1
|
Li D, Bao L, Liu S, Ji K, Xu X, Yuan J, Xia G. Identification and Validation of Molecular Features of the Anoikis Gene-Related Hub Genes in Nasopharyngeal Carcinoma. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05130-y. [PMID: 39666232 DOI: 10.1007/s12010-024-05130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from nasopharyngeal mucosa. Anoikis, a form of programmed cell death induced by detachment from the extracellular matrix, normally prevents metastasis. Resistance to anoikis in cancer cells can enhance their metastatic potential. This study identifies anoikis-related genes (ARGs) associated with NPC to elucidate tumorigenesis mechanisms. Analysis of the GSE12452 dataset from GEO revealed 77 differentially expressed ARGs in NPC tissues. GO and KEGG analyses highlighted significant enrichment in apoptosis-related pathways. A PPI network identified MYC, FN1, BRCA1, and FGF2 as Hub genes. Correlation analysis showed MYC positively correlated with activated dendritic cells (p < 0.01) but negatively with naive CD4 T cells (p < 0.001). FN1 was positively correlated with activated dendritic cells (p < 0.01) and negatively with M1 macrophages (p < 0.05). FGF2 negatively correlated with naive CD4 T cells (p < 0.001), while BRCA1 was positively correlated with eosinophils (p < 0.01). GSVA and GSEA indicated that MYC, FN1, BRCA1, and FGF2 were significantly enriched in cell cycle and DNA replication pathways. Immunohistochemistry and qPCR of 50 NPC samples confirmed the overexpression of these genes. Knockdown of MYC, FN1, BRCA1, and FGF2 led to increased tumor cell malignancy, with statistical significance (p < 0.05). This study identifies MYC, FN1, BRCA1, and FGF2 as anoikis-related genes (ARGs) with significant regulatory roles in nasopharyngeal carcinoma (NPC). These ARGs are found to be involved in the development and progression of NPC, suggesting their potential as therapeutic targets for this cancer.
Collapse
Affiliation(s)
- Dong Li
- Department of Otolaryngology, Beilun District People's Hospital of Ningbo, Beilun District, No. 1288, Lushan East Road, Ningbo City, China
| | - Lihao Bao
- Department of Otolaryngology, Beilun District People's Hospital of Ningbo, Beilun District, No. 1288, Lushan East Road, Ningbo City, China
| | - Shaosheng Liu
- Department of Otolaryngology, Beilun District People's Hospital of Ningbo, Beilun District, No. 1288, Lushan East Road, Ningbo City, China
| | - Ke Ji
- Department of Otolaryngology, Beilun District People's Hospital of Ningbo, Beilun District, No. 1288, Lushan East Road, Ningbo City, China
| | - Xujiu Xu
- Department of Otolaryngology, Beilun District People's Hospital of Ningbo, Beilun District, No. 1288, Lushan East Road, Ningbo City, China
| | - Jie Yuan
- Department of Otolaryngology, Beilun District People's Hospital of Ningbo, Beilun District, No. 1288, Lushan East Road, Ningbo City, China
| | - Guihua Xia
- Department of Otolaryngology, Beilun District People's Hospital of Ningbo, Beilun District, No. 1288, Lushan East Road, Ningbo City, China.
| |
Collapse
|
2
|
Vidal JM, Tsiknakis N, Staaf J, Bosch A, Ehinger A, Nimeus E, Salgado R, Bai Y, Rimm DL, Hartman J, Acs B. The analytical and clinical validity of AI algorithms to score TILs in TNBC: can we use different machine learning models interchangeably? EClinicalMedicine 2024; 78:102928. [PMID: 39634035 PMCID: PMC11615110 DOI: 10.1016/j.eclinm.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
Background Pathologist-read tumor-infiltrating lymphocytes (TILs) have showcased their predictive and prognostic potential for early and metastatic triple-negative breast cancer (TNBC) but it is still subject to variability. Artificial intelligence (AI) is a promising approach toward eliminating variability and objectively automating TILs assessment. However, demonstrating robust analytical and prognostic validity is the key challenge currently preventing their integration into clinical workflows. Methods We evaluated the impact of ten AI models on TILs scoring, emphasizing their distinctions in TILs analytical and prognostic validity. Several AI-based TILs scoring models (seven developed and three previously validated AI models) were tested in a retrospective analytical cohort and in an independent prospective cohort to compare prognostic validation against invasive disease-free survival endpoint with 4 years median follow-up. The development and analytical validity set consisted of diagnostic tissue slides of 79 women with surgically resected primary invasive TNBC tumors diagnosed between 2012 and 2016 from the Yale School of Medicine. An independent set comprising of 215 TNBC patients from Sweden diagnosed between 2010 and 2015, was used for testing prognostic validity. Findings A significant difference in analytical validity (Spearman's r = 0.63-0.73, p < 0.001) is highlighted across AI methodologies and training strategies. Interestingly, the prognostic performance of digital TILs is demonstrated for eight out of ten AI models, even less extensively trained ones, with similar and overlapping hazard ratios (HR) in the external validation cohort (Cox regression analysis based on IDFS-endpoint, HR = 0.40-0.47; p < 0.004). Interpretation The demonstrated prognostic validity for most of the AI TIL models can be attributed to the intrinsic robustness of host anti-tumor immunity (measured by TILs) as a biomarker. However, the discrepancies between AI models should not be overlooked; rather, we believe that there is a critical need for an accessible, large, multi-centric dataset that will serve as a benchmark ensuring the comparability and reliability of different AI tools in clinical implementation. Funding Nikos Tsiknakis is supported by the Swedish Research Council (Grant Number 2021-03061, Theodoros Foukakis). Balazs Acs is supported by The Swedish Society for Medical Research (Svenska Sällskapet för Medicinsk Forskning) postdoctoral grant. Roberto Salgado is supported by a grant from Breast Cancer Research Foundation (BCRF).
Collapse
Affiliation(s)
- Joan Martínez Vidal
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nikos Tsiknakis
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
| | - Ana Bosch
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Region Skåne, Lund, Sweden
| | - Anna Ehinger
- Department of Genetics, Pathology and Molecular Diagnostics, Laboratory Medicine, Region Skåne, Lund, Sweden
| | - Emma Nimeus
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-22381, Lund, Sweden
- Division of Surgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Yalai Bai
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - David L. Rimm
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Balazs Acs
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Sugawara K, Fukuda T, Murakami C, Oka D, Yoshii T, Amori G, Ishibashi K, Kobayashi Y, Hara H, Kanda H, Motoi N. Impacts of tumor microenvironment during neoadjuvant chemotherapy in patients with esophageal squamous cell carcinoma. Cancer Sci 2024; 115:2819-2830. [PMID: 38693726 PMCID: PMC11309932 DOI: 10.1111/cas.16203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
With the advent of immune checkpoint inhibitors (ICIs), a better understanding of tumor microenvironment (TME) is becoming crucial in managing esophageal squamous cell carcinoma (ESCC) patients. We investigated the survival impact of TME status and changes in patients with ESCC who underwent neoadjuvant chemotherapy (NAC) followed by surgery (n = 264). We examined immunohistochemical status (CD4+, CD8+, CD20+, Foxp3+, HLA class-1+, CD204+, and programmed death ligand-1 [PD-L1+]) on 264 pre-NAC and 204 paired post-NAC specimens. Patients were classified by their pre- and post-NAC immune cell status and their changes following NAC. Our findings showed that pre-NAC TME status was not significantly associated with survival outcomes. In contrast, post-NAC TME status, such as low level of T cells, CD4+ T cells, and high PD-L1 combined positive score (CPS), were significantly associated with poor overall survival (OS). Notably, TME changes through NAC exerted significant survival impacts; patients with consistently low levels of T cells, low levels of CD4+ T cells, or high levels of PD-L1 (CPS) had very poor OS (3-year OS: 35.5%, 40.2%, and 33.3%, respectively). Tumor microenvironment changes of consistently low T cells, low CD4+ T cells, and high PD-L1 were independent predictors of poor OS in multivariate Cox hazards analyses, while factors indicating post-NAC status (T cells, CD4+, and PD-L1 [CPS]) alone were not. Therefore, we suggest that the consistently low T/high PD-L1 group could benefit from additional therapies, such as ICIs, and the importance of stratification by the TME, which has recently been recognized.
Collapse
Affiliation(s)
- Kotaro Sugawara
- Department of Gastroenterological SurgerySaitama Cancer CenterSaitamaJapan
| | - Takashi Fukuda
- Department of Gastroenterological SurgerySaitama Cancer CenterSaitamaJapan
| | - Chiaki Murakami
- Department of PathologySaitama Cancer CenterSaitamaJapan
- Department of PathologySaitama Medical Center, Saitama Medical UniversitySaitamaJapan
| | - Daiji Oka
- Department of Gastroenterological SurgerySaitama Cancer CenterSaitamaJapan
| | - Takako Yoshii
- Department of GastroenterologySaitama Cancer CenterSaitamaJapan
| | - Gulanbar Amori
- Department of PathologySaitama Cancer CenterSaitamaJapan
- Division of PathologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
- Department of PathologyCancer Institute Hospital of JFCR, Japanese Foundation for Cancer ResearchTokyoJapan
| | | | | | - Hiroki Hara
- Department of GastroenterologySaitama Cancer CenterSaitamaJapan
| | - Hiroaki Kanda
- Department of PathologySaitama Cancer CenterSaitamaJapan
| | - Noriko Motoi
- Department of PathologySaitama Cancer CenterSaitamaJapan
- Center for Cancer Genomic MedicineSaitama Cancer CenterSaitamaJapan
| |
Collapse
|
4
|
Zaakouk M, Longworth A, Hunter K, Jiman S, Kearns D, El-Deftar M, Shaaban AM. Detailed Profiling of the Tumor Microenvironment in Ethnic Breast Cancer, Using Tissue Microarrays and Multiplex Immunofluorescence. Int J Mol Sci 2024; 25:6501. [PMID: 38928207 PMCID: PMC11203983 DOI: 10.3390/ijms25126501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer poses a global health challenge, yet the influence of ethnicity on the tumor microenvironment (TME) remains understudied. In this investigation, we examined immune cell infiltration in 230 breast cancer samples, emphasizing diverse ethnic populations. Leveraging tissue microarrays (TMAs) and core samples, we applied multiplex immunofluorescence (mIF) to dissect immune cell subtypes across TME regions. Our analysis revealed distinct immune cell distribution patterns, particularly enriched in aggressive molecular subtypes triple-negative and HER2-positive tumors. We observed significant correlations between immune cell abundance and key clinicopathological parameters, including tumor size, lymph node involvement, and patient overall survival. Notably, immune cell location within different TME regions showed varying correlations with clinicopathologic parameters. Additionally, ethnicities exhibited diverse distributions of cells, with certain ethnicities showing higher abundance compared to others. In TMA samples, patients of Chinese and Caribbean origin displayed significantly lower numbers of B cells, TAMs, and FOXP3-positive cells. These findings highlight the intricate interplay between immune cells and breast cancer progression, with implications for personalized treatment strategies. Moving forward, integrating advanced imaging techniques, and exploring immune cell heterogeneity in diverse ethnic cohorts can uncover novel immune signatures and guide tailored immunotherapeutic interventions, ultimately improving breast cancer management.
Collapse
Affiliation(s)
- Mohamed Zaakouk
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.Z.); (K.H.)
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
- Cancer Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Aisling Longworth
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
| | - Kelly Hunter
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.Z.); (K.H.)
| | - Suhaib Jiman
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
| | - Daniel Kearns
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
| | - Mervat El-Deftar
- Cancer Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Abeer M Shaaban
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.Z.); (K.H.)
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK; (A.L.); (S.J.); (D.K.)
| |
Collapse
|
5
|
Meng J, Tan JYT, Joseph CR, Ye J, Lim JCT, Goh D, Xue Y, Lim X, Koh VCY, Wee F, Tay TKY, Chan JY, Ng CCY, Iqbal J, Lau MC, Lim HE, Toh HC, Teh BT, Dent RA, Tan PH, Yeong JPS. The Prognostic Value of CD39 as a Marker of Tumor-Specific T Cells in Triple-Negative Breast Cancer in Asian Women. J Transl Med 2024; 104:100303. [PMID: 38103870 DOI: 10.1016/j.labinv.2023.100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has a poor prognosis with limited therapeutic options available for affected patients. Efforts are ongoing to identify surrogate markers for tumor-specific CD8+ T cells that can predict the response to immune checkpoint inhibitor (ICI) therapies, such as programmed cell death protein 1 or programmed cell death ligand-1 blockade. We have previously identified tumor-specific CD39+CD8+ T cells in non-small cell lung cancer that might help predict patient responses to programmed cell death protein 1 or programmed cell death ligand-1 blockade. Based on this finding, we conducted a comparative interrogation of TNBC in an Asian cohort to evaluate the potential of CD39 as a surrogate marker of tumor-specific CD8+ T cells. Using ICI-treated TNBC mouse models (n = 24), flow cytometric analyses of peripheral blood mononuclear cells and tumor-infiltrating lymphocytes revealed that >99% of tumor-specific CD8+ T cells also expressed CD39. To investigate the relationship between CD39+CD8+ T-cell density and CD39 expression with disease prognosis, we performed multiplex immunohistochemistry staining on treatment-naive human TNBC tissues (n = 315). We saw that the proportion of CD39+CD8+ T cells in human TNBC tumors correlated with improved overall survival, as did the densities of other CD39+ immune cell infiltrates, such as CD39+CD68+ macrophages. Finally, increased CD39 expression on CD8+ T cells was also found to predict the response to ICI therapy (pembrolizumab) in a separate cohort of 11 TNBC patients. These findings support the potential of CD39+CD8+ T-cell density as a prognostic factor in Asian TNBC patients.
Collapse
Affiliation(s)
- Jia Meng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Jing Ying Tira Tan
- Duke-NUS Medical School, Singapore, Republic of Singapore; National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Craig Ryan Joseph
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Jiangfeng Ye
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Denise Goh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Yuezhen Xue
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Xinru Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Valerie Cui Yun Koh
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Republic of Singapore
| | - Felicia Wee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Timothy Kwang Yong Tay
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Republic of Singapore
| | | | | | - Jabed Iqbal
- Duke-NUS Medical School, Singapore, Republic of Singapore; Department of Anatomical Pathology, Singapore General Hospital, Singapore, Republic of Singapore
| | - Mai Chan Lau
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Hsuen Elaine Lim
- National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Han Chong Toh
- National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Bin Tean Teh
- National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Rebecca Alexandra Dent
- Duke-NUS Medical School, Singapore, Republic of Singapore; National Cancer Centre Singapore, Singapore, Republic of Singapore.
| | - Puay Hoon Tan
- KK Women's and Children's Hospital, Singapore, Republic of Singapore; Luma Women's Imaging Centre/Medical Centre, Singapore, Republic of Singapore.
| | - Joe Poh Sheng Yeong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Duke-NUS Medical School, Singapore, Republic of Singapore; National Cancer Centre Singapore, Singapore, Republic of Singapore; Department of Anatomical Pathology, Singapore General Hospital, Singapore, Republic of Singapore.
| |
Collapse
|
6
|
Dou T, Li J, Zhang Y, Pei W, Zhang B, Wang B, Wang Y, Jia H. The cellular composition of the tumor microenvironment is an important marker for predicting therapeutic efficacy in breast cancer. Front Immunol 2024; 15:1368687. [PMID: 38487526 PMCID: PMC10937353 DOI: 10.3389/fimmu.2024.1368687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
At present, the incidence rate of breast cancer ranks first among new-onset malignant tumors in women. The tumor microenvironment is a hot topic in tumor research. There are abundant cells in the tumor microenvironment that play a protumor or antitumor role in breast cancer. During the treatment of breast cancer, different cells have different influences on the therapeutic response. And after treatment, the cellular composition in the tumor microenvironment will change too. In this review, we summarize the interactions between different cell compositions (such as immune cells, fibroblasts, endothelial cells, and adipocytes) in the tumor microenvironment and the treatment mechanism of breast cancer. We believe that detecting the cellular composition of the tumor microenvironment is able to predict the therapeutic efficacy of treatments for breast cancer and benefit to combination administration of breast cancer.
Collapse
Affiliation(s)
- Tingyao Dou
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaochen Zhang
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Wanru Pei
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Binyue Zhang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Huertas-Caro CA, Ramírez MA, Rey-Vargas L, Bejarano-Rivera LM, Ballen DF, Nuñez M, Mejía JC, Sua-Villegas LF, Cock-Rada A, Zabaleta J, Fejerman L, Sanabria-Salas MC, Serrano-Gomez SJ. Tumor infiltrating lymphocytes (TILs) are a prognosis biomarker in Colombian patients with triple negative breast cancer. Sci Rep 2023; 13:21324. [PMID: 38044375 PMCID: PMC10694133 DOI: 10.1038/s41598-023-48300-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023] Open
Abstract
Triple negative breast cancer (TNBC) is highly immunogenic and high levels of tumor infiltrating lymphocytes (TILs) have been associated with a better prognosis and higher probability to achieve pathological complete response. Here, we explore the potential role of stromal TILs level and composition as a prognostic and predictive biomarker in TNBC. 195 Tumor biospecimens from patients diagnosed with TNBC were included. Stromal TILs (sTILs), positive CD4/CD8 cells were evaluated. Differences in clinic-pathological characteristics according to immune infiltration were assessed. The predictive and prognostic value of immune infiltration was analyzed by multivariate models. Higher immune infiltration was observed in patients with favorable clinical-pathological features. Survival analysis showed that longer overall survival times were observed in patients with a higher infiltration of sTILs (p = 0.00043), CD4 + (p = 0.0074) and CD8 + (p = 0.008). In the multivariate analysis, low levels of sTILs were found to be associated with a higher mortality hazard (HR: 1.59, 95% CI 1.01-2.48). CD4 and CD8 immune infiltration were associated with higher odds for pathological complete response (OR: 1.20, 95% CI 1.00-1.46, OR: 1.28, 1.02-1.65, respectively). Our results suggest that immune infiltration could be used as a prognostic marker for overall survival in TNBC patients.
Collapse
Affiliation(s)
- Carlos A Huertas-Caro
- Cancer Biology Research Group, National Cancer Institute of Colombia, Bogotá, Colombia
| | - Mayra A Ramírez
- Cancer Biology Research Group, National Cancer Institute of Colombia, Bogotá, Colombia
| | - Laura Rey-Vargas
- Cancer Biology Research Group, National Cancer Institute of Colombia, Bogotá, Colombia
| | | | - Diego Felipe Ballen
- Clinical Oncology Unit. Instituto Nacional de Cancerología and Adjunct Clinical Professor, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Marcela Nuñez
- Research Support and Follow-Up Group, National Cancer Institute of Colombia, Calle 1 No. 9 -85, Bogotá, DC, Colombia
| | - Juan Carlos Mejía
- Grupo de Patología, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Luz Fernanda Sua-Villegas
- Department of Pathology and Laboratory Medicine, Fundación Valle del Lili, and Faculty of Health Sciences, Universidad ICESI, Cali, Colombia
| | - Alicia Cock-Rada
- Department of Oncological Breast Surgery and Mastology, Instituto de Cancerología Las Américas, Medellín, Colombia
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Laura Fejerman
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | | | - Silvia J Serrano-Gomez
- Cancer Biology Research Group, National Cancer Institute of Colombia, Bogotá, Colombia.
- Research Support and Follow-Up Group, National Cancer Institute of Colombia, Calle 1 No. 9 -85, Bogotá, DC, Colombia.
| |
Collapse
|
8
|
Shin J, Ham B, Seo JH, Lee SB, Park IA, Gong G, Kim SB, Lee HJ. Immune repertoire and responses to neoadjuvant TCHP therapy in HER2-positive breast cancer. Ther Adv Med Oncol 2023; 15:17588359231157654. [PMID: 36865681 PMCID: PMC9972050 DOI: 10.1177/17588359231157654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023] Open
Abstract
Background Despite the introduction of trastuzumab, pathologic complete response (pCR) is not attained in approximately 30-40% of Human epithelial growth factor receptor-2-positive breast cancer. Tumor-infiltrating lymphocytes (TIL) have been suggested as a predictive marker of treatment response, albeit not always effective. We investigated the relationship between trastuzumab, docetaxel, carboplatin, and pertuzumab (TCHP) treatment and immune repertoire as a treatment response predictor. Design In all, 35 cases were divided into two experimental groups: 10 and 25 cases in the preliminary and main experiments, respectively. In the preliminary experiment, the biopsy tissues before TCHP treatment and the surgical tissues after TCHP treatment were compared. In the main experiment, the biopsy tissues before TCHP treatment were compared according to the TCHP treatment response. Methods The T-cell repertoire for TRA, TRB, TRG, and TRD, and B-cell repertoire for immunoglobulin heavy, immunoglobulin kappa, and immunoglobulin lambda were evaluated. Whole transcriptome sequencing was also performed. Results In the preliminary experiment, the density and richness of the T-cell receptor (TCR) and B-cell receptor (BCR) repertoires decreased after treatment, regardless of TCHP response. In the main experiment, the Shannon's entropy index, density, and length of CDR3 of the TCR and BCR repertoires did not differ significantly in patients who did and did not achieve pCR. The pCR and non-pCR subgroups according to the level of TILs revealed that the non-pCR/lowTIL group had a higher proportion of low-frequency clones than the pCR/lowTIL group in TRA (non-pCR/lowTIL versus pCR/lowTIL, 0.01-0.1%, 63% versus 45.3%; <0.01%, 32.9% versus 51.8%, p < 0.001) and TRB (non-pCR/lowTIL versus pCR/lowTIL, 0.01-0.1%, 26.5% versus 14.7%; <0.01%, 72.0% versus 84.1%, p < 0.001). Conclusions The role of the diversity, richness, and density of the TCR and BCR repertoires as predictive markers for TCHP response was not identified. Compositions of low-frequency clones could be candidates for predictive factors of TCHP response; however, validation studies and further research are necessary.
Collapse
Affiliation(s)
- Junyoung Shin
- Department of Pathology, Asan Medical Center,
University of Ulsan College of Medicine, Seoul, Korea
| | | | | | - Sae Byul Lee
- Department of Breast Surgery, Asan Medical
Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Ah Park
- Department of Pathology, Kangbuk Samsung
Hospital, Seoul, Republic of Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center,
University of Ulsan College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
9
|
Demircan NC, Atcı MM, Demir M, Işık S, Akagündüz B. Dynamic changes in systemic immune-inflammation index predict pathological tumor response and overall survival in patients with gastric or gastroesophageal junction cancer receiving neoadjuvant chemotherapy. Asia Pac J Clin Oncol 2023; 19:104-112. [PMID: 35538045 DOI: 10.1111/ajco.13784] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/05/2022] [Accepted: 04/06/2022] [Indexed: 01/20/2023]
Abstract
AIM Systemic inflammation has been associated with chemoresistance and prognosis in solid tumors. Systemic immune-inflammation index (SII) is a novel marker derived from complete blood count. We investigated whether differences between SIIs measured before and after neoadjuvant chemotherapy (NACT) are associated with tumor regression grade (TRG) and survival in gastric and gastroesophageal junction (GEJ) cancer patients. METHODS Records of gastric and GEJ cancer patients treated with NACT in two centers were evaluated retrospectively. Patients were categorized according to difference between pre- and post-NACT SII values (ΔSII). Association between clinicopathological factors and TRG was analyzed using logistic regression method. Predictors of disease-free and overall survival (DFS and OS) were determined with Cox regression models. RESULTS The study included 140 patients. Patients with ΔSII<0 were more likely to achieve TRG 0/1 (45.2% vs. 19.1%, p = 0.003) and ΔSII<0 was an independent predictor of TRG 0/1 (OR = 6.05, p<0.001). DFS and OS of patients with ΔSII<0 were also significantly longer (p = 0.031 and p = 0.006, respectively). After adjustment for other variables, ΔSII≥0 was an independent prognostic factor for OS (Hazard ratio (HR) = 2.13, p = 0.008). CONCLUSIONS Changes in SII, which is a low-cost and easily accessible marker, may be used to estimate prognosis, individualize postoperative treatment and optimize surveillance in gastric and GEJ cancer patients treated with NACT.
Collapse
Affiliation(s)
- Nazım Can Demircan
- Department of Medical Oncology, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Muhammed Mustafa Atcı
- Department of Medical Oncology, Prof. Dr. Cemil Taşçıoğlu State Hospital, Istanbul, Turkey
| | - Metin Demir
- Department of Medical Oncology, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Selver Işık
- Department of Medical Oncology, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Baran Akagündüz
- Department of Medical Oncology, Binali Yıldırım University School of Medicine, Erzincan, Turkey
| |
Collapse
|
10
|
Provenzano E, Shaaban AM. Pathology of neoadjuvant therapy and immunotherapy testing for breast cancer. Histopathology 2023; 82:170-188. [PMID: 36482270 DOI: 10.1111/his.14771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 12/13/2022]
Abstract
Neoadjuvant chemotherapy (NACT) has become the standard of care for high-risk breast cancer, including triple-negative (TNBC) and HER2-positive disease. As a result, handling and reporting of breast specimens post-NACT is part of routine practice, and it is important for pathologists to recognise the changes in tumour cells, tumour-associated stroma and background breast tissue induced by NACT. Familiarity with characteristic stromal features enables identification of the pre-treatment tumour site and allows confident diagnosis of pathological complete response (pCR) which is important for decisions concerning adjuvant therapy. Neoadjuvant endocrine therapy (NAET) is used less frequently than NACT; however, the SARS-COVID-19 pandemic has changed practice, with increased use as bridging therapy if surgery is delayed. NAET also induces characteristic changes in the tumour and stroma. Changes in the tumour microenvironment following NACT and NAET are also described. Immunotherapy is approved for use in advanced TNBC, and there are several trials exploring its role in early TNBC in the neoadjuvant setting. The current biomarker to determine eligibility for treatment with immune checkpoint inhibitors is programmed death ligand-1 (PD-L1) immunohistochemistry; however, this is complicated by lack of standardisation with different drugs linked to tests using different antibodies with different scoring systems. The situation in the neoadjuvant setting is further complicated by improved pCR rates for PD-L1-positive tumours in both immune therapy and placebo arms. Alternative biomarkers are urgently needed to identify which patients will derive benefit from immunotherapy and key candidates are discussed.
Collapse
Affiliation(s)
- Elena Provenzano
- Department of Histopathology, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Abeer M Shaaban
- Queen Elizabeth Hospital Birmingham and University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Tanaka R, Eguchi S, Kimura K, Ohira G, Tanaka S, Amano R, Tanaka H, Yashiro M, Ohira M, Kubo S. Tumor-infiltrating lymphocytes and macrophages as a significant prognostic factor in biliary tract cancer. PLoS One 2023; 18:e0280348. [PMID: 36693070 PMCID: PMC9873170 DOI: 10.1371/journal.pone.0280348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The impact of tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs) on the prognosis of biliary tract cancer (BTC) is not completely understood. Therefore, in our study, we investigated the effects of the various immune cells infiltration in tumor microenvironment (TME). METHODS A total of 130 patients with BTC who underwent surgical treatment at our institution were enrolled in this study. We retrospectively evaluated TILs and TAMs with immunohistochemical staining. RESULTS With CD8-high, CD4-high, FOXP3-high, and CD68-low in TME as one factor, we calculated Immunoscore according to the number of factors. The high Immunoscore group showed significantly superior overall survival (OS) and recurrence-free survival (RFS) than the low Immunoscore group (median OS, 60.8 vs. 26.4 months, p = 0.001; median RFS not reached vs. 17.2 months, p < 0.001). Also, high Immunoscore was an independent good prognostic factor for OS and RFS (hazards ratio 2.05 and 2.41 and p = 0.01 and p = 0.001, respectively). CONCLUSIONS High Immunoscore group had significantly superior OS and RFS and was an independent good prognostic factor for OS and RFS.
Collapse
Affiliation(s)
- Ryota Tanaka
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Shimpei Eguchi
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenjiro Kimura
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| | - Go Ohira
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shogo Tanaka
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ryosuke Amano
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shoji Kubo
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
12
|
Zhu Y, Tzoras E, Matikas A, Bergh J, Valachis A, Zerdes I, Foukakis T. Expression patterns and prognostic implications of tumor-infiltrating lymphocytes dynamics in early breast cancer patients receiving neoadjuvant therapy: A systematic review and meta-analysis. Front Oncol 2022; 12:999843. [PMID: 36531050 PMCID: PMC9749788 DOI: 10.3389/fonc.2022.999843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/14/2022] [Indexed: 08/06/2023] Open
Abstract
PURPOSE High levels of tumor-infiltrating lymphocytes (TILs) are associated with better outcomes in early breast cancer and higher pathological response rates to neoadjuvant chemotherapy especially in the triple-negative (TNBC) and HER2+ subtypes. However, the dynamic changes in TILs levels after neoadjuvant treatment (NAT) are less studied. This systematic review and meta-analysis aimed to investigate the patterns and role of TILs dynamics change in early breast cancer patients receiving NAT. METHODS Medline, Embase, Web of Science Core Collection and PubMed Central databases were searched for eligible studies. Data were extracted independently by two researchers and discordances were resolved by a third. Pooled TILs rates pre- & post-treatment (overall and per subtype), pooled rates of ΔTILs and direction of change after NAT as well as correlation of ΔTILs with survival outcomes were generated in the outcome analysis. RESULTS Of 2116 identified entries, 34 studies fulfilled the criteria and provided adequate data for the outcomes of interest. A decreased level of TILs was observed after NAT in paired samples across all subtypes. The effect of NAT on TILs was most prominent in TNBC subtype with a substantial change, either increase or decrease, in 79.3% (95% CI 61.7-92.6%) of the patients as well as in HER2+ disease (14.4% increased vs 46.2% decreased). An increase in ΔTILs in TNBC was associated with better disease-free/relapse-free survival in pooled analysis (univariate HR = 0.59, 95% CI: 0.37-0.95, p = 0.03). CONCLUSION This meta-analysis illustrates the TILs dynamics during NAT for breast cancer and indicates prognostic implications of ΔTILs in TNBC. The potential clinical utility of the longitudinal assessment of TILs during neoadjuvant therapy warrants further validation.
Collapse
Affiliation(s)
- Yajing Zhu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Evangelos Tzoras
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Alexios Matikas
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Antonios Valachis
- Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ioannis Zerdes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
A Case Report on Longitudinal Collection of Tumour Biopsies for Gene Expression-Based Tumour Microenvironment Analysis from Pancreatic Cancer Patients Treated with Endoscopic Ultrasound Guided Radiofrequency Ablation. Curr Oncol 2022; 29:6754-6763. [PMID: 36290808 PMCID: PMC9600136 DOI: 10.3390/curroncol29100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Most patients with pancreatic ductal adenocarcinoma (PDAC) are metastatic at presentation with dismal prognosis warranting improved systemic therapy options. Longitudinal sampling for the assessment of treatment response poses a challenge for validating novel therapies. In this case study, we evaluate the feasibility of collecting endoscopic ultrasound (EUS)-guided longitudinal fine-needle aspiration biopsies (FNABs) from two PDAC patients and conduct gene expression studies associated with tumour microenvironment changes associated with radiofrequency ablation (RFA). METHODS EUS-guided serial/longitudinal FNABs of tumour were collected before and after treatment from two stage III inoperable gemcitabine-treated PDAC patients treated with targeted RFA three times. Biopsies were analysed using a custom NanoString panel (144 genes) consisting of cancer and cancer-associated fibroblast (CAFs) subtypes and immune changes. CAF culture was established from one FNAB and characterised by immunofluorescence and immunoblotting. RESULTS Two-course RFA led to the upregulation of the CD1E gene (involved in antigen presentation) in both patients 1 and 2 (4.5 and 3.9-fold changes) compared to baseline. Patient 1 showed increased T cell genes (CD4-8.7-fold change, CD8-35.7-fold change), cytolytic function (6.4-fold change) and inflammatory response (8-fold change). A greater than 2-fold upregulation of immune checkpoint genes was observed post-second RFA in both patients. Further, two-course RFA led to increased PDGFRα (4.5-fold change) and CAF subtypes B and C genes in patient 1 and subtypes A, B and D genes in patient 2. Patient 2-derived CAFs post-first RFA showed expression of PDGFRα, POSTN and MYH11 proteins. Finally, RFA led to the downregulation of classical PDAC subtype-specific genes in both patients. CONCLUSIONS This case study suggests longitudinal EUS-FNAB as a potential resource to study tumour and microenvironmental changes associated with RFA treatment. A large sample size is required in the future to assess the efficacy and safety of the treatment and perform comprehensive statistical analysis of EUS-RFA-based molecular changes in PDAC.
Collapse
|
14
|
Huertas-Caro CA, Ramirez MA, Gonzalez-Torres HJ, Sanabria-Salas MC, Serrano-Gómez SJ. Immune Lymphocyte Infiltrate and its Prognostic Value in Triple-Negative Breast Cancer. Front Oncol 2022; 12:910976. [PMID: 35924147 PMCID: PMC9342669 DOI: 10.3389/fonc.2022.910976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) occurs more frequently in young (<50 years) non-Hispanic black and Hispanic/Latina women. It is considered the most aggressive subtype of breast cancer, although, recently, immune infiltrate has been associated with long-term survival, lower risk of death and recurrence, and response to neoadjuvant chemotherapy. The aim of this review was to evaluate the clinical impact of the immune infiltrate in TNBC by discussing whether its prognostic value varies across different populations. A comprehensive systematic search in databases such as PubMed and Web of Science was conducted to include papers focused on tumor-infiltrating lymphocytes (TILs) in TNBC in different population groups and that were published before January 2021. TNBC patients with higher levels of TILs had longer overall survival and disease-free survival times compared with TNBC patients with low TIL levels. Similar results were observed for CD4+, CD8+ TIL populations. On the other hand, patients with high TIL levels showed a higher rate of pathological complete response regardless of the population group (Asian, European, and American). These results altogether suggest that TIL subpopulations might have a prognostic role in TNBC, but the underlying mechanism needs to be elucidated. Although the prognosis value of TILs was not found different between the population groups analyzed in the revised literature, further studies including underrepresented populations with different genetic ancestries are still necessary to conclude in this regard.
Collapse
Affiliation(s)
| | - Mayra Alejandra Ramirez
- Grupo de investigación en biología del cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Henry J. Gonzalez-Torres
- Doctorado en Ciencias Biomédicas, Universidad del Valle, Cali, Colombia
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | | | - Silvia J. Serrano-Gómez
- Grupo de apoyo y seguimiento para la investigación, Instituto Nacional de Cancerología, Bogotá, Colombia
| |
Collapse
|
15
|
Čelešnik H, Potočnik U. Peripheral Blood Transcriptome in Breast Cancer Patients as a Source of Less Invasive Immune Biomarkers for Personalized Medicine, and Implications for Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:591. [PMID: 35158858 PMCID: PMC8833511 DOI: 10.3390/cancers14030591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Transcriptome studies of peripheral blood cells can advance our understanding of the systemic immune response to the presence of cancer and the mechanisms underlying cancer onset and progression. This enables the identification of novel minimally invasive immune biomarkers for early cancer detection and personalized cancer management and may bring forward new immunotherapy options. Recent blood gene expression analyses in breast cancer (BC) identified distinct patient subtypes that differed in the immune reaction to cancer and were distinct from the clinical BC subtypes, which are categorized based on expression of specific receptors on tumor cells. Introducing new BC subtypes based on peripheral blood gene expression profiles may be appropriate, since it may assist in BC prognosis, the identification of patients likely to benefit from immunotherapy, and treatment efficacy monitoring. Triple-negative breast cancer (TNBC) is an aggressive, heterogeneous, and difficult-to-treat disease, and identification of novel biomarkers for this BC is crucial for clinical decision-making. A few studies have reported TNBC-enriched blood transcriptional signatures, mostly related to strong inflammation and augmentation of altered immune signaling, that can differentiate TNBC from other classical BC subtypes and facilitate diagnosis. Future research is geared toward transitioning from expression signatures in unfractionated blood cells to those in immune cell subpopulations.
Collapse
Affiliation(s)
- Helena Čelešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia;
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia;
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
16
|
Mojtahedzadeh S, Opsahl A, Aguilar JK, Li D, Streiner N, Wang J, Trajkovic D, Boucher G, Coskran T, O'Neil SP, Ram S. Characterizing Intra-Tumor and Inter-Tumor Variability of Immune Cell Infiltrates in Murine Syngeneic Tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2133-2146. [PMID: 34428423 DOI: 10.1016/j.ajpath.2021.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022]
Abstract
Murine tumors are indispensable model systems in preclinical immuno-oncology research. While immunologic heterogeneity is well-known to be an important factor that can influence treatment outcome, there is a severe paucity of data concerning the nature of this heterogeneity in murine tumor models. Using serial sectioning methodology combined with IHC analysis and whole-slide image analysis, the depth-dependent variation in immune-cell abundance in tumor specimens was investigated at single-cell resolution. Specifically, intra- and intertumor variability in cell density of nine immune-cell biomarkers was quantified in multiple murine tumor models. The analysis showed that intertumor variability was typically the dominant source of variation in measurements of immune-cell densities. Statistical power analysis revealed the effect of group size and variance in immune-cell density on the predictive power of detecting a statistically meaningful fold-change in immune-cell density. Intertumor variability in the ratio of immune-cell densities showed distinct patterns in select tumor models and revealed the existence of strong correlations between select biomarker pairs. Furthermore, the relative proportion of immune cells at different depths across tumor samples was preserved in some but not all tumor models, thereby revealing the existence of compositional heterogeneity. Taken together, these results reveal novel insights into the nature of immunologic heterogeneity, which is not accessible through typical omics approaches.
Collapse
MESH Headings
- Animals
- Biological Variation, Individual
- Cell Count
- Chemotaxis, Leukocyte/physiology
- Female
- Gene Expression Regulation, Neoplastic
- Immunophenotyping
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Transplantation
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- Transplantation, Isogeneic
- Tumor Cells, Cultured
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Sepideh Mojtahedzadeh
- Departments of Global Pathology and Investigative Toxicology, Pfizer, Inc., San Diego, California
| | - Alan Opsahl
- Departments of Global Pathology and Investigative Toxicology, Pfizer, Inc., San Diego, California
| | - Joan-Kristel Aguilar
- Departments of Global Pathology and Investigative Toxicology, Pfizer, Inc., San Diego, California
| | - Dingzhou Li
- Drug Safety Statistics, Drug Safety Research and Development, Pfizer, Inc., San Diego, California
| | - Nicole Streiner
- Oncology Research and Development, Pfizer, Inc., San Diego, California
| | - Jinwei Wang
- Oncology Research and Development, Pfizer, Inc., San Diego, California
| | - Dusko Trajkovic
- Departments of Global Pathology and Investigative Toxicology, Pfizer, Inc., San Diego, California
| | - Germaine Boucher
- Departments of Global Pathology and Investigative Toxicology, Pfizer, Inc., San Diego, California
| | - Timothy Coskran
- Departments of Global Pathology and Investigative Toxicology, Pfizer, Inc., San Diego, California
| | - Shawn P O'Neil
- Departments of Global Pathology and Investigative Toxicology, Pfizer, Inc., San Diego, California
| | - Sripad Ram
- Departments of Global Pathology and Investigative Toxicology, Pfizer, Inc., San Diego, California.
| |
Collapse
|
17
|
Shohdy KS, Bareja R, Sigouros M, Wilkes DC, Dorsaint P, Manohar J, Bockelman D, Xiang JZ, Kim R, Ohara K, Eng K, Mosquera JM, Elemento O, Sboner A, Alonso A, Faltas BM. Functional comparison of exome capture-based methods for transcriptomic profiling of formalin-fixed paraffin-embedded tumors. NPJ Genom Med 2021; 6:66. [PMID: 34385467 PMCID: PMC8360986 DOI: 10.1038/s41525-021-00231-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/26/2021] [Indexed: 11/08/2022] Open
Abstract
The availability of fresh frozen (FF) tissue is a barrier for implementing RNA sequencing (RNA-seq) in the clinic. The majority of clinical samples are stored as formalin-fixed, paraffin-embedded (FFPE) tissues. Exome capture platforms have been developed for RNA-seq from FFPE samples. However, these methods have not been systematically compared. We performed transcriptomic analysis of 32 FFPE tumor samples from 11 patients using three exome capture-based methods: Agilent SureSelect V6, TWIST NGS Exome, and IDT XGen Exome Research Panel. We compared these methods to the TruSeq RNA-seq of fresh frozen (FF-TruSeq) tumor samples from the same patients. We assessed the recovery of clinically relevant biological features. The Spearman's correlation coefficients between the global expression profiles of the three capture-based methods from FFPE and matched FF-TruSeq were high (rho = 0.72-0.9, p < 0.05). A significant correlation between the expression of key immune genes between individual capture-based methods and FF-TruSeq (rho = 0.76-0.88, p < 0.05) was observed. All exome capture-based methods reliably detected outlier expression of actionable gene transcripts, including ERBB2, MET, NTRK1, and PPARG. In urothelial cancer samples, the Agilent assay was associated with the highest molecular subtype concordance with FF-TruSeq (Cohen's k = 0.7, p < 0.01). The Agilent and IDT assays detected all the clinically relevant fusions that were initially identified in FF-TruSeq. All FFPE exome capture-based methods had comparable performance and concordance with FF-TruSeq. Our findings will enable the implementation of RNA-seq in the clinic to guide precision oncology approaches.
Collapse
Affiliation(s)
- Kyrillus S Shohdy
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Clinical Oncology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Sigouros
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David C Wilkes
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Princesca Dorsaint
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Jyothi Manohar
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Bockelman
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenny Z Xiang
- Genomic Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Rob Kim
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kentaro Ohara
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kenneth Eng
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alicia Alonso
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Bishoy M Faltas
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
18
|
How the variability between computer-assisted analysis procedures evaluating immune markers can influence patients' outcome prediction. Histochem Cell Biol 2021; 156:461-478. [PMID: 34383240 DOI: 10.1007/s00418-021-02022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Differences between computer-assisted image analysis (CAI) algorithms may cause discrepancies in the identification of immunohistochemically stained immune biomarkers in biopsies of breast cancer patients. These discrepancies have implications for their association with disease outcome. This study aims to compare three CAI procedures (A, B and C) to measure positive marker areas in post-neoadjuvant chemotherapy biopsies of patients with triple-negative breast cancer (TNBC) and to explore the differences in their performance in determining the potential association with relapse in these patients. A total of 3304 digital images of biopsy tissue obtained from 118 TNBC patients were stained for seven immune markers using immunohistochemistry (CD4, CD8, FOXP3, CD21, CD1a, CD83, HLA-DR) and were analyzed with procedures A, B and C. The three methods measure the positive pixel markers in the total tissue areas. The extent of agreement between paired CAI procedures, a principal component analysis (PCA) and Cox multivariate analysis was assessed. Comparisons of paired procedures showed close agreement for most of the immune markers at low concentration. The probability of differences between the paired procedures B/C and B/A was generally higher than those observed in C/A. The principal component analysis, largely based on data from CD8, CD1a and HLA-DR, identified two groups of patients with a significantly lower probability of relapse than the others. The multivariate regression models showed similarities in the factors associated with relapse for procedures A and C, as opposed to those obtained with procedure B. General agreement among the results of CAI procedures would not guarantee that the same predictive breast cancer markers were consistently identified. These results highlight the importance of developing additional strategies to improve the sensitivity of CAI procedures.
Collapse
|
19
|
Prediction of distant metastatic recurrence by tumor-infiltrating lymphocytes in hormone receptor-positive breast cancer. BMC WOMENS HEALTH 2021; 21:225. [PMID: 34051785 PMCID: PMC8164786 DOI: 10.1186/s12905-021-01373-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/24/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Breast cancer subtypes are known to have different metastatic recurrence sites. Distant metastases are often observed during the post-operative course in patients with human epidermal growth factor receptor 2 (HER2)-enriched breast cancer and triple-negative breast cancer, but are relatively rare in those with hormone receptor-positive and HER2-negative (HR+/HER2-) breast cancer. Tumor-infiltrating lymphocytes (TILs) serve as an index to monitor tumor immune microenvironment and may possibly predict the prognosis and therapeutic effect in breast cancer. This study aimed to investigate the correlation between TIL density and recurrence site in HR+/HER2- breast cancer. METHODS In stages I-II of HR+/HER2- breast cancer patients who underwent surgery as the first treatment and received adjuvant endocrine therapy (except adjuvant chemotherapy), forty-two patients relapsed after surgery. TILs were evaluated using needle biopsy specimens for the diagnosis of breast cancer. Morphological assessment was conducted using conventional hematoxylin and eosin staining. RESULTS Six patients had no TILs density. In them, local recurrence was significantly less (p = 0.022), while distant metastases were significantly more (p = 0.015) compared to those in patients with TIL density. Therefore, for the prediction of distant metastases in HR+/HER2- breast cancer without chemotherapy, TILs could be used as predictors in univariate analysis (p = 0.015, odds ratio [OR] = 0.127), although not as independent factors (p = 0.285, OR = 0.144). CONCLUSIONS Our findings indicate that TILs may predict distant metastatic recurrence in stages I-II of HR+/HER2- breast cancer in patients who do not undergo chemotherapy.
Collapse
|
20
|
d'Engremont C, Grillot J, Raillat J, Vernerey D, Vuitton L, Koch S, Turco C, Heyd B, Mouillet G, Jacquinot Q, Borg C, Vienot A. Additive Value of Preoperative Sarcopenia and Lymphopenia for Prognosis Prediction in Localized Pancreatic Ductal Adenocarcinoma. Front Oncol 2021; 11:683289. [PMID: 34123853 PMCID: PMC8190386 DOI: 10.3389/fonc.2021.683289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022] Open
Abstract
Background Surgical resection with adjuvant chemotherapy is the only treatment that can provide long term survival in localized pancreatic ductal adenocarcinoma (LPDAC). Notwithstanding, recurrence occurs in the vast majority of patients and a better stratification of preoperative therapies is required. This study aimed to investigate preoperative immunological and nutritional factors to predict relapse-free survival (RFS) in patients with LPDAC. Methods Analyses were derived from all consecutive LPDAC patients treated with surgical resection at Besancon University Hospital, France, between January 2006 and December 2014 (n=146). Biological and nutritional parameters were recorded before and after surgery. The association of 24 baseline parameters with RFS was evaluated using univariate and multivariate Cox analyses. Based on the final model, a prognostic score was developed. Results Lymphocyte count and body composition were available for 94 patients. In multivariate analysis, preoperative lymphopenia and sarcopenia (or a low muscle mass) were identified as independent prognostic factors for RFS. The score determined three groups with a median RFS of 5.6 months (95% confidence interval [CI] = 4.3 to 9.6 months) for high-risk group, corresponding to patients with lymphopenia; 11.5 months (95%CI = 9.8 to 13.9 months), and 21.2 months (95%CI = 9.9 to 55.3 months), for intermediate-(patient with sarcopenia without lymphopenia), and low-risk groups (no risk factor), respectively (p <0.001). Preoperative sarcopenia predicts the occurrence of postoperative lymphopenia in patients with a preoperative lymphocyte count above 1,000/mm3 (p = 0.0029). Conclusions Preoperative lymphopenia and sarcopenia are pejorative prognostic factors in LPDAC and should be considered in the preoperative evaluation to stratify death risk in patients with LPDAC.
Collapse
Affiliation(s)
- Christelle d'Engremont
- Department of Gastroenterology and Nutrition, University Hospital of Besançon, Besançon, France
| | - Julienne Grillot
- Department of Gastroenterology and Nutrition, University Hospital of Besançon, Besançon, France
| | - Julie Raillat
- Department of Gastroenterology and Nutrition, University Hospital of Besançon, Besançon, France
| | - Dewi Vernerey
- Methodology and Quality of Life in Oncology Unit, University Hospital of Besançon, Besançon, France
| | - Lucine Vuitton
- Department of Gastroenterology and Nutrition, University Hospital of Besançon, Besançon, France
| | - Stéphane Koch
- Department of Gastroenterology and Nutrition, University Hospital of Besançon, Besançon, France
| | - Célia Turco
- Department of Digestive Surgery and Liver Transplantation, University Hospital of Besançon, Besançon, France
| | - Bruno Heyd
- Department of Digestive Surgery and Liver Transplantation, University Hospital of Besançon, Besançon, France
| | - Guillaume Mouillet
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Quentin Jacquinot
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France.,INSERM, EFS BFC, UMR1098, RIGHT, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, Besançon, France.,Clinical Investigational Center, CIC-1431, University Hospital of Besançon, Besançon, France
| | - Angélique Vienot
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France.,INSERM, EFS BFC, UMR1098, RIGHT, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, Besançon, France.,Clinical Investigational Center, CIC-1431, University Hospital of Besançon, Besançon, France
| |
Collapse
|
21
|
Wang H, Ma H, Sové RJ, Emens LA, Popel AS. Quantitative systems pharmacology model predictions for efficacy of atezolizumab and nab-paclitaxel in triple-negative breast cancer. J Immunother Cancer 2021; 9:jitc-2020-002100. [PMID: 33579739 PMCID: PMC7883871 DOI: 10.1136/jitc-2020-002100] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2021] [Indexed: 12/18/2022] Open
Abstract
Background Immune checkpoint blockade therapy has clearly shown clinical activity in patients with triple-negative breast cancer, but less than half of the patients benefit from the treatments. While a number of ongoing clinical trials are investigating different combinations of checkpoint inhibitors and chemotherapeutic agents, predictive biomarkers that identify patients most likely to benefit remains one of the major challenges. Here we present a modular quantitative systems pharmacology (QSP) platform for immuno-oncology that incorporates detailed mechanisms of immune–cancer cell interactions to make efficacy predictions and identify predictive biomarkers for treatments using atezolizumab and nab-paclitaxel. Methods A QSP model was developed based on published data of triple-negative breast cancer. With the model, we generated a virtual patient cohort to conduct in silico virtual clinical trials and make retrospective analyses of the pivotal IMpassion130 trial that led to the accelerated approval of atezolizumab and nab-paclitaxel for patients with programmed death-ligand 1 (PD-L1) positive triple-negative breast cancer. Available data from clinical trials were used for model calibration and validation. Results With the calibrated virtual patient cohort based on clinical data from the placebo comparator arm of the IMpassion130 trial, we made efficacy predictions and identified potential predictive biomarkers for the experimental arm of the trial using the proposed QSP model. The model predictions are consistent with clinically reported efficacy endpoints and correlated immune biomarkers. We further performed a series of virtual clinical trials to compare different doses and schedules of the two drugs for simulated therapeutic optimization. Conclusions This study provides a QSP platform, which can be used to generate virtual patient cohorts and conduct virtual clinical trials. Our findings demonstrate its potential for making efficacy predictions for immunotherapies and chemotherapies, identifying predictive biomarkers, and guiding future clinical trial designs.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Huilin Ma
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Richard J Sové
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Leisha A Emens
- Department of Medicine, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Dieci MV, Miglietta F, Guarneri V. Immune Infiltrates in Breast Cancer: Recent Updates and Clinical Implications. Cells 2021; 10:223. [PMID: 33498711 PMCID: PMC7911608 DOI: 10.3390/cells10020223] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
In recent decades, the increasing interest in the field of immunotherapy has fostered an intense investigation of the breast cancer (BC) immune microenvironment. In this context, tumor-infiltrating lymphocytes (TILs) have emerged as a clinically relevant and highly reproducible biomarker capable of affecting BC prognosis and response to treatment. Indeed, the evaluation of TILs on primary tumors proved to be strongly prognostic in triple-negative (TN) BC patients treated with either adjuvant or neoadjuvant chemotherapy, as well as in early TNBC patients not receiving any systemic treatment, thus gaining level-1b evidence in this setting. In addition, a strong relationship between TILs and pathologic complete response after neoadjuvant chemotherapy has been reported in all BC subtypes and the prognostic role of higher TILs in early HER2-positive breast cancer patients has also been demonstrated. The interest in BC immune infiltrates has been further fueled by the introduction of the first immune checkpoint inhibitors in the treatment armamentarium of advanced TNBC in patients with PD-L1-positive status by FDA-approved assays. However, despite these advances, a biomarker capable of reliably and exhaustively predicting immunotherapy benefit in BC is still lacking, highlighting the imperative need to further deepen this issue. Finally, more comprehensive evaluation of immune infiltrates integrating both the quantity and quality of tumor-infiltrating immune cells and incorporation of TILs in composite scores encompassing other clinically or biologically relevant biomarkers, as well as the adoption of software-based and/or machine learning platforms for a more comprehensive characterization of BC immune infiltrates, are emerging as promising strategies potentially capable of optimizing patient selection and stratification in the research field. In the present review, we summarize available evidence and recent updates on immune infiltrates in BC, focusing on current clinical applications, potential clinical implications and major unresolved issues.
Collapse
Affiliation(s)
- Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35128 Padova, Italy; (F.M.); (V.G.)
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, 35128 Padova, Italy
| | - Federica Miglietta
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35128 Padova, Italy; (F.M.); (V.G.)
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, 35128 Padova, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35128 Padova, Italy; (F.M.); (V.G.)
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, 35128 Padova, Italy
| |
Collapse
|
23
|
Singh A, Bandyopadhyay A, Mukherjee N, Basu A. Toll-Like Receptor 9 Expression Levels in Breast Carcinoma Correlate with Improved Overall Survival in Patients Treated with Neoadjuvant Chemotherapy and Could Serve as a Prognostic Marker. Genet Test Mol Biomarkers 2020; 25:12-19. [PMID: 33372855 DOI: 10.1089/gtmb.2020.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Aim: Toll-like receptor 9 (TLR9) can recognize the DNA fragments released from chemotherapy-treated cancer cells in tumor tissues and induce an inflammatory response. The aim of the present study was to evaluate the survivability benefit of TLR9 expression levels as a potential prognostic marker in breast cancer patients treated with neoadjuvant chemotherapy (NACT). Methods: To study the expression of TLR9 in breast tumor, immunohistochemical (IHC) analyses were performed on two patient cohorts, with NACT (n = 19) and without NACT (n = 23). To corroborate the findings from the in-house cohort, we also used publicly available datasets including SurvExpress (GSE 20685) and the Kaplan-Meier plotter tool (GSE 16446) to analyze the relationship between the expression of TLR9 and overall survivability for NACT. Results: The IHC analyses of our inhouse cohort demonstrated that TLR9 was expressed in both malignant breast epithelial cancer cells as well as in the adjacent stromal cells. The IHC results also indicated that, the percentage of malignant epithelial cells (54.76%) expressing TLR9 was higher than in the adjacent stromal compartment (11.9%). We also observed an increase in the expression levels of TLR9 in the patients who were given NACT (p = 0.0379). Further, the analysis of publicly available datasets demonstrated that elevated TLR9 expression was related to increased overall survival in patients treated with NACT. Conclusions: In this study, we show for the first time that elevated TLR9 tissue expression levels in breast cancer may serve as a prognostic marker for patients treated with NACT and could potentially be used to select the neoadjuvant regime.
Collapse
Affiliation(s)
- Aradhana Singh
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, India
| | - Arghya Bandyopadhyay
- Department of Pathology and Burdwan Medical College and Hospital, Burdwan, India
| | | | - Anupam Basu
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, India
| |
Collapse
|
24
|
Chemotherapy-induced changes in bronchoalveolar lavage fluid CD4 + and CD8 + cells of the opposite lung to the cancer. Sci Rep 2020; 10:19927. [PMID: 33199774 PMCID: PMC7670451 DOI: 10.1038/s41598-020-76752-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022] Open
Abstract
Published articles support the effect of chemotherapy in the immune environment of tumors, including lung carcinomas. The role of CD4 + T-cells is crucial for expansion and accumulation of other antigen-specific immune cells, and the participation of CD8 + cells in tumor killing activity has been confirmed by many studies. However, little is known about the effect of chemotherapy on the healthy lung parenchyma from lung cancer patients, and whether there are differences between the different chemotherapy compounds used to treat this patient population. The aim of our study was to explore the effect of chemotherapy on CD4 + and CD8 + cells in the bronchoalveolar lavage fluid (BALF) of the healthy lung in patients treated with standard chemotherapy regimens. Fifteen patients underwent BAL, in the healthy lung before and after six chemotherapy courses. Platinum-based regimens included vinolerbine (VN) in 6 patients, gemcitabine (GEM) in 4 patients and etoposide (EP) in 5 patients. All patients but one were males and smokers (93%). The median age of patients was 56 years (42-75). No significant difference was noted in the patients' age between the three treated groups. Furthermore, between the three groups, no significant changes in the means of CD4 + and CD8 + cells were noted. However, when we compared the mean CD4 + cells before and after chemotherapy within each group, changes were noted when comparing VN before versus after (p = 0.05), GEM before versus after (p = 0.03), and EP before versus after (p = 0.036). In our pilot study, changes were noted in BALF CD4 + cells for the three most applied regimens at the normal lung parenchyma.
Collapse
|
25
|
Choi HR, Oh HK, Park SH, Jeong YJ. Expression of CD73 is associated with tumor progression and intratumoral inflammation in breast cancer. Asia Pac J Clin Oncol 2020; 18:35-43. [PMID: 32905661 DOI: 10.1111/ajco.13450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/29/2020] [Indexed: 11/30/2022]
Abstract
CD73 is a lymphocyte differentiation antigen and highly expressed in many human solid tumors. CD73 is known to be associated with tumor progression, but its role in human breast cancer is still under investigation. The aims of this study were to evaluate the expression of CD73 in human breast cancer and to analyze its prognostic significance in breast cancer. A total of 198 patients who underwent surgery for the treatment of primary breast cancer were enrolled. Tissue microarrays (TMA) were constructed with breast cancer tissues and immunohistochemical staining for CD73 was performed on TMA tissue sections. The clinicopathologic characteristics were evaluated from the patient's medical records and pathologic reports. The average age of the patients was 51.7 ± 10.7. Positive expression rate of CD73 for all breast cancer was 25.4%. Positive rate of CD73 expression in invasive breast cancer was 30.9%, which was significantly higher than that of 5.4% of ductal carcinoma in situ. CD73 expression was significantly associated with higher T-stage, node metastasis, positive progesterone receptor status and presence of intratumoral inflammation. There was no significant association between molecular subtypes and CD73 expression. The disease-free survival (DFS) and overall survival (OS) rate at 5 years were 90.1% and 96.6%, respectively. There was no difference in DFS and OS according to CD73 expression. In conclusion, this study showed that CD73 expression is associated with tumor progression and inflammation in breast cancer. Our results suggest that CD73 has a potential as a prognostic marker and a therapeutic target of breast cancer.
Collapse
Affiliation(s)
- Hye Ryeon Choi
- Department of Thyroid and Endocrine Surgery, Thyroid Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoon Kyu Oh
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Sung Hwan Park
- Department of Surgery, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Young-Ju Jeong
- Department of Surgery, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
26
|
Xu W, Chen X, Deng F, Zhang J, Zhang W, Tang J. Predictors of Neoadjuvant Chemotherapy Response in Breast Cancer: A Review. Onco Targets Ther 2020; 13:5887-5899. [PMID: 32606799 PMCID: PMC7320215 DOI: 10.2147/ott.s253056] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
Neoadjuvant chemotherapy (NAC) largely increases operative chances and improves prognosis of the local advanced breast cancer patients. However, no specific means have been invented to predict the therapy responses of patients receiving NAC. Therefore, we focus on the alterations of tumor tissue-related microenvironments such as stromal tumor-infiltrating lymphocytes status, cyclin-dependent kinase expression, non-coding RNA transcription or other small molecular changes, in order to detect potentially predicted biomarkers which reflect the therapeutic efficacy of NAC in different subtypes of breast cancer. Further, possible mechanisms are also discussed to discover feasible treatment targets. Thus, these findings will be helpful to promote the prognosis of breast cancer patients who received NAC and summarized in this review.
Collapse
Affiliation(s)
- Weilin Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xiu Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Fei Deng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Wei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| |
Collapse
|
27
|
Priming the tumor immune microenvironment with chemo(radio)therapy: A systematic review across tumor types. Biochim Biophys Acta Rev Cancer 2020; 1874:188386. [PMID: 32540465 DOI: 10.1016/j.bbcan.2020.188386] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chemotherapy (CT), radiotherapy (RT), and chemoradiotherapy (CRT) are able to alter the composition of the tumor immune microenvironment (TIME). Understanding the effect of these modalities on the TIME could aid in the development of improved treatment strategies. Our aim was to systematically review studies investigating the influence of CT, RT or CRT on different TIME markers. METHODS The EMBASE (Ovid) and PubMed databases were searched until January 2019 for prospective or retrospective studies investigating the dynamics of the local TIME in cancer patients (pts) treated with CT, RT or CRT, with or without targeted agents. Studies could either compare baseline and follow-up specimens - before and after treatment - or a treated versus an untreated cohort. Studies were included if they used immunohistochemistry and/or flow cytometry to assess the TIME. RESULTS In total we included 110 studies (n = 8850 pts), of which n = 89 (n = 6295 pts) compared pre-treatment to post-treatment specimens and n = 25 (n = 2555 pts) a treated versus an untreated cohort (4 studies conducted both comparisons). For several tumor types (among others; breast, cervical, esophageal, ovarian, rectal, lung mesothelioma and pancreatic cancer) remodeling of the TIME was observed, leading to a potentially more immunologically active microenvironment, including one or more of the following: an increase in CD3 or CD8 lymphocytes, a decrease in FOXP3 Tregs and increased PD-L1 expression. Both CT and CRT were able to immunologically alter the TIME. CONCLUSION The TIME of several tumor types is significantly altered after conventional therapy creating opportunities for concurrent or sequential immunotherapy.
Collapse
|
28
|
Prognostic value of tumor-infiltrating lymphocytes in patients with triple-negative breast cancer: a systematic review and meta-analysis. BMC Cancer 2020; 20:179. [PMID: 32131780 PMCID: PMC7057662 DOI: 10.1186/s12885-020-6668-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
Background The objective of this systematic review and meta-analysis was to determine the prognostic value of total tumor-infiltrating lymphocytes (TILs) and subtypes of TILs (CD4+, CD8+, and FOXP3+) in triple-negative breast cancer (TNBC). Methods A systematic search of the MEDLINE, EMBASE, and Web of Science databases was conducted to identified eligible articles published before August 2019. Study screening, data extraction, and risk of bias assessment were performed by two independent reviewers. Risk of bias on the study level was assessed using the ROBINS I tool and Quality in Prognosis Studies (QUIPS) tool. We performed a meta-analysis to obtain a pooled estimate of the prognostic role of TILs using Review Manager 5.3. Results In total, 37 studies were included in the final analysis. Compared to TNBC patients with low TIL levels, TNBC patients with high TIL levels showed a higher rate of pathological complete response (pCR) to treatment (odds ratio [OR] 2.14, 95% confidence interval [CI] 1.43–3.19). With each 10% increase in percentage of TILs, patients with TNBC had an increased pCR (OR 1.09, 95% CI 1.02–1.16). Compared to TNBC patients with low TIL levels, patients with high TIL levels had better overall survival (OS; hazard ratio [HR] 0.58, 95% CI 0.48–0.71) and disease-free survival (DFS; HR 0.66, 95% CI 0.57–0.76). Additionally, with a continuous increase in TIL levels, patients with TNBC had improved OS (HR 0.90, 95% CI 0.87–0.93) and DFS (HR 0.92, 95% CI 0.90–0.95). A high CD4+ TIL level was associated with better OS (HR 0.49, 95% CI 0.32–0.76) and DFS (HR 0.54, 95% CI 0.36–0.80). A high CD8+ TIL level was associated better DFS only (HR 0.55, 95% CI 0.38–0.81), as no statistical association was found with OS (HR 0.70, 95% CI 0.46–1.06). A high FOXP3+ TIL level also was associated with only DFS (HR 0.50, 95% CI 0.33–0.75) and not OS (HR 1.28, 95% CI 0.24–6.88). Conclusions TNBC with a high level of TILs showed better short-term and long-term prognoses. High levels of specific phenotypes of TILs (CD4+, CD8+, and FOXP3+) were predictive of a positive long-term prognosis for TNBC.
Collapse
|
29
|
Lippens L, Van Bockstal M, De Jaeghere EA, Tummers P, Makar A, De Geyter S, Van de Vijver K, Hendrix A, Vandecasteele K, Denys H. Immunologic impact of chemoradiation in cervical cancer and how immune cell infiltration could lead toward personalized treatment. Int J Cancer 2020; 147:554-564. [PMID: 32017078 DOI: 10.1002/ijc.32893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
We investigated the potential of tumor-infiltrating immune cells (ICs) as predictive or prognostic biomarkers for cervical cancer patients. In total, 38 patients treated with (chemo)radiotherapy and subsequent surgery were included in the current study. This unique treatment schedule makes it possible to analyze IC markers in pretreatment and posttreatment tissue specimens and their changes during treatment. IC markers for T cells (CD3, CD4, CD8 and FoxP3), macrophages (CD68 and CD163) and B cells (CD20), as well as IL33 and PD-L1, were retrospectively analyzed via immunohistochemistry. Patients were grouped in the low score or high score group based on the amount of positive cells on immunohistochemistry. Correlations to pathological complete response (pCR), cause-specific survival (CSS) and metastasis development during follow-up were evaluated. In analysis of pretreatment biopsies, significantly more pCR was seen for patients with CD8 = CD3, CD8 ≥ CD4, positive IL33 tumor cell (TC) scores, IL33 IC < TC and PD-L1 TC ≥5%. Besides patients with high CD8 scores, also patients with CD8 ≥ CD4, CD163 ≥ CD68 or PD-L1 IC ≥5% had better CSS. In the analysis of posttreatment specimens, less pCR was observed for patients with high CD8 or CD163 scores. Patients with decreasing CD8 or CD163 scores between pretreatment and posttreatment samples showed more pCR, whereas those with increasing CD8 or decreasing IL33 IC scores showed a worse CSS. Meanwhile, patients with an increasing CD3 score or stable/increasing PD-L1 IC score showed more metastasis during follow-up. In this way, the intratumoral IC landscape is a promising tool for prediction of outcome and response to (chemo)radiotherapy.
Collapse
Affiliation(s)
- Lien Lippens
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Mieke Van Bockstal
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Pathology, Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Emiel A De Jaeghere
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Philippe Tummers
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Gynecology, Department of Human Structure and Repair, Gent University Hospital, Ghent, Belgium
| | - Amin Makar
- Gynecology, Department of Human Structure and Repair, Gent University Hospital, Ghent, Belgium
| | - Sofie De Geyter
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Koen Van de Vijver
- Pathology, Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Katrien Vandecasteele
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Radiation Therapy, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Hannelore Denys
- Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
30
|
Badr N, Berditchevski F, Shaaban A. The Immune Microenvironment in Breast Carcinoma: Predictive and Prognostic Role in the Neoadjuvant Setting. Pathobiology 2019; 87:61-74. [DOI: 10.1159/000504055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/09/2019] [Indexed: 11/19/2022] Open
|
31
|
Gibert-Ramos A, López C, Bosch R, Fontoura L, Bueno G, García-Rojo M, Berenguer M, Lejeune M. Immune response profile of primary tumour, sentinel and non-sentinel axillary lymph nodes related to metastasis in breast cancer: an immunohistochemical point of view. Histochem Cell Biol 2019; 152:177-193. [DOI: 10.1007/s00418-019-01802-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 12/24/2022]
|
32
|
Preusser M. Introducing a new ESMO Open article series: how I treat side effects of immunotherapy. ESMO Open 2019; 4:e000552. [PMID: 31354967 PMCID: PMC6615874 DOI: 10.1136/esmoopen-2019-000552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/22/2023] Open
Affiliation(s)
- Matthias Preusser
- Medical University of Vienna, Department of Medicine I, Division of Oncology, Vienna, Austria.
| |
Collapse
|