rate of grade ≥2 RP, and the secondary endpoints were the survival outcomes. The study hypothesis was that fAP could reduce the rate of grade ≥2 RP to 12% compared with a 30% historical rate. RESULTS Thirty-six patients were evaluated. Xenon-enhanced total functional lung volumes positively correlated with PFT ventilation parameters (forced vital capacity, P = .012; forced expiratory volume in 1 second, P = .035), whereas they were not correlated with the diffusion capacity parameter. We observed a 17% rate of grade ≥2 RP (6 of 36 patients), which was significantly different (P = .040) compared with the historical control. Compared with the SP, the fAP significantly spared the total ventilated lung, leading to a reduction in predicted grade ≥2 RP (P = .001) by TPS biological evaluation. The median follow-up was 15.2 months. The 1-year local control (LC), disseminated failure-free survival (DFFS), and overall survival (OS) rates were 88%, 66%, and 91%, respectively. The median LC and OS were not reached, and the median DFFS was 24.0 months (95% confidence interval, 15.7-32.3 months). CONCLUSIONS This report of XeCT-guided functional-lung-avoidance radiation therapy provided evidence showing its feasibility in clinical practice. Its benefit should be assessed in a broader multicenter trial setting.
Collapse
|
5
|
Martinez J, Subramanian K, Huicochea Castellanos S, Thomas C, Choudhury AR, Muench B, Tagawa ST, Pillarsetty NVK, Osborne JR. Cyclotron vs generator-produced 68Ga PSMA: a single-institution, prospective clinical trial. Transl Oncol 2023; 28:101593. [PMID: 36571987 PMCID: PMC9803810 DOI: 10.1016/j.tranon.2022.101593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/25/2022] Open
Abstract
The clinical utility of gallium 68 (68Ga)-PSMA PET for the diagnosis and management of prostate cancer is driven in part by radioisotope availability and production costs. This study evaluates the equivalence between the two manufacturing processes for 68Ga-PSMA: 68Ga-PSMA-cyclotron (from a solid target) and 68Ga-PSMA-generator. A prospective, single-arm, single-institution non-randomized study was conducted where 16 patients with prostate adenocarcinoma underwent PET/CTs consecutively within 12 to 48 hours with each type of manufactured 68Ga-PSMA between December 2020 and June 2021. The intraclass correlation coefficients suggested acceptable reliability in all lesion parameters (ICC > 0.70). Bland-Altman analysis demonstrated acceptable bias levels for all lesion parameters. Thereby 68Ga-cyclotron (solid target) and 68Ga-generator production methods tagged to the same PSMA ligand resulted in scans which were deemed to be equivalent in detecting PSMA+ lesions in our study. As cyclotron-produced, solid- target 68Ga can be made in large (Ci) quantities, it is a promising tool for future application in 68Ga-PSMA PET scans with the potential to decrease radiotracer production costs and increase isotope availability.
Collapse
Affiliation(s)
- Juana Martinez
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY.
| | - Kritika Subramanian
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY
| | | | - Charlene Thomas
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | - Arindam Roy Choudhury
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | - Brett Muench
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY
| | - Scott T Tagawa
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | | | - Joseph R Osborne
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
6
|
Gaudreault M, Korte J, Bucknell N, Jackson P, Sakyanun P, McIntosh L, Woon B, Buteau JP, Hofman MS, Mulcahy T, Kron T, Siva S, Hardcastle N. Comparison of dual-energy CT with positron emission tomography for lung perfusion imaging in patients with non-small cell lung cancer. Phys Med Biol 2023; 68. [PMID: 36623318 DOI: 10.1088/1361-6560/acb198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Objective.Functional lung avoidance (FLA) radiotherapy treatment aims to spare lung regions identified as functional from imaging. Perfusion contributes to lung function and can be measured from the determination of pulmonary blood volume (PBV). An advantageous alternative to the current determination of PBV from positron emission tomography (PET) may be from dual energy CT (DECT), due to shorter examination time and widespread availability. This study aims to determine the correlation between PBV determined from DECT and PET in the context of FLA radiotherapy.Approach.DECT and PET acquisitions at baseline of patients enrolled in the HI-FIVE clinical trial (ID: NCT03569072) were reviewed. Determination of PBV from PET imaging (PBVPET), from DECT imaging generated from a commercial software (Syngo.via, Siemens Healthineers, Forchheim, Germany) with its lowest (PBVsyngoR=1) and highest (PBVsyngoR=10) smoothing level parameter value (R), and from a two-material decomposition (TMD) method (PBVTMDL) with variable median filter kernel size (L) were compared. Deformable image registration between DECT images and the CT component of the PET/CT was applied to PBV maps before resampling to the PET resolution. The Spearman correlation coefficient (rs) between PBV determinations was calculated voxel-wise in lung subvolumes.Main results.Of this cohort of 19 patients, 17 had a DECT acquisition at baseline. PBV maps determined from the commercial software and the TMD method were very strongly correlated [rs(PBVsyngoR=1,PBVTMDL=1) = 0.94 ± 0.01 andrs(PBVsyngoR=10,PBVTMDL=9) = 0.94 ± 0.02].PBVPETwas strongly correlated withPBVTMDL[rs(PBVPET,PBVTMDL=28) = 0.67 ± 0.11]. Perfusion patterns differed along the posterior-anterior direction [rs(PBVPET,PBVTMDL=28) = 0.77 ± 0.13/0.57 ± 0.16 in the anterior/posterior region].Significance. A strong correlation between DECT and PET determination of PBV was observed. Streak and smoothing effects in DECT and gravitational artefacts and misregistration in PET reduced the correlation posteriorly.
Collapse
Affiliation(s)
- Mathieu Gaudreault
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia
| | - James Korte
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Department of Biomedical Engineering, School of Chemical and Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas Bucknell
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia.,Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Price Jackson
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia
| | - Pitchaya Sakyanun
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Department of Radiation Oncology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Lachlan McIntosh
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Beverley Woon
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia.,Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - James P Buteau
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia.,Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Molecular Imaging and Therapeutic Nuclear Medicine; Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC) , Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Michael S Hofman
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia.,Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Molecular Imaging and Therapeutic Nuclear Medicine; Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC) , Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Tony Mulcahy
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia.,Centre for Medical Radiation Physics, University of Wollongong, NSW, 2522, Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia.,Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia.,Centre for Medical Radiation Physics, University of Wollongong, NSW, 2522, Australia
| |
Collapse
|
7
|
Combination of Radiomics Features and Functional Radiosensitivity Enhances Prediction of Acute Pulmonary Toxicity in a Prospective Validation Cohort of Patients with a Locally Advanced Lung Cancer Treated with VMAT-Radiotherapy. J Pers Med 2022; 12:jpm12111926. [DOI: 10.3390/jpm12111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction: The standard of care for people with locally advanced lung cancer (LALC) who cannot be operated on is (chemo)-radiation. Despite the application of dose constraints, acute pulmonary toxicity (APT) still often occurs. Prediction of APT is of paramount importance for the development of innovative therapeutic combinations. The two models were previously individually created. With success, the Rad-model incorporated six radiomics functions. After additional validation in prospective cohorts, a Pmap-model was created by identifying a specific region of the right posterior lung and incorporating several clinical and dosimetric parameters. To create and test a novel model to forecast the risk of APT in two cohorts receiving volumetric arctherapy radiotherapy (VMAT), we aimed to include all the variables in this study. Methods: In the training cohort, we retrospectively included all patients treated by VMAT for LALC at one institution between 2015 and 2018. APT was assessed according to the CTCAE v4.0 scale. Usual clinical and dosimetric features, as well as the mean dose to the pre-defined Pmap zone (DMeanPmap), were processed using a neural network approach and subsequently validated on an observational prospective cohort. The model was evaluated using the area under the curve (AUC) and balanced accuracy (Bacc). Results: 165 and 42 patients were enrolled in the training and test cohorts, with APT rates of 22.4 and 19.1%, respectively. The AUCs for the Rad and Pmap models in the validation cohort were 0.83 and 0.81, respectively, whereas the AUC for the combined model (Comb-model) was 0.90. The Bacc for the Rad, Pmap, and Comb models in the validation cohort were respectively 78.7, 82.4, and 89.7%. Conclusion: The accuracy of prediction models were increased by combining radiomics, DMeanPmap, and common clinical and dosimetric features. The use of this model may improve the evaluation of APT risk and provide access to novel therapeutic alternatives, such as dose escalation or creative therapy combinations.
Collapse
|
8
|
Zhou PX, Zhang SX. Functional lung imaging in thoracic tumor radiotherapy: Application and progress. Front Oncol 2022; 12:908345. [PMID: 36212454 PMCID: PMC9544588 DOI: 10.3389/fonc.2022.908345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy plays an irreplaceable and unique role in treating thoracic tumors, but the occurrence of radiation-induced lung injury has limited the increase in tumor target doses and has influenced patients' quality of life. However, the introduction of functional lung imaging has been incorporating functional lungs into radiotherapy planning. The design of the functional lung protection plan, while meeting the target dose requirements and dose limitations of the organs at risk (OARs), minimizes the radiation dose to the functional lung, thus reducing the occurrence of radiation-induced lung injury. In this manuscript, we mainly reviewed the lung ventilation or/and perfusion functional imaging modalities, application, and progress, as well as the results based on the functional lung protection planning in thoracic tumors. In addition, we also discussed the problems that should be explored and further studied in the practical application based on functional lung radiotherapy planning.
Collapse
Affiliation(s)
- Pi-Xiao Zhou
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Department of Oncology, The First People's Hospital of Changde City, Changde, China
| | - Shu-Xu Zhang
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
VMAT-Based Planning Allows Sparing of a Spatial Dose Pattern Associated with Radiation Pneumonitis in Patients Treated with Radiotherapy for a Locally Advanced Lung Cancer. Cancers (Basel) 2022; 14:cancers14153702. [PMID: 35954366 PMCID: PMC9367460 DOI: 10.3390/cancers14153702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/07/2022] Open
Abstract
Introduction: In patients treated with radiotherapy for locally advanced lung cancer, respect for dose constraints to organs at risk (OAR) insufficiently protects patients from acute pulmonary toxicity (APT), such toxicities being associated with a potential impact on the treatment’s completion and the patient’s quality of life. Dosimetric planning does not take into account regional lung functionality. An APT prediction model combining usual dosimetry features with the mean dose (DMeanPmap) received by a voxel-based volume (Pmap) localized in the posterior right lung has been previously developed. A DMeanPmap of ≥30.3 Gy or a predicted APT probability (ProbAPT) of ≥8% were associated with a higher risk of APT. In the present study, the authors aim to demonstrate the possibility of decreasing the DMeanPmap via a volumetric arctherapy (VMAT)-based adapted planning and evaluate the impact on the risk of APT. Methods: Among the 207 patients included in the initial study, only patients who presented with APT of ≥grade 2 and with a probability of APT ≥ 8% based on the prediction model were included. Dosimetry planning was optimized with a new constraint (DMeanPmap < 30.3 Gy) added to the usual constraints. The initial and optimized treatment plans were compared using the t-test for the independent variables and the non-parametric Mann−Whitney U test otherwise, regarding both doses to the OARs and PTV (Planning Target Volume) coverage. Conformity and heterogeneity indexes were also compared. The risk of APT was recalculated using the new dosimetric features and the APT prediction model. Results: Dosimetric optimization was considered successful for 27 out of the 44 included patients (61.4%), meaning the dosimetric constraint on the Pmap region was achieved without compromising the PTV coverage (p = 0.61). The optimization significantly decreased the median DMeanPmap from 28.8 Gy (CI95% 24.2−33.4) to 22.1 Gy (CI95% 18.3−26.0). When recomputing the risk of APT using the new dosimetric features, the optimization significantly reduced the risk of APT (p < 0.0001) by reclassifying 43.2% (19/44) of the patients. Conclusion: Our approach appears to be both easily implementable on a daily basis and efficient at reducing the risk of APT. Regional radiosensitivity should be considered in usual lung dose constraints, opening the possibility of new treatment strategies, such as dose escalation or innovative treatment associations.
Collapse
|
10
|
Bucknell NW, Belderbos J, Palma DA, Iyengar P, Samson P, Chua K, Gomez D, McDonald F, Louie AV, Faivre-Finn C, Hanna GG, Siva S. Avoiding toxicity with lung radiation therapy: An IASLC perspective. J Thorac Oncol 2022; 17:961-973. [DOI: 10.1016/j.jtho.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
|
11
|
Lin G, Sui Y, Li Y, Huang W. Diagnostic and prognostic value of CT perfusion parameters in patients with advanced NSCLC after chemotherapy. Am J Transl Res 2021; 13:13516-13523. [PMID: 35035693 PMCID: PMC8748164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To determine the short-term prognostic value of Computed Tomography (CT) perfusion parameters in patients with advanced non-small cell lung cancer (NSCLC) after chemotherapy. METHODS A total of 60 patients with NSCLC who received concurrent radiotherapy and chemotherapy were enrolled. Before therapy, CT perfusion imaging was conducted to scan their local lesions. Then, the CT perfusion-associated parameters were recorded, and evaluated. According to the Response Evaluation Criteria in Solid Tumors (RECIST), 42 out of 60 patients had remission after chemotherapy. The blood flow (BF), blood volume (BV), and permeability surface (PS) of the two groups were analyzed before therapy, and factors and parameters affecting the efficacy of concurrent radiotherapy and chemotherapy were discussed. RESULTS After chemotherapy, patients with remission showed lower BF, BV, and PS levels in pulmonary lesions than those without remission (all P<0.05). According to the 1-year follow-up results, 33 cases survived, and 27 cases died, and the survivors showed lower BF and PS levels than the dead (both P<0.05). CONCLUSION Patients with lower BF and PS in CT perfusion parameters obtained better chemotherapy efficacy, so BF and PS can be adopted to predict the survival of patients.
Collapse
Affiliation(s)
- Guangyao Lin
- Medical Imaging Center, The First People's Hospital of Shangqiu City Shangqiu 476100, Henan Province, China
| | - Yuan Sui
- Medical Imaging Center, The First People's Hospital of Shangqiu City Shangqiu 476100, Henan Province, China
| | - Yiming Li
- Medical Imaging Center, The First People's Hospital of Shangqiu City Shangqiu 476100, Henan Province, China
| | - Wenqi Huang
- Medical Imaging Center, The First People's Hospital of Shangqiu City Shangqiu 476100, Henan Province, China
| |
Collapse
|
12
|
Bourbonne V, Lucia F, Jaouen V, Bert J, Rehn M, Pradier O, Visvikis D, Schick U. Development and prospective validation of a spatial dose pattern based model predicting acute pulmonary toxicity in patients treated with volumetric arc-therapy for locally advanced lung cancer. Radiother Oncol 2021; 164:43-49. [PMID: 34547351 DOI: 10.1016/j.radonc.2021.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION (Chemo)-radiotherapy is the standard treatment for patients with locally advanced lung cancer (LALC) not accessible to surgery. Despite strict application of dose constraints, acute toxicities such as acute pulmonary toxicity (APT) remain frequent, and may impact treatment's compliance and patients' quality of life. Previously, on a population treated with intensity-modulated photon therapy or passive scattering proton therapy, spatial dose patterns associated with APT were identified in the lower lungs, especially in the posterior right lung. In the present study, we aim to define these spatial dose patterns on a retrospective cohort treated by volumetric-arctherapy (VMAT) and to validate our findings prospectively. METHODS For the training cohort, we retrospectively included all patients treated in our institution by VMAT for a LALC between 2015 and 2018. APT was scored according to the CTCAE v4.0 scale. All dose maps were registered to a thorax phantom using a segmentation-based elastic registration. Voxel-based analysis of local dose differences was performed with a non-parametric permutation test accounting for n = 10.000 permutations, producing a 3-dimensional significance maps on which clusters of voxels that exhibited significant dose differences (p < 0.05) between the two toxicity groups (APT ≥ grade 2 vs APT < grade 2) were identified. A prediction model (Pmap-Model) was then built using a neural network approach and then applied to an observational prospective cohort for validation. The model was evaluated using the Area under the curve (AUC) and the balanced accuracy (Bacc: mean of the sensitivity and specificity). RESULTS 165 and 42 patients were included in the training and validation cohorts, with respective APT rates of 22.4% and 19.1%. In the training cohort, a cluster of voxels (Pmap-region) was identified in the posterior right lung. In the training cohort, the Pmap-Model combining 11 features among which the mean dose to the Pmap-region resulted in an AUC of 0.99 and a Bacc of 99.2 using an 8% probability threshold. Using the same voxel cluster on the validation cohort, the Pmap-model resulted in an AUC of 0.81 and a Bacc of 82.0. CONCLUSION Our APT-prediction model was successfully validated in a prospective cohort treated by VMAT. Regional radiosensitivity should be considered in usual lung dose constraints, opening the possibility of easily implementable adaptive dosimetry planning.
Collapse
Affiliation(s)
- Vincent Bourbonne
- Department of Radiation Oncology, University Hospital, Brest, France; LaTIM UMR 1101 INSERM, University Brest, Brest, France.
| | - François Lucia
- Department of Radiation Oncology, University Hospital, Brest, France; LaTIM UMR 1101 INSERM, University Brest, Brest, France
| | - Vincent Jaouen
- LaTIM UMR 1101 INSERM, University Brest, Brest, France; Institut Mines-Télécom Atlantique, Brest, France
| | - Julien Bert
- LaTIM UMR 1101 INSERM, University Brest, Brest, France
| | - Martin Rehn
- Department of Radiation Oncology, University Hospital, Brest, France
| | - Olivier Pradier
- Department of Radiation Oncology, University Hospital, Brest, France; LaTIM UMR 1101 INSERM, University Brest, Brest, France
| | | | - Ulrike Schick
- Department of Radiation Oncology, University Hospital, Brest, France; LaTIM UMR 1101 INSERM, University Brest, Brest, France
| |
Collapse
|
13
|
Lucia F, Rehn M, Blanc-Béguin F, Le Roux PY. Radiation Therapy Planning of Thoracic Tumors: A Review of Challenges Associated With Lung Toxicities and Potential Perspectives of Gallium-68 Lung PET/CT Imaging. Front Med (Lausanne) 2021; 8:723748. [PMID: 34513884 PMCID: PMC8429617 DOI: 10.3389/fmed.2021.723748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the introduction of new radiotherapy techniques, such as intensity modulated radiation therapy or stereotactic body radiation therapy, radiation induced lung injury remains a significant treatment related adverse event of thoracic radiation therapy. Functional lung avoidance radiation therapy is an emerging concept in the treatment of lung disease to better preserve lung function and to reduce pulmonary toxicity. While conventional ventilation/perfusion (V/Q) lung scintigraphy is limited by a relatively low spatial and temporal resolution, the recent advent of 68Gallium V/Q lung PET/CT imaging offers a potential to increase the accuracy of lung functional mapping and to better tailor lung radiation therapy plans to the individual's lung function. Lung PET/CT imaging may also improve our understanding of radiation induced lung injury compared to the current anatomical based dose–volume constraints. In this review, recent advances in radiation therapy for the management of primary and secondary lung tumors and in V/Q PET/CT imaging for the assessment of functional lung volumes are reviewed. The new opportunities and challenges arising from the integration of V/Q PET/CT imaging in radiation therapy planning are also discussed.
Collapse
Affiliation(s)
- François Lucia
- Radiation Oncology Department, University Hospital, Brest, France
| | - Martin Rehn
- Radiation Oncology Department, University Hospital, Brest, France
| | - Frédérique Blanc-Béguin
- Service de médecine nucléaire, CHRU de Brest, EA3878 (GETBO), Université de Brest, Brest, France
| | - Pierre-Yves Le Roux
- Service de médecine nucléaire, CHRU de Brest, EA3878 (GETBO), Université de Brest, Brest, France
| |
Collapse
|