1
|
Labib SM. Greenness, air pollution, and temperature exposure effects in predicting premature mortality and morbidity: A small-area study using spatial random forest model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172387. [PMID: 38608883 DOI: 10.1016/j.scitotenv.2024.172387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Although studies have provided negative impacts of air pollution, heat or cold exposure on mortality and morbidity, and positive effects of increased greenness on reducing them, a few studies have focused on exploring combined and synergetic effects of these exposures in predicting these health outcomes, and most had ignored the spatial autocorrelation in analyzing their health effects. This study aims to investigate the health effects of air pollution, greenness, and temperature exposure on premature mortality and morbidity within a spatial machine-learning modeling framework. METHODS Years of potential life lost reflecting premature mortality and comparative illness and disability ratio reflecting chronic morbidity from 1673 small areas covering Greater Manchester for the year 2008-2013 obtained. Average annual levels of NO2 concentration, normalized difference vegetation index (NDVI) representing greenness, and annual average air temperature were utilized to assess exposure in each area. These exposures were linked to health outcomes using non-spatial and spatial random forest (RF) models while accounting for spatial autocorrelation. RESULTS Spatial-RF models provided the best predictive accuracy when accounted for spatial autocorrelation. Among the exposures considered, air pollution emerged as the most influential in predicting mortality and morbidity, followed by NDVI and temperature exposure. Nonlinear exposure-response relations were observed, and interactions between exposures illustrated specific ranges or sweet and sour spots of exposure thresholds where combined effects either exacerbate or moderate health conditions. CONCLUSION Air pollution exposure had a greater negative impact on health compared to greenness and temperature exposure. Combined exposure effects may indicate the highest influence of premature mortality and morbidity burden.
Collapse
Affiliation(s)
- S M Labib
- Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, the Netherlands.
| |
Collapse
|
2
|
Lamprecht N, Erlanger TE, Utzinger J, Winkler MS. Prospects and Perspectives of Health Impact Assessment: A Systematic Review of the Peer-Reviewed Literature From June 2007 to January 2023. Public Health Rev 2024; 45:1606649. [PMID: 38689833 PMCID: PMC11059091 DOI: 10.3389/phrs.2024.1606649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Objectives In 2008, an analysis investigating health impact assessment (HIA) practice found that only 6% of HIA-related peer-reviewed publications had a focus on low- and medium-developed countries, whereas 94% were conducted in countries with a high or very high development state. We aimed to update and deepen these observations. Methods We conducted a systematic review, searching PubMed and Web of Science for HIA-related papers published in the scientific literature from June 2007 to January 2023. Only applied HIA and papers with HIA as a subject were included. Results The search yielded 3,036 publications and the final selection consisted of 1,019 publications. The annual number of total publications increased considerably over the past 15 years. Whereas research-driven HIA (n = 460) showed a steep increase, step-by-step HIA (n = 71) did not show a clear trend. Conclusion The gap between the number of HIA-related peer-reviewed publications focusing on low/medium and high/very high developed countries has diminished from 6/94 to 11/89. There is a growing tendency to apply the terminology HIA for health impact modelling studies and quantitative health risk assessments.
Collapse
Affiliation(s)
- Nina Lamprecht
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
- University of Basel, Basel, Switzerland
| | - Tobias E. Erlanger
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Mirko S. Winkler
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Rajagopalan S, Ramaswami A, Bhatnagar A, Brook RD, Fenton M, Gardner C, Neff R, Russell AG, Seto KC, Whitsel LP. Toward Heart-Healthy and Sustainable Cities: A Policy Statement From the American Heart Association. Circulation 2024; 149:e1067-e1089. [PMID: 38436070 DOI: 10.1161/cir.0000000000001217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Nearly 56% of the global population lives in cities, with this number expected to increase to 6.6 billion or >70% of the world's population by 2050. Given that cardiometabolic diseases are the leading causes of morbidity and mortality in people living in urban areas, transforming cities and urban provisioning systems (or urban systems) toward health, equity, and economic productivity can enable the dual attainment of climate and health goals. Seven urban provisioning systems that provide food, energy, mobility-connectivity, housing, green infrastructure, water management, and waste management lie at the core of human health, well-being, and sustainability. These provisioning systems transcend city boundaries (eg, demand for food, water, or energy is met by transboundary supply); thus, transforming the entire system is a larger construct than local urban environments. Poorly designed urban provisioning systems are starkly evident worldwide, resulting in unprecedented exposures to adverse cardiometabolic risk factors, including limited physical activity, lack of access to heart-healthy diets, and reduced access to greenery and beneficial social interactions. Transforming urban systems with a cardiometabolic health-first approach could be accomplished through integrated spatial planning, along with addressing current gaps in key urban provisioning systems. Such an approach will help mitigate undesirable environmental exposures and improve cardiovascular and metabolic health while improving planetary health. The purposes of this American Heart Association policy statement are to present a conceptual framework, summarize the evidence base, and outline policy principles for transforming key urban provisioning systems to heart-health and sustainability outcomes.
Collapse
|
4
|
Rider CV. Mixture Math: Deciding What to Add in a Cumulative Risk Assessment. CURRENT OPINION IN TOXICOLOGY 2022; 31:100358. [PMID: 35813121 PMCID: PMC9262140 DOI: 10.1016/j.cotox.2022.100358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Component-based approaches for cumulative risk assessment provide an important tool for informing public health policy. While current quantitative cumulative risk assessments focus narrowly on pesticides that share a mechanism of action, growing scientific evidence supports expansion of their application to encompass stressors that target a common disease. Case studies have demonstrated dose additive effects of chemicals with different mechanisms of action on liver steatosis, craniofacial malformations, and male reproductive tract developmental disruption. Evidence also suggests that nonchemical stressors such as noise or psychosocial stress can modify effects of chemicals. Focused research attention is required before nonchemical stressors can routinely be included in quantitative cumulative risk assessments.
Collapse
Affiliation(s)
- Cynthia V. Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
5
|
Khomenko S, Cirach M, Barrera-Gómez J, Pereira-Barboza E, Iungman T, Mueller N, Foraster M, Tonne C, Thondoo M, Jephcote C, Gulliver J, Woodcock J, Nieuwenhuijsen M. Impact of road traffic noise on annoyance and preventable mortality in European cities: A health impact assessment. ENVIRONMENT INTERNATIONAL 2022; 162:107160. [PMID: 35231841 DOI: 10.1016/j.envint.2022.107160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Road traffic is the main source of environmental noise in European cities and one of the main environmental risks to health and wellbeing. In this study we aimed to provide an in-depth assessment of available road traffic noise data and to estimate population exposure and health impacts for cities in Europe. METHODS We conducted the analysis for 724 cities and 25 greater cities in 25 European countries. We retrieved road traffic strategic noise maps delivered under the Environmental Noise Directive (END) or available from local sources. We assessed noise exposure using the 24 h day-evening-night noise level indicator (Lden) starting at exposure levels of 55 dB Lden - based on data availability - for the adult population aged 20 and over (n = 123,966,346). For the adults exposed to noise levels above 55 dB Lden we estimated the health impacts of compliance with the World Health Organization (WHO) recommendation of 53 dB Lden. Two primary health outcomes were assessed: high noise annoyance and Ischemic Heart Disease (IHD), using mortality from IHD causes as indicator. Exposure Response Functions (ERFs) relating road traffic noise exposure to annoyance and IHD mortality were retrieved from the literature. Uncertainties in input parameters were propagated using Monte Carlo simulations to obtain point estimates and empirical 95% Confidence Intervals (CIs). Lastly, the noise maps were categorized as high, moderate and low quality following a qualitative approach. RESULTS Strategic noise map data was delivered in three distinct formats (i.e. raster, polygon or polyline) and had distinct noise ranges and levels of categorization. The majority of noise maps (i.e. 83.2%) were considered of moderate or low quality. Based on the data provided, almost 60 million adults were exposed to road traffic noise levels above 55 dB Lden, equating to a median of 42% (Interquartile Range (IQR): 31.8-64.8) of the adult population across the analysed cities. We estimated that approximately 11 million adults were highly annoyed by road traffic noise and that 3608 deaths from IHD (95% CI: 843-6266) could be prevented annually with compliance of the WHO recommendation. The proportion of highly annoyed adults by city had a median value of 7.6% (IQR: 5.6-11.8) across the analysed cities, while the number preventable deaths had a median of 2.2 deaths per 100,000 population (IQR: 1.4-3.1). CONCLUSIONS Based on the provided strategic noise maps a considerable number of adults in European cities are exposed to road traffic noise levels harmful for health. Efforts to standardize the strategic noise maps and to increase noise and disease data availability at the city level are needed. These would allow for a more accurate and comprehensive assessment of the health impacts and further help local governments to address the adverse health effects of road traffic noise.
Collapse
Affiliation(s)
- Sasha Khomenko
- Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marta Cirach
- Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jose Barrera-Gómez
- Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Evelise Pereira-Barboza
- Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Tamara Iungman
- Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Natalie Mueller
- Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maria Foraster
- Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Barcelona, Spain
| | - Cathryn Tonne
- Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Meelan Thondoo
- Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Calvin Jephcote
- Centre for Environmental Health and Sustainability (CEHS), University of Leicester, Leicester, United Kingdom
| | - John Gulliver
- Centre for Environmental Health and Sustainability (CEHS), University of Leicester, Leicester, United Kingdom
| | - James Woodcock
- Institute for Global Health (ISGlobal), Barcelona, Spain; MRC Epidemiology unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|