1
|
Abulikemu A, Zhang X, Su X, Meng T, Su W, Shi Q, Yu T, Niu Y, Yu H, Yuan H, Zhou C, Yang H, Zhang Y, Wang Y, Dai Y, Duan H. Particulate matter, polycyclic aromatic hydrocarbons and metals, platelet parameters and blood pressure alteration: Multi-pollutants study among population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173657. [PMID: 38838997 DOI: 10.1016/j.scitotenv.2024.173657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Epidemiological findings have determined the linkage of fine particulate matter (PM2.5) and the morbidity of hypertension. However, the mode of action and specific contribution of PM2.5 component in the blood pressure elevation remain unclear. Platelets are critical for vascular homeostasis and thrombosis, which may be involved in the increase of blood pressure. Among 240 high-PM2.5 exposed, 318 low-PM2.5 exposed workers in a coking plant and 210 workers in the oxygen plant and cold-rolling mill enrolled in present study, both internal and external exposure characteristics were obtained, and we performed linear regression, adaptive elastic net regression, quantile g-computation and mediation analyses to analyze the relationship between urine metabolites of polycyclic aromatic hydrocarbons (PAHs) and metals fractions with platelets indices and blood pressure indicators. We found that PM2.5 exposure leads to increased systolic blood pressure (SBP) and pulse pressure (PP). Specifically, for every 10 μg/m3 increase in PM2.5, there was a 0.09 mmHg rise in PP. Additionally, one IQR increase in urinary 1-hydroxypyrene (1.06 μmol/mol creatinine) was associated with a 3.43 % elevation in PP. Similarly, an IQR increment of urine cobalt (2.31 μmol/mol creatinine) was associated with a separate 1.77 % and 4.71 % elevation of SBP and PP. Notably, platelet-to-lymphocyte ratio (PLR) played a mediating role in the elevation of SBP and PP induced by cobalt. Our multi-pollutants results showed that PAHs and cobalt were deleterious contributors to the elevated blood pressure. These findings deepen our understanding of the cardiovascular effects associated with PM2.5 constituents, highlighting the importance of increased vigilance in monitoring and controlling the harmful components in PM2.5.
Collapse
Affiliation(s)
- Alimire Abulikemu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuewei Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xizi Su
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Meng
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Wenge Su
- Laigang Hospital Affiliated to Taishan Medical University, Jinan, China
| | - Qiwei Shi
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Tao Yu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haitao Yu
- Laigang Hospital Affiliated to Taishan Medical University, Jinan, China
| | - Huige Yuan
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cailan Zhou
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haoying Yang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yanhua Wang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yufei Dai
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huawei Duan
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
2
|
Liao X, Wu H, Liu K, Bai Y, Wu D, Guo C, Liu X, Zhang Z, Huang Y, Zhao N, Xiao Y, Deng Q. The effects and potential mechanisms of essential metals on the associations of polycyclic aromatic hydrocarbons with blood cell-based inflammation markers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123856. [PMID: 38556152 DOI: 10.1016/j.envpol.2024.123856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/07/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are well-acknowledged pro-inflammatory chemicals, but their associations with blood cell-based inflammatory biomarkers need further investigation. Moreover, the effects and mechanisms of essential metals on PAH-related inflammation remain poorly understood. OBJECTS To elucidate the associations of PAHs on inflammatory biomarkers, as well as the effects and mechanisms of essential metals on these associations. METHODS A cross-sectional study was conducted on 1388 coke oven workers. We analyzed the modification effects of key essential metal(s) on PAHs-inflammatory biomarkers associations. To explore the possible mechanisms from an inflammation perspective, we performed a bioinformatic analysis on the genes of PAHs and essential metals obtained from the Comparative Toxicogenomics Database (CTD) and performed a mediation analysis. RESULTS We observed associations of PAHs and essential metals with lymphocyte-to-monocyte ratio (LMR) (P < 0.05). PAH mixtures were inversely associated with LMR (βQGC-index = -0.18, P < 0.001), with 1-hydroxypyrene (1-OH-Pyr) being the most prominent contributor (weight = 63.37%), whereas a positive association between essential metal mixtures and LMR was observed (βQGC-index = 0.14, P < 0.001), with tin being the most significant contributor (weight = 51.61%). An inverse association of 1-OH-Pyr with LMR was weakened by increased tin exposure (P < 0.05). The CTD database showed that PAHs and tin compounds co-regulated 22 inflammation-associated genes, but they regulated most genes in opposite directions. Further identified the involvement of oxidative stress and mediation analysis showed that the mediation effect of 8-hydroxydeoxyguanosine (8-OHdG) on 1-OH-Pyr-LMR association presented heterogeneity between low and high tin tertile groups (I2 = 37.84%). CONCLUSION 1-OH-Pyr and tin were significantly associated with LMR. Modification effects indicated that the inverse association of 1-OH-Pyr with LMR was mitigated with an increase in tin. The mediation effect of 8-OHdG on the inverse association of 1-OH-Pyr with LMR may be partially dependent on tin.
Collapse
Affiliation(s)
- Xiaojing Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Haimei Wu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Kang Liu
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Yansen Bai
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Degang Wu
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Chaofan Guo
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xin Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zhaorui Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Yongshun Huang
- Department of Occupational Medicine, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, Guangdong, China
| | - Na Zhao
- Department of Occupational Medicine, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, Guangdong, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Qifei Deng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| |
Collapse
|
3
|
Alizamini MM, Fattahi M, Sayehmiri F, Haghparast A, Liang J. Regulatory Role of PFC Corticotropin-Releasing Factor System in Stress-Associated Depression Disorders: A Systematic Review. Cell Mol Neurobiol 2022:10.1007/s10571-022-01289-2. [PMID: 36227396 DOI: 10.1007/s10571-022-01289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
Abstract
Stress has a substantial role in formation of psychiatric disorders especially depression. Meanwhile, impairment of the prefrontal cortex (PFC) is connected to the executive and cognitive deficits induced by the stress. Given the involvement of the corticotropin-releasing factor (CRF) in stress-related processes and knowing the fact that PFC hosts a lot of CRF receptors and CRF neurotransmissions, it can worth to look at the CRF as a potential treatment for the regulation of depression disorders induced by stress within PFC region. Here, for the first time we aimed to systematically review the effectiveness of intra-PFC CRF system in the modulation of depression dysfunction caused by the stress in clinical and preclinical models/studies. Qualified researches were combined utilizing a comprehensive search of six databases including Scopus, Pubmed, Web of Science, Sciencedirect, APA PsycNet, and Embase in April 2021 and were evaluated through proper methodological quality assessment tools. Results indicate that PFC has a remarkable role in the modulation for stress-induced depression and intra-PFC CRF receptors agonist and antagonist are very considerable for regulating these types of impairments. Specifically, elevation of both CRF immunoreactivity and gene expression were observed in human studies. In the animal studies, mostly immunoreactivity or excitatory/inhibitory currents of CRF within the PFC regulated depression dysfunction. In conclusion, reviewed studies show a positive attitude toward the CRF system in regulation of the stress-induced depression; however, obviously further investigations are required to get closer to the best treatment. Prefrontal cortex corticotropin-releasing factor system regulates stress-induced depression. CRFR1, Corticotropin-releasing factor receptor of type1; PFC, Prefrontal cortex; Minus (-) and Plus (+) signs, dysregulation and upregulation, respectively.
Collapse
Affiliation(s)
- Mirmohammadali Mirramezani Alizamini
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Zip Code 100101, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mojdeh Fattahi
- Student Research Committee, Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box 19615-1178, Tehran, Iran.
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Zip Code 100101, Beijing, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Zhao C, Li A, Zhang G, Pan Y, Meng L, Yang R, Li Y, Zhang Q, Jiang G. Parent and Halogenated Polycyclic Aromatic Hydrocarbons in the Serum of Coal-Fired Power Plant Workers: Levels, Sex Differences, Accumulation Trends, and Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12431-12439. [PMID: 36001868 DOI: 10.1021/acs.est.2c03099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Workers in coal-fired power plants are at a high risk of exposure to polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (HPAHs), yet no studies have investigated such exposure of HPAHs. In this study, 12 PAHs and 8 chlorinated PAHs, but no brominated PAHs, were detected in >80% of serum samples from workers of a coal-fired power plant in eastern China. Serum HPAH concentrations were higher in plant workers (16-273 ng/g lipid) than in people without occupational exposure (12-51 ng/g lipid), and serum PAH and HPAH concentrations both in male and female workers were positively correlated with the occupational exposure duration, with an estimated doubling time of 11-17 years. Correlations were found between concentrations of ∑8HPAHs and ∑12PAHs but not between 7-chlorobenz[a]anthracene (7-ClBaA) and 1-chloropyrene (1-ClPyr) and their respective parent PAHs. In males, total concentrations of PAHs and HPAHs were positively correlated with pulmonary hypofunction and hypertension but not with abnormal electrocardiogram. The benzo[a]pyrene equivalents ratio of ∑8HPAHs/∑12PAHs was 0.3 ± 0.1. Among the HPAHs in the serum, 9-chlorophenanthrene, 7-ClBaA, and 1-ClPyr showed high health risks. This study is the first report on HPAH exposure in coal-fired power plant workers and provides new evidence on the health risks of PAHs and HPAHs in humans.
Collapse
Affiliation(s)
- Chuxuan Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lan Zhou, Gansu 730070, China
| | - Yiyao Pan
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Meng
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province 250014, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|