1
|
Gómez C, Alimajstorovic Z, Othonos N, Winter DV, White S, Lavery GG, Tomlinson JW, Sinclair AJ, Odermatt A. Identification of a human blood biomarker of pharmacological 11β-hydroxysteroid dehydrogenase 1 inhibition. Br J Pharmacol 2024; 181:698-711. [PMID: 37740611 DOI: 10.1111/bph.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND AND PURPOSE 11β-Hydroxysteroid dehydrogenase-1 (11β-HSD1) catalyses the oxoreduction of cortisone to cortisol, amplifying levels of active glucocorticoids. It is a pharmaceutical target in metabolic disease and cognitive impairments. 11β-HSD1 also converts some 7oxo-steroids to their 7β-hydroxy forms. A recent study in mice described the ratio of tauroursodeoxycholic acid (TUDCA)/tauro-7oxolithocholic acid (T7oxoLCA) as a biomarker for decreased 11β-HSD1 activity. The present study evaluates the equivalent bile acid ratio of glycoursodeoxycholic acid (GUDCA)/glyco-7oxolithocholic acid (G7oxoLCA) as a biomarker for pharmacological 11β-HSD1 inhibition in humans and compares it with the currently applied urinary (5α-tetrahydrocortisol + tetrahydrocortisol)/tetrahydrocortisone ((5αTHF + THF)/THE) ratio. EXPERIMENTAL APPROACH Bile acid profiles were analysed by ultra-HPLC tandem-MS in blood samples from two independent, double-blind placebo-controlled clinical studies of the orally administered selective 11β-HSD1 inhibitor AZD4017. The blood GUDCA/G7oxoLCA ratio was compared with the urinary tetrahydro-glucocorticoid ratio for ability to detect 11β-HSD1 inhibition. KEY RESULTS No significant alterations were observed in bile acid profiles following 11β-HSD1 inhibition by AZD4017, except for an increase of the secondary bile acid G7oxoLCA. The enzyme product/substrate ratio GUDCA/G7oxoLCA was found to be more reliable to detect 11β-HSD1 inhibition than the absolute G7oxoLCA concentration in both cohorts. Comparison of the blood GUDCA/G7oxoLCA ratio with the urinary (5αTHF + THF)/THE ratio revealed that both successfully detect 11β-HSD1 inhibition. CONCLUSIONS AND IMPLICATIONS 11β-HSD1 inhibition does not cause major alterations in bile acid homeostasis. The GUDCA/G7oxoLCA ratio represents the first blood biomarker of pharmacological 11β-HSD1 inhibition and may replace or complement the urinary (5αTHF + THF)/THE ratio biomarker.
Collapse
Affiliation(s)
- Cristina Gómez
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Zerin Alimajstorovic
- Metabolic Neurology, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Nantia Othonos
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Denise V Winter
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Sarah White
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Gareth G Lavery
- Department for Biosciences, Nottingham Trent University, Nottingham, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Alexandra J Sinclair
- Metabolic Neurology, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Neurology, University Hospitals Birmingham, Birmingham, UK
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Webster JM, Waaijenberg K, van de Worp WRPH, Kelders MCJM, Lambrichts S, Martin C, Verhaegen F, Van der Heyden B, Smith C, Lavery GG, Schols AMWJ, Hardy RS, Langen RCJ. 11β-HSD1 determines the extent of muscle atrophy in a model of acute exacerbation of COPD. Am J Physiol Lung Cell Mol Physiol 2023; 324:L400-L412. [PMID: 36807882 PMCID: PMC10027082 DOI: 10.1152/ajplung.00009.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Muscle atrophy is an extrapulmonary complication of acute exacerbations (AE) in chronic obstructive pulmonary disease (COPD). The endogenous production and therapeutic application of glucocorticoids (GCs) have been implicated as drivers of muscle loss in AE-COPD. The enzyme 11 β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activates GCs and contributes toward GC-induced muscle wasting. To explore the potential of 11βHSD1 inhibition to prevent muscle wasting here, the objective of this study was to ascertain the contribution of endogenous GC activation and amplification by 11βHSD1 in skeletal muscle wasting during AE-COPD. Emphysema was induced by intratracheal (IT) instillation of elastase to model COPD in WT and 11βHSD1/KO mice, followed by vehicle or IT-LPS administration to mimic AE. µCT scans were obtained prior and at study endpoint 48 h following IT-LPS, to assess emphysema development and muscle mass changes, respectively. Plasma cytokine and GC profiles were determined by ELISA. In vitro, myonuclear accretion and cellular response to plasma and GCs were determined in C2C12 and human primary myotubes. Muscle wasting was exacerbated in LPS-11βHSD1/KO animals compared with WT controls. RT-qPCR and western blot analysis showed elevated catabolic and suppressed anabolic pathways in muscle of LPS-11βHSD1/KO animals relative to WTs. Plasma corticosterone levels were higher in LPS-11βHSD1/KO animals, whereas C2C12 myotubes treated with LPS-11βHSD1/KO plasma or exogenous GCs displayed reduced myonuclear accretion relative to WT counterparts. This study reveals that 11β-HSD1 inhibition aggravates muscle wasting in a model of AE-COPD, suggesting that therapeutic inhibition of 11β-HSD1 may not be appropriate to prevent muscle wasting in this setting.
Collapse
Affiliation(s)
- Justine M Webster
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
- Faculty of Health, Medicine and Life Sciences, Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Kelsy Waaijenberg
- Faculty of Health, Medicine and Life Sciences, Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Wouter R P H van de Worp
- Faculty of Health, Medicine and Life Sciences, Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Marco C J M Kelders
- Faculty of Health, Medicine and Life Sciences, Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Sara Lambrichts
- Faculty of Health, Medicine and Life Sciences, Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Claire Martin
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Faculty of Health, Medicine and Life Sciences, Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Brent Van der Heyden
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Charlotte Smith
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Gareth G Lavery
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Annemie M W J Schols
- Faculty of Health, Medicine and Life Sciences, Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Rowan S Hardy
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ramon C J Langen
- Faculty of Health, Medicine and Life Sciences, Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Ajjan RA, Hensor EMA, Del Galdo F, Shams K, Abbas A, Fairclough RJ, Webber L, Pegg L, Freeman A, Taylor AE, Arlt W, Morgan AW, Tahrani AA, Stewart PM, Russell DA, Tiganescu A. Oral 11β-HSD1 inhibitor AZD4017 improves wound healing and skin integrity in adults with type 2 diabetes mellitus: a pilot randomized controlled trial. Eur J Endocrinol 2022; 186:441-455. [PMID: 35113805 PMCID: PMC8942338 DOI: 10.1530/eje-21-1197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Chronic wounds (e.g. diabetic foot ulcers) reduce the quality of life, yet treatments remain limited. Glucocorticoids (activated by the enzyme 11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1) impair wound healing. OBJECTIVES Efficacy, safety, and feasibility of 11β-HSD1 inhibition for skin function and wound healing. DESIGN Investigator-initiated, double-blind, randomized, placebo-controlled, parallel-group phase 2b pilot trial. METHODS Single-center secondary care setting. Adults with type 2 diabetes mellitus without foot ulcers were administered 400 mg oral 11β-HSD1 inhibitor AZD4017 (n = 14) or placebo (n = 14) bi-daily for 35 days. Participants underwent 3-mm full-thickness punch skin biopsies at baseline and on day 28; wound healing was monitored after 2 and 7 days. Computer-generated 1:1 randomization was pharmacy-administered. Analysis was descriptive and focused on CI estimation. Of the 36 participants screened, 28 were randomized. RESULTS Exploratory proof-of-concept efficacy analysis suggested AZD4017 did not inhibit 24-h ex vivoskin 11β-HSD1 activity (primary outcome; difference in percentage conversion per 24 h 1.1% (90% CI: -3.4 to 5.5) but reduced systemic 11β-HSD1 activity by 87% (69-104%). Wound diameter was 34% (7-63%) smaller with AZD4017 at day 2, and 48% (12-85%) smaller after repeat wounding at day 30. AZD4017 improved epidermal integrity but modestly impaired barrier function. Minimal adverse events were comparable to placebo. Recruitment rate, retention, and data completeness were 2.9/month, 27/28, and 95.3%, respectively. CONCLUSION A phase 2 trial is feasible, and preliminary proof-of-concept data suggests AZD4017 warrants further investigation in conditions of delayed healing, for example in diabetic foot ulcers. SIGNIFICANCE STATEMENT Stress hormone activation by the enzyme 11β-HSD type 1 impairs skin function (e.g. integrity) and delays wound healing in animal models of diabetes, but effects in human skin were previously unknown. Skin function was evaluated in response to treatment with a 11β-HSD type 1 inhibitor (AZD4017), or placebo, in people with type 2 diabetes. Importantly, AZD4017 was safe and well tolerated. This first-in-human randomized, controlled, clinical trial found novel evidence that 11β-HSD type 1 regulates skin function in humans, including improved wound healing, epidermal integrity, and increased water loss. Results warrant further studies in conditions of impaired wound healing, for example, diabetic foot ulcers to evaluate 11β-HSD type 1 as a novel therapeutic target forchronic wounds.
Collapse
Affiliation(s)
- R A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - E M A Hensor
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - F Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - K Shams
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - A Abbas
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - R J Fairclough
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D
| | - L Webber
- Emerging Portfolio Development, Late Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | - L Pegg
- Emerging Portfolio Development, Late Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | - A Freeman
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D
| | - A E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - W Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - A W Morgan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - A A Tahrani
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - P M Stewart
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - D A Russell
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Leeds Vascular Institute, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - A Tiganescu
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Center, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Correspondence should be addressed to A Tiganescu;
| |
Collapse
|
4
|
Oda S, Ashida K, Uchiyama M, Sakamoto S, Hasuzawa N, Nagayama A, Wang L, Nagata H, Sakamoto R, Kishimoto J, Todaka K, Ogawa Y, Nakanishi Y, Nomura M. An Open-label Phase I/IIa Clinical Trial of 11β-HSD1 Inhibitor for Cushing's Syndrome and Autonomous Cortisol Secretion. J Clin Endocrinol Metab 2021; 106:e3865-e3880. [PMID: 34143883 DOI: 10.1210/clinem/dgab450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors demonstrate antimetabolic and antisarcopenic effects in Cushing's syndrome (CS) and autonomous cortisol secretion (ACS) patients. OBJECTIVE To confirm the efficacy and safety of S-707106 (11β-HSD1 inhibitor) administered to CS and ACS patients. DESIGN A 24-week single-center, open-label, single-arm, dose-escalation, investigator-initiated clinical trial on a database. SETTING Kyushu University Hospital, Kurume University Hospital, and related facilities. PATIENTS Sixteen patients with inoperable or recurrent CS and ACS, with mildly impaired glucose tolerance. INTERVENTION Oral administration of 200 mg S-707106 after dinner, daily, for 24 weeks. In patients with insufficient improvement in oral glucose tolerance test results at 12 weeks, an escalated dose of S-707106 (200 mg twice daily) was administered for the residual 12 weeks. MAIN OUTCOME MEASURES The rate of participants responding to glucose tolerance impairment, defined as those showing a 25% reduction in the area under the curve (AUC) of plasma glucose during the 75-g oral glucose tolerance test at 24 weeks. RESULTS S-707106 administration could not achieve the primary endpoint of this clinical trial (>20% of responsive participants). AUC glucose decreased by -7.1% [SD, 14.8 (90% CI -14.8 to -1.0), P = 0.033] and -2.7% [14.5 (-10.2 to 3.4), P = 0.18] at 12 and 24 weeks, respectively. S-707106 administration decreased AUC glucose significantly in participants with a high body mass index. Body fat percentage decreased by -2.5% [1.7 (-3.3 to -1.8), P < 0.001] and body muscle percentage increased by 2.4% [1.6 (1.7 to 3.1), P < 0.001]. CONCLUSIONS S-707106 is an effective insulin sensitizer and antisarcopenic and antiobesity medication for these patients.
Collapse
Affiliation(s)
- Satoko Oda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
| | - Kenji Ashida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume-city, Japan
| | - Makiko Uchiyama
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka-city, Japan
| | - Shohei Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
| | - Nao Hasuzawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume-city, Japan
| | - Ayako Nagayama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume-city, Japan
| | - Lixiang Wang
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume-city, Japan
| | - Hiromi Nagata
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
| | - Junji Kishimoto
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka-city, Japan
| | - Koji Todaka
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka-city, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
| | - Yoichi Nakanishi
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka-city, Japan
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume-city, Japan
| |
Collapse
|
5
|
Ajjan R, Hensor EM, Shams K, Del Galdo F, Abbas A, Woods J, Fairclough RJ, Webber L, Pegg L, Freeman A, Morgan A, Stewart PM, Taylor AE, Arlt W, Tahrani A, Russell D, Tiganescu A. A randomised controlled pilot trial of oral 11β-HSD1 inhibitor AZD4017 for wound healing in adults with type 2 diabetes mellitus.. [DOI: 10.1101/2021.03.23.21254200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractChronic wounds (e.g. diabetic foot ulcers) have a major impact on quality of life, yet treatments remain limited. Glucocorticoids impair wound healing; preclinical research suggests that blocking glucocorticoid activation by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves wound repair. This investigator-initiated double-blind, randomised, placebo-controlled parallel-group phase 2b pilot trial investigated efficacy, safety and feasibility of 11β-HSD1 inhibition for 35 days by oral AZD4017 (AZD) treatment in adults with type 2 diabetes (n=14) compared to placebo (PCB, n=14) in a single-centre secondary care setting. Computer-generated 1:1 randomisation was pharmacy-administered. From 300 screening invitations, 36 attended, 28 were randomised. There was no proof-of-concept that AZD inhibited 24 hour skin 11β-HSD1 activity at day 28 (primary outcome: adjusted difference AZD-PCB 90% CI (diffCI)=-3.4,5.5) but systemic 11β-HSD1 activity (median urinary [THF+alloTHF]/THE ratio) was 87% lower with AZD at day 35 (PCB 1.00, AZD 0.13, diffCI=-1.04,-0.69). Mean wound gap diameter (mm) following baseline 2mm punch biopsy was 34% smaller at day 2 (PCB 1.51, AZD 0.98, diffCI=-0.95,-0.10) and 48% smaller after repeat wounding at day 30 (PCB 1.35, AZD 0.70, diffCI=-1.15,-0.16); results also suggested greater epidermal integrity but modestly impaired barrier function with AZD. AZD was well-tolerated with minimal side effects and comparable adverse events between treatments. Staff availability restricted recruitment (2.9/month); retention (27/28) and data completeness (95.3%) were excellent. These preliminary findings suggest that AZD may improve wound healing in patients with type 2 diabetes and warrant a fully-powered trial in patients with active ulcers. [Trial Registry: www.isrctn.com/ISRCTN74621291.FundingMRC Confidence in Concept and NIHR Senior Investigator Award.]Single Sentence SummaryAZD4017 was safe; data suggested improved skin healing / integrity, and modestly reduced epidermal barrier function in patients with type 2 diabetes.Disclosure SummaryI certify that neither I nor my co-authors have a conflict of interest as described above that is relevant to the subject matter or materials included in this Work.
Collapse
|
6
|
Weingartner M, Stücheli S, Kratschmar DV, Birk J, Klusonova P, Chapman KE, Lavery GG, Odermatt A. The ratio of ursodeoxycholyltaurine to 7-oxolithocholyltaurine serves as a biomarker of decreased 11β-hydroxysteroid dehydrogenase 1 activity in mouse. Br J Pharmacol 2021; 178:3309-3326. [PMID: 33450045 PMCID: PMC8359391 DOI: 10.1111/bph.15367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/06/2020] [Accepted: 12/27/2020] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose 11β‐Hydroxysteroid dehydrogenase 1 (11β‐HSD1) regulates tissue‐specific glucocorticoid metabolism and its impaired expression and activity are associated with major diseases. Pharmacological inhibition of 11β‐HSD1 is considered a promising therapeutic strategy. This study investigated whether alternative 7‐oxo bile acid substrates of 11β‐HSD1 or the ratios to their 7‐hydroxy products can serve as biomarkers for decreased enzymatic activity. Experimental Approach Bile acid profiles were measured by ultra‐HPLC tandem‐MS in plasma and liver tissue samples of four different mouse models with decreased 11β‐HSD1 activity: global (11KO) and liver‐specific 11β‐HSD1 knockout mice (11LKO), mice lacking hexose‐6‐phosphate dehydrogenase (H6pdKO) that provides cofactor NADPH for 11β‐HSD1 and mice treated with the pharmacological inhibitor carbenoxolone. Additionally, 11β‐HSD1 expression and activity were assessed in H6pdKO‐ and carbenoxolone‐treated mice. Key Results The enzyme product to substrate ratios were more reliable markers of 11β‐HSD1 activity than absolute levels due to large inter‐individual variations in bile acid concentrations. The ratio of the 7β‐hydroxylated ursodeoxycholyltaurine (UDC‐Tau) to 7‐oxolithocholyltaurine (7oxoLC‐Tau) was diminished in plasma and liver tissue of all four mouse models and decreased in H6pdKO‐ and carbenoxolone‐treated mice with moderately reduced 11β‐HSD1 activity. The persistence of 11β‐HSD1 oxoreduction activity in the face of H6PD loss indicates the existence of an alternative NADPH source in the endoplasmic reticulum. Conclusions and Implications The plasma UDC‐Tau/7oxo‐LC‐Tau ratio detects decreased 11β‐HSD1 oxoreduction activity in different mouse models. This ratio may be a useful biomarker of decreased 11β‐HSD1 activity in pathophysiological situations or upon pharmacological inhibition. LINKED ARTICLES This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc
Collapse
Affiliation(s)
- Michael Weingartner
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Simon Stücheli
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Denise V Kratschmar
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Julia Birk
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Petra Klusonova
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Karen E Chapman
- Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Martin CS, Cooper MS, Hardy RS. Endogenous Glucocorticoid Metabolism in Bone: Friend or Foe. Front Endocrinol (Lausanne) 2021; 12:733611. [PMID: 34512556 PMCID: PMC8429897 DOI: 10.3389/fendo.2021.733611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 02/02/2023] Open
Abstract
The role of tissue specific metabolism of endogenous glucocorticoids (GCs) in the pathogenesis of human disease has been a field of intense interest over the last 20 years, fuelling clinical trials of metabolism inhibitors in the treatment of an array of metabolic diseases. Localised pre-receptor metabolism of endogenous and therapeutic GCs by the 11β-hydroxysteroid dehydrogenase (11β-HSD) enzymes (which interconvert endogenous GCs between their inactive and active forms) are increasingly recognised as being critical in mediating both their positive and negative actions on bone homeostasis. In this review we explore the roles of endogenous and therapeutic GC metabolism by the 11β-HSD enzymes in the context of bone metabolism and bone cell function, and consider future strategies aimed at modulating this system in order to manage and treat various bone diseases.
Collapse
Affiliation(s)
- Claire S. Martin
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Mark S. Cooper
- Australian and New Zealand Army Corps (ANZAC) Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Rowan S. Hardy
- Arthritis Research United Kingdom (UK) Career Development Fellow, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Rowan S. Hardy,
| |
Collapse
|
8
|
Hardy RS, Botfield H, Markey K, Mitchell JL, Alimajstorovic Z, Westgate CSJ, Sagmeister M, Fairclough RJ, Ottridge RS, Yiangou A, Storbeck KHH, Taylor AE, Gilligan LC, Arlt W, Stewart PM, Tomlinson JW, Mollan SP, Lavery GG, Sinclair AJ. 11βHSD1 Inhibition with AZD4017 Improves Lipid Profiles and Lean Muscle Mass in Idiopathic Intracranial Hypertension. J Clin Endocrinol Metab 2021; 106:174-187. [PMID: 33098644 PMCID: PMC7765633 DOI: 10.1210/clinem/dgaa766] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) determines prereceptor metabolism and activation of glucocorticoids within peripheral tissues. Its dysregulation has been implicated in a wide array of metabolic diseases, leading to the development of selective 11β-HSD1 inhibitors. We examined the impact of the reversible competitive 11β-HSD1 inhibitor, AZD4017, on the metabolic profile in an overweight female cohort with idiopathic intracranial hypertension (IIH). METHODS We conducted a UK multicenter phase II randomized, double-blind, placebo-controlled trial of 12-week treatment with AZD4017. Serum markers of glucose homeostasis, lipid metabolism, renal and hepatic function, inflammation and androgen profiles were determined and examined in relation to changes in fat and lean mass by dual-energy X-ray absorptiometry. RESULTS Patients receiving AZD4017 showed significant improvements in lipid profiles (decreased cholesterol, increased high-density lipoprotein [HDL] and cholesterol/HDL ratio), markers of hepatic function (decreased alkaline phosphatase and gamma-glutamyl transferase), and increased lean muscle mass (1.8%, P < .001). No changes in body mass index, fat mass, and markers of glucose metabolism or inflammation were observed. Patients receiving AZD4017 demonstrated increased levels of circulating androgens, positively correlated with changes in total lean muscle mass. CONCLUSIONS These beneficial metabolic changes represent a reduction in risk factors associated with raised intracranial pressure and represent further beneficial therapeutic outcomes of 11β-HSD1 inhibition by AZD4017 in this overweight IIH cohort. In particular, beneficial changes in lean muscle mass associated with AZD4017 may reflect new applications for this nature of inhibitor in the management of conditions such as sarcopenia.
Collapse
Affiliation(s)
- Rowan S Hardy
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Hannah Botfield
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Keira Markey
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - James L Mitchell
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Zerin Alimajstorovic
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Connar S J Westgate
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michael Sagmeister
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rebecca J Fairclough
- Emerging Innovations Unit, Discovery Sciences. BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ryan S Ottridge
- Birmingham Clinical Trials Unit, Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andreas Yiangou
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Karl-Heinz H Storbeck
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Stellenbosch University, Stellenbosch, Matieland, South Africa
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology & Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Susan P Mollan
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Alexandra J Sinclair
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
- Correspondence and Reprint Requests: Alexandra Sinclair, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK. E-mail:
| |
Collapse
|
9
|
Na YJ, Choi KJ, Jung WH, Park SB, Kang S, Ahn JH, Kim KY. A Novel Selective 11β-HSD1 Inhibitor, (E)-4-(2-(6-(2,6-Dichloro-4-(Trifluoromethyl)Phenyl)-4-Methyl-1,1-Dioxido-1,2,6-Thiadiazinan-2-yl)Acetamido)Adamantan-1-Carboxamide (KR-67607), Prevents BAC-Induced Dry Eye Syndrome. Int J Mol Sci 2020; 21:ijms21103729. [PMID: 32466320 PMCID: PMC7279275 DOI: 10.3390/ijms21103729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 01/12/2023] Open
Abstract
Dry eye syndrome is the most common eye disease and it is caused by various reasons. As the balance of the tear film that protects the eyes is broken due to various causes, it becomes impossible to properly protect the eyes. In this study, the protective effects and underlying mechanisms of topical (E)-4-(2-(6-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-methyl-1,1-dioxido-1,2,6-thiadiazinan-2-yl)acetamido)adamantan-1-carboxamide (KR-67607), a novel selective 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) inhibitor, were investigated in benzalkonium chloride (BAC)-induced dry eye syndrome. BAC-treated rat eyes induced significant increases in ocular surface damage, decreased corneal thickness, corneal basement membrane destruction in the conjunctival epithelium, and expression of pro-inflammatory cytokines tumor necrosis factor-α and 11β-HSD1. These effects of BAC were reversed by topical KR-67607 treatment. Furthermore, KR-67607 decreased 4-hydroxynonenal expression and increased antioxidant and mucus secretion in BAC-treated rat eyes. Taken together, a novel selective 11β-HSD1 inhibitor can prevent BAC-induced dry eye syndrome by inhibiting pro-inflammatory cytokine and reactive oxygen species expression via the inhibition of both 11β-HSD1 activity and expression.
Collapse
Affiliation(s)
- Yoon-Ju Na
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (Y.-J.N.); (K.J.C.); (W.H.J.); (S.B.P.); (S.K.)
- Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Kyoung Jin Choi
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (Y.-J.N.); (K.J.C.); (W.H.J.); (S.B.P.); (S.K.)
| | - Won Hoon Jung
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (Y.-J.N.); (K.J.C.); (W.H.J.); (S.B.P.); (S.K.)
| | - Sung Bum Park
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (Y.-J.N.); (K.J.C.); (W.H.J.); (S.B.P.); (S.K.)
| | - Sein Kang
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (Y.-J.N.); (K.J.C.); (W.H.J.); (S.B.P.); (S.K.)
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Ki Young Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (Y.-J.N.); (K.J.C.); (W.H.J.); (S.B.P.); (S.K.)
- Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-860-7471
| |
Collapse
|
10
|
Markey K, Mitchell J, Botfield H, Ottridge RS, Matthews T, Krishnan A, Woolley R, Westgate C, Yiangou A, Alimajstorovic Z, Shah P, Rick C, Ives N, Taylor AE, Gilligan LC, Jenkinson C, Arlt W, Scotton W, Fairclough RJ, Singhal R, Stewart PM, Tomlinson JW, Lavery GG, Mollan SP, Sinclair AJ. 11β-Hydroxysteroid dehydrogenase type 1 inhibition in idiopathic intracranial hypertension: a double-blind randomized controlled trial. Brain Commun 2020; 2:fcz050. [PMID: 32954315 PMCID: PMC7425517 DOI: 10.1093/braincomms/fcz050] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/05/2019] [Accepted: 10/25/2019] [Indexed: 11/13/2022] Open
Abstract
Treatment options for idiopathic intracranial hypertension are limited. The enzyme 11β-hydroxysteroid dehydrogenase type 1 has been implicated in regulating cerebrospinal fluid secretion, and its activity is associated with alterations in intracranial pressure in idiopathic intracranial hypertension. We assessed therapeutic efficacy, safety and tolerability and investigated indicators of in vivo efficacy of the 11β-hydroxysteroid dehydrogenase type 1 inhibitor AZD4017 compared with placebo in idiopathic intracranial hypertension. A multicenter, UK, 16-week phase II randomized, double-blind, placebo-controlled trial of 12-week treatment with AZD4017 or placebo was conducted. Women aged 18–55 years with active idiopathic intracranial hypertension (>25 cmH2O lumbar puncture opening pressure and active papilledema) were included. Participants received 400 mg of oral AZD4017 twice daily compared with matching placebo over 12 weeks. The outcome measures were initial efficacy, safety and tolerability. The primary clinical outcome was lumbar puncture opening pressure at 12 weeks analysed by intention-to-treat. Secondary clinical outcomes were symptoms, visual function, papilledema, headache and anthropometric measures. In vivo efficacy was evaluated in the central nervous system and systemically. A total of 31 subjects [mean age 31.2 (SD = 6.9) years and body mass index 39.2 (SD = 12.6) kg/m2] were randomized to AZD4017 (n = 17) or placebo (n = 14). At 12 weeks, lumbar puncture pressure was lower in the AZD4017 group (29.7 cmH2O) compared with placebo (31.3 cmH2O), but the difference between groups was not statistically significant (mean difference: −2.8, 95% confidence interval: −7.1 to 1.5; P = 0.2). An exploratory analysis assessing mean change in lumbar puncture pressure within each group found a significant decrease in the AZD4017 group [mean change: −4.3 cmH2O (SD = 5.7); P = 0.009] but not in the placebo group [mean change: −0.3 cmH2O (SD = 5.9); P = 0.8]. AZD4017 was safe, with no withdrawals related to adverse effects. Nine transient drug-related adverse events were reported. One serious adverse event occurred in the placebo group (deterioration requiring shunt surgery). In vivo biomarkers of 11β-hydroxysteroid dehydrogenase type 1 activity (urinary glucocorticoid metabolites, hepatic prednisolone generation, serum and cerebrospinal fluid cortisol:cortisone ratios) demonstrated significant enzyme inhibition with the reduction in serum cortisol:cortisone ratio correlating significantly with reduction in lumbar puncture pressure (P = 0.005, R = 0.70). This is the first phase II randomized controlled trial in idiopathic intracranial hypertension evaluating a novel therapeutic target. AZD4017 was safe and well tolerated and inhibited 11β-hydroxysteroid dehydrogenase type 1 activity in vivo. Reduction in serum cortisol:cortisone correlated with decreased intracranial pressure. Possible clinical benefits were noted in this small cohort. A longer, larger study would now be of interest.
Collapse
Affiliation(s)
- Keira Markey
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - James Mitchell
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK.,Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham B15 2WB, UK
| | - Hannah Botfield
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ryan S Ottridge
- Birmingham Clinical Trials Unit, Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Tim Matthews
- Birmingham Neuro-Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham B15 2WB, UK
| | - Anita Krishnan
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK
| | - Rebecca Woolley
- Birmingham Clinical Trials Unit, Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Connar Westgate
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Andreas Yiangou
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK.,Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham B15 2WB, UK
| | - Zerin Alimajstorovic
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Pushkar Shah
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow G51 4TF, UK
| | - Caroline Rick
- Nottingham Clinical Trials Unit, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Natalie Ives
- Birmingham Clinical Trials Unit, Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Carl Jenkinson
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - William Scotton
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK.,Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham B15 2WB, UK
| | - Rebecca J Fairclough
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0SL, UK
| | - Rishi Singhal
- Upper GI Unit and Minimally Invasive Unit, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B9 5SS, UK
| | | | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology & Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Susan P Mollan
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Birmingham Neuro-Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham B15 2WB, UK
| | - Alexandra J Sinclair
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK.,Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham B15 2WB, UK
| |
Collapse
|
11
|
Ocular bioanalysis: challenges and advancements in recent years for these rare matrices. Bioanalysis 2017; 9:1997-2014. [DOI: 10.4155/bio-2017-0175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There are many ocular diseases still presenting unmet medical needs. Therefore, new ophthalmologic drugs are being developed. Bioanalysis of eye compartments (along with plasma and other tissues) is important to determine exposure of the target organ to the drug and to help interpret local pharmacological or toxic effects. This review article identifies several challenges that occur within ocular bioanalysis. They include sample collection and preparation, analytical issues, sourcing control matrix, data interpretation and regulatory requirements. It summarizes how these challenges have been recently addressed, how research has advanced and which questions remain unanswered. Recommendations are made based on the literature and our practical experience within ocular bioanalysis and future perspectives are discussed.
Collapse
|