1
|
Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors. Nat Biotechnol 2022; 40:103-109. [PMID: 34462588 PMCID: PMC8766875 DOI: 10.1038/s41587-021-01024-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Oral administration provides a simple and non-invasive approach for drug delivery. However, due to poor absorption and swift enzymatic degradation in the gastrointestinal tract, a wide range of molecules must be parenterally injected to attain required doses and pharmacokinetics. Here we present an orally dosed liquid auto-injector capable of delivering up to 4-mg doses of a bioavailable drug with the rapid pharmacokinetics of an injection, reaching an absolute bioavailability of up to 80% and a maximum plasma drug concentration within 30 min after dosing. This approach improves dosing efficiencies and pharmacokinetics an order of magnitude over our previously designed injector capsules and up to two orders of magnitude over clinically available and preclinical chemical permeation enhancement technologies. We administered the capsules to swine for delivery of clinically relevant doses of four commonly injected medications, including adalimumab, a GLP-1 analog, recombinant human insulin and epinephrine. These multi-day dosing experiments and oral administration in awake animal models support the translational potential of the system.
Collapse
|
2
|
Byrne J, Huang HW, McRae JC, Babaee S, Soltani A, Becker SL, Traverso G. Devices for drug delivery in the gastrointestinal tract: A review of systems physically interacting with the mucosa for enhanced delivery. Adv Drug Deliv Rev 2021; 177:113926. [PMID: 34403749 DOI: 10.1016/j.addr.2021.113926] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
The delivery of macromolecules via the gastrointestinal (GI) tract remains a significant challenge. A variety of technologies using physical modes of drug delivery have been developed and investigated to overcome the epithelial cell layer of the GI tract for local and systemic delivery. These technologies include direct injection, jetting, ultrasound, and iontophoresis, which have been largely adapted from transdermal drug delivery. Direct injection of agents using needles through endoscopy has been used clinically for over a century. Jetting, a needle-less method of drug delivery where a high-speed stream of fluid medication penetrates tissue, has been evaluated pre-clinically for delivery of agents into the buccal mucosa. Ultrasound has been shown to be beneficial in enhancing delivery of macromolecules, including nucleic acids, in pre-clinical animal models. The application of an electric field gradient to drive drugs into tissues through the technique of iontophoresis has been shown to deliver highly toxic chemotherapies into GI tissues. Here in, we provide an in-depth overview of these physical modes of drug delivery in the GI tract and their clinical and preclinical uses.
Collapse
Affiliation(s)
- James Byrne
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Harvard Radiation Oncology Program, Boston, MA 02114, USA; Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52240, USA
| | - Hen-Wei Huang
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - James C McRae
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sahab Babaee
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amin Soltani
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sarah L Becker
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Traverso G, Schoellhammer CM, Schroeder A, Maa R, Lauwers GY, Polat BE, Anderson DG, Blankschtein D, Langer R. Microneedles for drug delivery via the gastrointestinal tract. J Pharm Sci 2014; 104:362-7. [PMID: 25250829 DOI: 10.1002/jps.24182] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 12/22/2022]
Abstract
Both patients and physicians prefer the oral route of drug delivery. The gastrointestinal (GI) tract, though, limits the bioavailability of certain therapeutics because of its protease and bacteria-rich environment as well as general pH variability from pH 1 to 7. These extreme environments make oral delivery particularly challenging for the biologic class of therapeutics. Here, we demonstrate proof-of-concept experiments in swine that microneedle-based delivery has the capacity for improved bioavailability of a biologically active macromolecule. Moreover, we show that microneedle-containing devices can be passed and excreted from the GI tract safely. These findings strongly support the success of implementation of microneedle technology for use in the GI tract.
Collapse
Affiliation(s)
- Giovanni Traverso
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Goh J, Patel N, Boulton R. Accidental hijab pin ingestion in Muslim women: an emerging endoscopic emergency? BMJ Case Rep 2014; 2014:bcr-2013-202336. [PMID: 24390968 DOI: 10.1136/bcr-2013-202336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ingested foreign body is an infrequent indication for emergency endoscopy in the adult gastroenterology practice. We describe the clinical features and endoscopic management of the first four cases of accidental ingestion of hijab pins by Muslim women in our unit, all presenting within a 12-month period. The pins were all successfully retrieved without any complications. In this report, we review published guidelines and the current literature, as well as discussing the approach (conservative vs proactive endoscopic retrieval) and timing of endoscopic treatment. The Muslim community may need to be alerted to the potential health hazard of hijab pins.
Collapse
Affiliation(s)
- Jason Goh
- Department of Gastroenterology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | | | | |
Collapse
|