1
|
Verma AA, Trbovich P, Mamdani M, Shojania KG. Grand rounds in methodology: key considerations for implementing machine learning solutions in quality improvement initiatives. BMJ Qual Saf 2024; 33:121-131. [PMID: 38050138 DOI: 10.1136/bmjqs-2022-015713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/04/2023] [Indexed: 12/06/2023]
Abstract
Machine learning (ML) solutions are increasingly entering healthcare. They are complex, sociotechnical systems that include data inputs, ML models, technical infrastructure and human interactions. They have promise for improving care across a wide range of clinical applications but if poorly implemented, they may disrupt clinical workflows, exacerbate inequities in care and harm patients. Many aspects of ML solutions are similar to other digital technologies, which have well-established approaches to implementation. However, ML applications present distinct implementation challenges, given that their predictions are often complex and difficult to understand, they can be influenced by biases in the data sets used to develop them, and their impacts on human behaviour are poorly understood. This manuscript summarises the current state of knowledge about implementing ML solutions in clinical care and offers practical guidance for implementation. We propose three overarching questions for potential users to consider when deploying ML solutions in clinical care: (1) Is a clinical or operational problem likely to be addressed by an ML solution? (2) How can an ML solution be evaluated to determine its readiness for deployment? (3) How can an ML solution be deployed and maintained optimally? The Quality Improvement community has an essential role to play in ensuring that ML solutions are translated into clinical practice safely, effectively, and ethically.
Collapse
Affiliation(s)
- Amol A Verma
- Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Medicine, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada
| | - Patricia Trbovich
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Centre for Quality Improvement and Patient Safety, Department of Medicine, University of Toronto, Toronto, ON, Canada
- North York General Hospital, Toronto, ON, Canada
| | - Muhammad Mamdani
- Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Medicine, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada
| | - Kaveh G Shojania
- Medicine, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
2
|
Affiliation(s)
- Robert Challen
- Engineering Mathematics, University of Bristol, Bristol, UK
- Bristol Vaccine Centre, Bristol Medical School, University of Bristol, Bristol, UK
| | - Leon Danon
- Engineering Mathematics, University of Bristol, Bristol, UK
- Bristol Vaccine Centre, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|