1
|
Baydili İ, Tasci B, Tasci G. Artificial Intelligence in Psychiatry: A Review of Biological and Behavioral Data Analyses. Diagnostics (Basel) 2025; 15:434. [PMID: 40002587 PMCID: PMC11854694 DOI: 10.3390/diagnostics15040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Artificial intelligence (AI) has emerged as a transformative force in psychiatry, improving diagnostic precision, treatment personalization, and early intervention through advanced data analysis techniques. This review explores recent advancements in AI applications within psychiatry, focusing on EEG and ECG data analysis, speech analysis, natural language processing (NLP), blood biomarker integration, and social media data utilization. EEG-based models have significantly enhanced the detection of disorders such as depression and schizophrenia through spectral and connectivity analyses. ECG-based approaches have provided insights into emotional regulation and stress-related conditions using heart rate variability. Speech analysis frameworks, leveraging large language models (LLMs), have improved the detection of cognitive impairments and psychiatric symptoms through nuanced linguistic feature extraction. Meanwhile, blood biomarker analyses have deepened our understanding of the molecular underpinnings of mental health disorders, and social media analytics have demonstrated the potential for real-time mental health surveillance. Despite these advancements, challenges such as data heterogeneity, interpretability, and ethical considerations remain barriers to widespread clinical adoption. Future research must prioritize the development of explainable AI models, regulatory compliance, and the integration of diverse datasets to maximize the impact of AI in psychiatric care.
Collapse
Affiliation(s)
- İsmail Baydili
- Vocational School of Technical Sciences, Fırat University, 23119 Elazığ, Türkiye;
| | - Burak Tasci
- Vocational School of Technical Sciences, Fırat University, 23119 Elazığ, Türkiye;
| | - Gülay Tasci
- Department of Psychiatry, Elazığ Fethi Sekin City Hospital, 23280 Elazığ, Türkiye
| |
Collapse
|
2
|
Zhang Y, Folarin AA, Dineley J, Conde P, de Angel V, Sun S, Ranjan Y, Rashid Z, Stewart C, Laiou P, Sankesara H, Qian L, Matcham F, White K, Oetzmann C, Lamers F, Siddi S, Simblett S, Schuller BW, Vairavan S, Wykes T, Haro JM, Penninx BWJH, Narayan VA, Hotopf M, Dobson RJB, Cummins N. Identifying depression-related topics in smartphone-collected free-response speech recordings using an automatic speech recognition system and a deep learning topic model. J Affect Disord 2024; 355:40-49. [PMID: 38552911 DOI: 10.1016/j.jad.2024.03.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Prior research has associated spoken language use with depression, yet studies often involve small or non-clinical samples and face challenges in the manual transcription of speech. This paper aimed to automatically identify depression-related topics in speech recordings collected from clinical samples. METHODS The data included 3919 English free-response speech recordings collected via smartphones from 265 participants with a depression history. We transcribed speech recordings via automatic speech recognition (Whisper tool, OpenAI) and identified principal topics from transcriptions using a deep learning topic model (BERTopic). To identify depression risk topics and understand the context, we compared participants' depression severity and behavioral (extracted from wearable devices) and linguistic (extracted from transcribed texts) characteristics across identified topics. RESULTS From the 29 topics identified, we identified 6 risk topics for depression: 'No Expectations', 'Sleep', 'Mental Therapy', 'Haircut', 'Studying', and 'Coursework'. Participants mentioning depression risk topics exhibited higher sleep variability, later sleep onset, and fewer daily steps and used fewer words, more negative language, and fewer leisure-related words in their speech recordings. LIMITATIONS Our findings were derived from a depressed cohort with a specific speech task, potentially limiting the generalizability to non-clinical populations or other speech tasks. Additionally, some topics had small sample sizes, necessitating further validation in larger datasets. CONCLUSION This study demonstrates that specific speech topics can indicate depression severity. The employed data-driven workflow provides a practical approach for analyzing large-scale speech data collected from real-world settings.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Amos A Folarin
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; University College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK; Health Data Research UK London, University College London, London, UK
| | - Judith Dineley
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; University of Augsburg, Augsburg, Germany
| | - Pauline Conde
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Valeria de Angel
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Shaoxiong Sun
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Yatharth Ranjan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Zulqarnain Rashid
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Callum Stewart
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Petroula Laiou
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Heet Sankesara
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Linglong Qian
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Faith Matcham
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; School of Psychology, University of Sussex, Falmer, East Sussex, UK
| | - Katie White
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carolin Oetzmann
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Femke Lamers
- Department of Psychiatry, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije Universiteit and GGZ InGeest, Amsterdam, the Netherlands
| | - Sara Siddi
- Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, CIBERSAM, Universitat de Barcelona, Barcelona, Spain
| | - Sara Simblett
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Björn W Schuller
- University of Augsburg, Augsburg, Germany; GLAM - Group on Language, Audio, & Music, Imperial College London, London, UK
| | | | - Til Wykes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Josep Maria Haro
- Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, CIBERSAM, Universitat de Barcelona, Barcelona, Spain
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam University Medical Centre, Vrije Universiteit and GGZ InGeest, Amsterdam, the Netherlands
| | | | - Matthew Hotopf
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Richard J B Dobson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; University College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK; Health Data Research UK London, University College London, London, UK
| | - Nicholas Cummins
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
4
|
de Angel V, Adeleye F, Zhang Y, Cummins N, Munir S, Lewis S, Laporta Puyal E, Matcham F, Sun S, Folarin AA, Ranjan Y, Conde P, Rashid Z, Dobson R, Hotopf M. The Feasibility of Implementing Remote Measurement Technologies in Psychological Treatment for Depression: Mixed Methods Study on Engagement. JMIR Ment Health 2023; 10:e42866. [PMID: 36692937 PMCID: PMC9906314 DOI: 10.2196/42866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/26/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Remote measurement technologies (RMTs) such as smartphones and wearables can help improve treatment for depression by providing objective, continuous, and ecologically valid insights into mood and behavior. Engagement with RMTs is varied and highly context dependent; however, few studies have investigated their feasibility in the context of treatment. OBJECTIVE A mixed methods design was used to evaluate engagement with active and passive data collection via RMT in people with depression undergoing psychotherapy. We evaluated the effects of treatment on 2 different types of engagement: study attrition (engagement with study protocol) and patterns of missing data (engagement with digital devices), which we termed data availability. Qualitative interviews were conducted to help interpret the differences in engagement. METHODS A total of 66 people undergoing psychological therapy for depression were followed up for 7 months. Active data were gathered from weekly questionnaires and speech and cognitive tasks, and passive data were gathered from smartphone sensors and a Fitbit (Fitbit Inc) wearable device. RESULTS The overall retention rate was 60%. Higher-intensity treatment (χ21=4.6; P=.03) and higher baseline anxiety (t56.28=-2.80, 2-tailed; P=.007) were associated with attrition, but depression severity was not (t50.4=-0.18; P=.86). A trend toward significance was found for the association between longer treatments and increased attrition (U=339.5; P=.05). Data availability was higher for active data than for passive data initially but declined at a sharper rate (90%-30% drop in 7 months). As for passive data, wearable data availability fell from a maximum of 80% to 45% at 7 months but showed higher overall data availability than smartphone-based data, which remained stable at the range of 20%-40% throughout. Missing data were more prevalent among GPS location data, followed by among Bluetooth data, then among accelerometry data. As for active data, speech and cognitive tasks had lower completion rates than clinical questionnaires. The participants in treatment provided less Fitbit data but more active data than those on the waiting list. CONCLUSIONS Different data streams showed varied patterns of missing data, despite being gathered from the same device. Longer and more complex treatments and clinical characteristics such as higher baseline anxiety may reduce long-term engagement with RMTs, and different devices may show opposite patterns of missingness during treatment. This has implications for the scalability and uptake of RMTs in health care settings, the generalizability and accuracy of the data collected by these methods, feature construction, and the appropriateness of RMT use in the long term.
Collapse
Affiliation(s)
- Valeria de Angel
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Fadekemi Adeleye
- Department of Psychology, King's College London, London, United Kingdom
| | - Yuezhou Zhang
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Nicholas Cummins
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sara Munir
- Lewisham Talking Therapies, South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Serena Lewis
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Estela Laporta Puyal
- Biomedical Signal Interpretation and Computational Simulation Group, Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Faith Matcham
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- School of Psychology, University of Sussex, Brighton, United Kingdom
| | - Shaoxiong Sun
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Amos A Folarin
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Institute of Health Informatics, University College London, London, United Kingdom
- Health Data Research UK London, University College London, London, United Kingdom
- NIHR Biomedical Research Centre at University College London Hospitals, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Yatharth Ranjan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Pauline Conde
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Zulqarnain Rashid
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Richard Dobson
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Matthew Hotopf
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|