1
|
Patel NM, Patel PH, Bhogal RH, Harrington KJ, Singanayagam A, Kumar S. Altered Microbiome Promotes Pro-Inflammatory Pathways in Oesophago-Gastric Tumourigenesis. Cancers (Basel) 2024; 16:3426. [PMID: 39410045 PMCID: PMC11476036 DOI: 10.3390/cancers16193426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
INTRODUCTION The upper gastrointestinal microbiome is a dynamic entity that is involved in numerous processes including digestion, production of vitamins and protection against pathogens. Many external and intrinsic factors may cause changes in the proportions of bacteria within the microbial community, termed 'dysbiosis'. A number of these have been identified as risk factors for a range of diseases, including oesophago-gastric carcinoma. MATERIALS AND METHODS A narrative review was conducted to elucidate the current evidence on the role of the microbiome in promoting oesophago-gastric tumourigenesis. Significant causes of dysbiosis including age, medications and GORD were examined and key pro-inflammatory pathways implicated in tumourigenesis and their interaction with the microbiome were described. RESULTS AND DISCUSSION An association between microbial dysbiosis and development of oesophago-gastric cancer may be mediated via activation of pro-inflammatory pathways, the inflammasome and the innate immune system. Advances in sequencing technology allow microbial communities to be fingerprinted by sequencing the 16S rRNA gene, enabling a deeper understanding of the genera that may be implicated in driving tumourigenesis. CONCLUSIONS Developing a greater understanding of the influence of the microbiota on oesophago-gastric tumourigenesis may enable advances to be made in the early detection of malignancy and in the development of novel systemic therapies, leading to improved rates of survival.
Collapse
Affiliation(s)
- Nikhil Manish Patel
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Pranav Harshad Patel
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ricky Harminder Bhogal
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Kevin Joseph Harrington
- Targeted Therapy Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Aran Singanayagam
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Sacheen Kumar
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
- Department of Upper Gastrointestinal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic London Hospital, London SW1X 7HY, UK
| |
Collapse
|
2
|
Strzelec B, Chmielewski PP, Kielan W. Esophageal cancer: current status and new insights from inflammatory markers - a brief review. POLISH JOURNAL OF SURGERY 2024; 96:83-87. [PMID: 38940245 DOI: 10.5604/01.3001.0054.4523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Esophageal cancer (EC) poses a significant challenge to the healthcare system due to its profound impact on cancer-related morbidity and mortality worldwide. This malignancy ranks among the most arduous conditions confronting the surgeon. EC arises from a complex interplay of genetic predispositions and environmental factors. While the incidence of esophageal adenocarcinoma (EAC) is on the rise in the West, esophageal squamous cell carcinoma (ESCC) remains prevalent in the East. Chronic inflammation plays a pivotal role in the initiation and progression of EC. Accordingly, serum inflammatory markers, growth factors, and cytokines have been shown to be clinically useful. Thus, evaluating serum cytokine levels for EC prediction is a safe and feasible screening method. Given the aggressive nature and poor prognosis of the disease, innovative approaches to diagnosis, prognosis, and management of EC are indispensable. This review discusses the major risk factors and the current landscape of EC, with a specific focus on the potential contributions of new inflammatory markers to enhance disease management and improve patient outcomes.
Collapse
Affiliation(s)
- Bartłomiej Strzelec
- 2nd Department of General and Oncological Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Paweł Chmielewski
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Kielan
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Wroclaw, Poland
| |
Collapse
|
3
|
Shah SL, Dunbar K. Revisiting Proton Pump Inhibitors as Chemoprophylaxis Against the Progression of Barrett's Esophagus. Curr Gastroenterol Rep 2023; 25:374-379. [PMID: 37940812 DOI: 10.1007/s11894-023-00905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE OF REVIEW Barrett's esophagus (BE) is associated with chronic gastroesophageal reflux disease and is a known precursor to esophageal adenocarcinoma. While endoscopic surveillance strategies and the role for endoscopic eradication therapy have been well established, there has been much interest in identifying chemopreventive agents to disrupt or halt the metaplasia-dysplasia-carcinoma sequence in patients with BE. RECENT FINDINGS No pharmacological agent has held more hope in reducing the risk of neoplastic progression in BE than proton pump inhibitors (PPIs). However, data supporting PPIs for chemoprevention have largely been from observational cohort and case-control studies with mixed results. In this review, we revisit the literature and highlight the role of PPIs in patients with BE as it pertains to chemoprophylaxis against the progression of BE to dysplasia and esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Shawn L Shah
- Division of Gastroenterology and Hepatology, Department of Medicine, Dallas VA Medical Center and University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Kerry Dunbar
- Division of Gastroenterology and Hepatology, Department of Medicine, Dallas VA Medical Center and University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Corder ML, Petricoin EF, Li Y, Cleland TP, DeCandia AL, Alonso Aguirre A, Pukazhenthi BS. Metabolomic profiling implicates mitochondrial and immune dysfunction in disease syndromes of the critically endangered black rhinoceros (Diceros bicornis). Sci Rep 2023; 13:15464. [PMID: 37726331 PMCID: PMC10509206 DOI: 10.1038/s41598-023-41508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
The critically endangered black rhinoceros (Diceros bicornis; black rhino) experiences extinction threats from poaching in-situ. The ex-situ population, which serves as a genetic reservoir against impending extinction threats, experiences its own threats to survival related to several disease syndromes not typically observed among their wild counterparts. We performed an untargeted metabolomic analysis of serum from 30 ex-situ housed black rhinos (Eastern black rhino, EBR, n = 14 animals; Southern black rhino, SBR, n = 16 animals) and analyzed differences in metabolite profiles between subspecies, sex, and health status (healthy n = 13 vs. diseased n = 14). Of the 636 metabolites detected, several were differentially (fold change > 1.5; p < 0.05) expressed between EBR vs. SBR (40 metabolites), female vs. male (36 metabolites), and healthy vs. diseased (22 metabolites). Results suggest dysregulation of propanoate, amino acid metabolism, and bile acid biosynthesis in the subspecies and sex comparisons. Assessment of healthy versus diseased rhinos indicates involvement of arachidonic acid metabolism, bile acid biosynthesis, and the pentose phosphate pathway in animals exhibiting inflammatory disease syndromes. This study represents the first systematic characterization of the circulating serum metabolome in the black rhinoceros. Findings further implicate mitochondrial and immune dysfunction as key contributors for the diverse disease syndromes reported in ex-situ managed black rhinos.
Collapse
Affiliation(s)
- Molly L Corder
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, 22630, USA
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, 20900, USA
- Department of Environmental Sciences and Policy, George Mason University, Fairfax, Virginia, 22030, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, 20900, USA
| | - Yue Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | | | - Alexandra L DeCandia
- Department of Biology, Georgetown University, Washington, DC, 20057, USA
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Conservation Genomics, Washington, DC, 20008, USA
| | - A Alonso Aguirre
- Department of Fish, Wildlife, and Conservation Biology, Warner College of Natural Resources, Colorado State University, Fort Collins, 80523, USA
| | - Budhan S Pukazhenthi
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, 22630, USA.
| |
Collapse
|
5
|
Chen HY, Li Q, Zhou PP, Yang TX, Liu SW, Zhang TF, Cui Z, Lyu JJ, Wang YG. Mechanisms of Chinese Medicine in Gastroesophageal Reflux Disease Treatment: Data Mining and Systematic Pharmacology Study. Chin J Integr Med 2023; 29:838-846. [PMID: 35997858 DOI: 10.1007/s11655-022-3538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To identify specific Chinese medicines (CMs) that may benefit patients with gastroesophageal reflux disease (GERD), and explore the action mechanism. METHODS Domestic and foreign literature on the treatment of GERD with CMs was searched and selected from China National Knowledge Infrastructure, China Science and Technology Journal Database, Wanfang Database, and PubMed from October 1, 2011 to October 1, 2021. Data from all eligible articles were extracted to establish the database of CMs for GERD. Apriori algorithm of data mining techniques was used to analyze the rules of herbs selection and core Chinese medicine formulas were identified. A system pharmacology approach was used to explore the action mechanism of these medicines. RESULTS A total of 278 prescriptions for GERD were analyzed, including 192 CMs. Results of Apriori algorithm indicated that Evodiae Fructus and Coptidis Rhizoma were the highest confidence combination. A total of 32 active ingredients and 66 targets were screened for the treatment of GERD. Enrichment analysis showed that the mechanisms of action mainly involved pathways in cancer, fluid shear stress and atherosclerosis, advanced glycation end product (AGE), the receptor for AGE signaling pathway in diabetic complications, bladder cancer, and rheumatoid arthritis. CONCLUSION Evodiae Fructus and Coptidis Rhizoma are the core drugs in the treatment of GERD and the potential mechanism of action of these medicines includes potential target and pathways.
Collapse
Affiliation(s)
- Hao-Yu Chen
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Qi Li
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Ping-Ping Zhou
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Tian-Xiao Yang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Shao-Wei Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Teng-Fei Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Zhen Cui
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Jing-Jing Lyu
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, 050091, China
| | - Yan-Gang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China.
- Department of Gastroenterology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China.
| |
Collapse
|
6
|
Maslenkina K, Mikhaleva L, Naumenko M, Vandysheva R, Gushchin M, Atiakshin D, Buchwalow I, Tiemann M. Signaling Pathways in the Pathogenesis of Barrett's Esophagus and Esophageal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24119304. [PMID: 37298253 DOI: 10.3390/ijms24119304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Barrett's esophagus (BE) is a premalignant lesion that can develop into esophageal adenocarcinoma (EAC). The development of Barrett's esophagus is caused by biliary reflux, which causes extensive mutagenesis in the stem cells of the epithelium in the distal esophagus and gastro-esophageal junction. Other possible cellular origins of BE include the stem cells of the mucosal esophageal glands and their ducts, the stem cells of the stomach, residual embryonic cells and circulating bone marrow stem cells. The classical concept of healing a caustic lesion has been replaced by the concept of a cytokine storm, which forms an inflammatory microenvironment eliciting a phenotypic shift toward intestinal metaplasia of the distal esophagus. This review describes the roles of the NOTCH, hedgehog, NF-κB and IL6/STAT3 molecular pathways in the pathogenesis of BE and EAC.
Collapse
Affiliation(s)
- Ksenia Maslenkina
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Liudmila Mikhaleva
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Maxim Naumenko
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Rositsa Vandysheva
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Michail Gushchin
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Dmitri Atiakshin
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Igor Buchwalow
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| |
Collapse
|
7
|
Holmberg D, Mattsson F, Xie S, Ness-Jensen E, El-Serag H, Lagergren J. Risk of gastric and oesophageal adenocarcinoma following discontinuation of long-term proton-pump inhibitor therapy. J Gastroenterol 2022; 57:942-951. [PMID: 36258093 PMCID: PMC9663349 DOI: 10.1007/s00535-022-01930-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/02/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND There is uncertainty whether long-term use of proton-pump inhibitors can cause gastric adenocarcinoma (GAC) and oesophageal adenocarcinoma (OAC). This study aimed to determine how discontinuation of long-term PPI therapy influences the risk of GAC and OAC. METHODS This population-based cohort study included all long-term users of PPI therapy in Sweden in 2005-2018 was based on Swedish nationwide health registry data. The exposure was discontinuation of long-term PPI therapy, defined as no dispensation of PPI following inclusion and used as a time-varying variable, compared to remaining on PPI. Main outcomes were GAC and OAC, while oesophageal squamous cell carcinoma (OSCC) was included as a comparison outcome. Incidence rate ratios (IRR) with 95% CI adjusted for age, sex, comorbidity, obesity, diabetes, hyperlipidaemia, NSAIDs/aspirin, and statins were calculated with Poisson regression. RESULTS Among 730,176 long-term PPI users (mean age 65.6 years, 58.4% females) with 4,210,925 person-years at risk (median 5.5 person-years), 439,390 (60.2%) discontinued PPIs. In total, 495 developed GAC, 598 OAC, and 188 developed OSCC. PPI discontinuation was associated with decreased risk of GAC (IRR 0.81, 95% CI 0.67-0.98) and OAC (IRR 0.80, 95% CI 0.68-0.96), but not OSCC (IRR 1.10, 95% CI 0.82-1.49) compared to continued PPI use. Stratified analyses showed decreased point estimates across most age categories and both sexes for GAC and OAC risk among participants discontinuing PPI therapy. CONCLUSION Discontinuation of long-term PPI therapy may decrease the risk of GAC and OAC, suggesting that physicians should consider ceasing prescribing long-term PPI in patients without continued indication for its use.
Collapse
Affiliation(s)
- Dag Holmberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, Retzius Street 13a, 17177, Stockholm, Sweden.
| | - Fredrik Mattsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, Retzius Street 13a, 17177, Stockholm, Sweden
| | - Shaohua Xie
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, Retzius Street 13a, 17177, Stockholm, Sweden
| | - Eivind Ness-Jensen
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, Retzius Street 13a, 17177, Stockholm, Sweden
- Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Hashem El-Serag
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, Retzius Street 13a, 17177, Stockholm, Sweden
- Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Jesper Lagergren
- School of Cancer and Pharmacological Sciences, King's College London, London, UK
| |
Collapse
|
8
|
Rosen R, Rahbar R, Watters K, Hseu A, Munoz CJ, Ferrari L, Holzman R, Mohammad S, Cohen A, Du M, Akkara A, Catacora A, Simoneau T, Connearney S, Mitchell P, Nurko S. Airway Impedance: A Novel Diagnostic Tool to Predict Extraesophageal Airway Inflammation. J Pediatr 2022; 256:5-10.e2. [PMID: 36403673 DOI: 10.1016/j.jpeds.2022.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To validate a novel biomarker, airway impedance for extraesophageal disease. STUDY DESIGN We prospectively recruited patients with respiratory symptoms undergoing combined endoscopy and direct laryngoscopy for the evaluation of symptoms. The direct laryngoscopy was performed and videotaped for blinded scoring by 3 otolaryngologists and an impedance catheter was placed onto the posterior larynx to obtain measurements. Following this, an endoscopy was performed and impedance measurements and biopsies were taken at 3 esophageal heights. Impedance values were compared within and between patients. RESULTS Eighty-eight patients were recruited, of which 73 had complete airway and endoscopic exams. There was no significant correlation between airway impedance values and mean reflux finding scores (r2 = 0.45, P = .07). There was no significant positive correlation between airway impedance and esophageal impedance values (r2 = 0.097-0.138, P > .2). Patients taking proton pump inhibitors had significantly lower mean airway impedance values (706 ± 450 Ω) than patients not taking them (1069 ± 809 Ω, P = .06). Patients who had evidence of aspiration on video fluoroscopic swallow studies had lower airway impedance (871 ± 615 Ω) than patients without aspiration (1247 ± 360 Ω, P = .008). Inhaled steroids did not impact airway impedance levels (P = .7). CONCLUSIONS Airway impedance may be an important diagnostic tool to diagnose gastroesophageal reflux or aspiration, eliminating the subjectivity of airway appearance alone.
Collapse
Affiliation(s)
- Rachel Rosen
- Division of Gastroenterology, Hepatology and Nutrition, Aerodigestive Center, Boston Children's Hospital, Boston, MA.
| | - Reza Rahbar
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA
| | - Karen Watters
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA
| | - Anne Hseu
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA
| | - Carlos J Munoz
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA
| | - Lynne Ferrari
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA
| | - Robert Holzman
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA
| | - Shoaib Mohammad
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA
| | - Alexandra Cohen
- Division of Gastroenterology, Hepatology and Nutrition, Aerodigestive Center, Boston Children's Hospital, Boston, MA
| | - Maritha Du
- Division of Gastroenterology, Hepatology and Nutrition, Aerodigestive Center, Boston Children's Hospital, Boston, MA
| | - Anna Akkara
- Division of Gastroenterology, Hepatology and Nutrition, Aerodigestive Center, Boston Children's Hospital, Boston, MA
| | - Andrea Catacora
- Division of Gastroenterology, Hepatology and Nutrition, Aerodigestive Center, Boston Children's Hospital, Boston, MA
| | - Tregony Simoneau
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA
| | - Sarah Connearney
- Division of Gastroenterology, Hepatology and Nutrition, Aerodigestive Center, Boston Children's Hospital, Boston, MA
| | - Paul Mitchell
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA
| | - Samuel Nurko
- Division of Gastroenterology, Hepatology and Nutrition, Aerodigestive Center, Boston Children's Hospital, Boston, MA
| |
Collapse
|
9
|
Hojo Y, Nakamura T, Kumamoto T, Kurahashi Y, Ishida Y, Kitayama Y, Tomita T, Shinohara H. Marked improvement of severe reflux esophagitis following proximal gastrectomy with esophagogastrostomy by the right gastroepiploic vessels-preserving antrectomy and Roux-en-Y biliary diversion. Gastric Cancer 2022; 25:1117-1122. [PMID: 35796810 DOI: 10.1007/s10120-022-01316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/11/2022] [Indexed: 02/07/2023]
Abstract
Duodenogastroesophageal reflux (DGER) following esophagectomy or gastrectomy can cause severe esophagitis, which impairs patients' quality of life and increases the risk of esophageal carcinogenesis. It is sometimes resistant to medical treatment, and surgical treatment is considered effective in such cases. However, an optimal operative procedure for medical treatment-resistant reflux esophagitis (RE) after proximal gastrectomy (PG) with esophagogastrostomy (EG) has not yet been established. We performed the right gastroepiploic vessels-preserving antrectomy and Roux-en-Y biliary diversion in a 70-year-old man with medical treatment-resistant severe esophagitis caused by DGER following PG with EG for esophagogastric junction cancer. The postoperative course was uneventful, and esophagogastroduodenoscopy performed on the 19th postoperative day showed marked improvement in the esophageal erosions. The patient reported symptomatic relief. The right gastroepiploic vessels-preserving antrectomy and Roux-en-Y biliary diversion were considered safe and feasible for medical treatment-resistant RE following PG with EG.
Collapse
Affiliation(s)
- Yudai Hojo
- Division of Upper GI, Department of Gastroenterological Surgery, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Tatsuro Nakamura
- Division of Upper GI, Department of Gastroenterological Surgery, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Tsutomu Kumamoto
- Division of Upper GI, Department of Gastroenterological Surgery, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yasunori Kurahashi
- Division of Upper GI, Department of Gastroenterological Surgery, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yoshinori Ishida
- Division of Upper GI, Department of Gastroenterological Surgery, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yoshitaka Kitayama
- Division of Gastroenterology, Department of Internal Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Toshihiko Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Hisashi Shinohara
- Division of Upper GI, Department of Gastroenterological Surgery, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
10
|
Song X, Greiner-Tollersrud OK, Zhou H. Oral Microbiota Variation: A Risk Factor for Development and Poor Prognosis of Esophageal Cancer. Dig Dis Sci 2022; 67:3543-3556. [PMID: 34505256 DOI: 10.1007/s10620-021-07245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022]
Abstract
Recent studies have shown that oral microbiota play an important role in the esophageal cancer (EC) initiation and progression, suggesting that oral microbiota is a new risk factor for EC. The composition of the microbes inhabiting the oral cavity could be perturbed with continuous factors such as smoking, alcohol consumption, and inflammation. The microbial alteration involves the decrease of beneficial species and the increase of pathogenic species. Experimental evidences suggest a significant role of oral commensal organisms in protecting hosts against EC. By contrast, oral pathogens, especially Porphyromonas gingivalis and Fusobacterium nucleatum, give rise to the risk for developing EC through their pro-inflammatory and pro-tumorigenic activities. The presences of oral dysbiosis, microbial biofilm, and periodontitis in EC patients are found to be associated with invasive cancer phenotypes and poor prognosis. The mechanism of oral bacteria in EC progression is complex, which involves a combination of cytokines, chemokines, oncogenic signaling pathways, cell surface receptors, the degradation of extracellular matrix, and cell apoptosis. From a clinical perspective, good oral hygiene, professional oral care, and rational use of antibiotics bring positive impacts on oral microbial balance, thus helping individuals reduce the risk of EC, inhibiting postoperative complications among EC patients, and improving the efficiency of chemoradiotherapy. However, current oral hygiene practices mainly focus on the oral bacteria-based predictive and preventive purposes. It is still far from implementing microbiota-dependent regulation as a therapy for EC. Further explorations are needed to render oral microbiota a potential target for treating EC.
Collapse
Affiliation(s)
- Xiaobo Song
- Department of Microbiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, China.,Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
| | - Ole K Greiner-Tollersrud
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|
11
|
Sharma T, Gupta A, Chauhan R, Bhat AA, Nisar S, Hashem S, Akhtar S, Ahmad A, Haris M, Singh M, Uddin S. Cross-talk between the microbiome and chronic inflammation in esophageal cancer: potential driver of oncogenesis. Cancer Metastasis Rev 2022; 41:281-299. [PMID: 35511379 PMCID: PMC9363391 DOI: 10.1007/s10555-022-10026-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022]
Abstract
Esophageal cancer (EC) is frequently considered a lethal malignancy and is often identified at a later stage. It is one of the major causes of cancer-related deaths globally. The conventional treatment methods like chemotherapy, radiotherapy, and surgery offer limited efficacy and poor clinical outcome with a less than 25% 5-year survival rate. The poor prognosis of EC persists despite the growth in the development of diagnostic and therapeutic modalities to treat EC. This underlines the need to elucidate the complex molecular mechanisms that drive esophageal oncogenesis. Apart from the role of the tumor microenvironment and its structural and cellular components in tumorigenesis, mounting evidence points towards the involvement of the esophageal microbiome, inflammation, and their cross-talk in promoting esophageal cancer. The current review summarizes recent research that delineates the underlying molecular mechanisms by which the microbiota and inflammation promote the pathophysiology of esophageal cancer, thus unraveling targets for potential therapeutic intervention.
Collapse
Affiliation(s)
- Tarang Sharma
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar.,Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, PA, Philadelphia, USA.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
12
|
Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P, Mikó E. The role of bile acids in carcinogenesis. Cell Mol Life Sci 2022; 79:243. [PMID: 35429253 PMCID: PMC9013344 DOI: 10.1007/s00018-022-04278-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
AbstractBile acids are soluble derivatives of cholesterol produced in the liver that subsequently undergo bacterial transformation yielding a diverse array of metabolites. The bulk of bile acid synthesis takes place in the liver yielding primary bile acids; however, other tissues have also the capacity to generate bile acids (e.g. ovaries). Hepatic bile acids are then transported to bile and are subsequently released into the intestines. In the large intestine, a fraction of primary bile acids is converted to secondary bile acids by gut bacteria. The majority of the intestinal bile acids undergo reuptake and return to the liver. A small fraction of secondary and primary bile acids remains in the circulation and exert receptor-mediated and pure chemical effects (e.g. acidic bile in oesophageal cancer) on cancer cells. In this review, we assess how changes to bile acid biosynthesis, bile acid flux and local bile acid concentration modulate the behavior of different cancers. Here, we present in-depth the involvement of bile acids in oesophageal, gastric, hepatocellular, pancreatic, colorectal, breast, prostate, ovarian cancer. Previous studies often used bile acids in supraphysiological concentration, sometimes in concentrations 1000 times higher than the highest reported tissue or serum concentrations likely eliciting unspecific effects, a practice that we advocate against in this review. Furthermore, we show that, although bile acids were classically considered as pro-carcinogenic agents (e.g. oesophageal cancer), the dogma that switch, as lower concentrations of bile acids that correspond to their serum or tissue reference concentration possess anticancer activity in a subset of cancers. Differences in the response of cancers to bile acids lie in the differential expression of bile acid receptors between cancers (e.g. FXR vs. TGR5). UDCA, a bile acid that is sold as a generic medication against cholestasis or biliary surge, and its conjugates were identified with almost purely anticancer features suggesting a possibility for drug repurposing. Taken together, bile acids were considered as tumor inducers or tumor promoter molecules; nevertheless, in certain cancers, like breast cancer, bile acids in their reference concentrations may act as tumor suppressors suggesting a Janus-faced nature of bile acids in carcinogenesis.
Collapse
Affiliation(s)
- Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tünde Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
| | - Patrik Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
| |
Collapse
|
13
|
Rosen R. Novel Advances in the Evaluation and Treatment of Children With Symptoms of Gastroesophageal Reflux Disease. Front Pediatr 2022; 10:849105. [PMID: 35433543 PMCID: PMC9010502 DOI: 10.3389/fped.2022.849105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Gastroesophageal reflux disease has long been implicated as a cause for multiple pediatric symptoms ranging from abdominal pain and regurgitation to cough and dental erosions. Diagnostic testing has evolved greatly over the last 20 years; initial testing with pH-metry to measure esophageal acid reflux burden has evolved into measurement of both acid and non-acid reflux and liquid and gas reflux. However, measuring reflux burden alone only tells a small part of the GERD story and many symptoms originally thought to be reflux related are, in fact, related to other disorder which mimic reflux. The current paradigm which involves empiric treatment of symptoms with acid suppression has been replaced with early testing for not only gastroesophageal reflux but also for other diagnostic masqueraders. The focus for interventions has shifted away from acid suppression toward motility interventions and includes a greater recognition of both functional and motility disorders which present with reflux symptoms.
Collapse
Affiliation(s)
- Rachel Rosen
- Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
14
|
Davern M, Donlon NE, Power R, Hayes C, King R, Dunne MR, Reynolds JV. The tumour immune microenvironment in oesophageal cancer. Br J Cancer 2021; 125:479-494. [PMID: 33903730 PMCID: PMC8368180 DOI: 10.1038/s41416-021-01331-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023] Open
Abstract
Oesophageal cancer (OC) is an inflammation-associated malignancy linked to gastro-oesophageal reflux disease, obesity and tobacco use. Knowledge of the microenvironment of oesophageal tumours is relevant to our understanding of the development of OC and its biology, and has major implications for understanding the response to standard therapies and immunotherapies, as well as for uncovering novel targets. In this context, we discuss what is known about the TME in OC from tumour initiation to development and progression, and how this is relevant to therapy sensitivity and resistance in the two major types of OC. We provide an immunological characterisation of the OC TME and discuss its prognostic implications with specific comparison with the Immunoscore and immune-hot, -cold, altered-immunosuppressed and -altered-excluded models. Targeted therapeutics for the TME under pre-clinical and clinical investigation in OCs are also summarised. A deeper understanding of the TME will enable the development of combination approaches to concurrently target the tumour cells and TME delivering precision medicine to OC patients.
Collapse
Affiliation(s)
- Maria Davern
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Noel E Donlon
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Robert Power
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Conall Hayes
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Ross King
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - Margaret R Dunne
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland
| | - John V Reynolds
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Trinity St James's Cancer Institute, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
15
|
Nesaragi AR, Kamble RR, Dixit S, Kodasi B, Hoolageri SR, Bayannavar PK, Dasappa JP, Vootla S, Joshi SD, Kumbar VM. Green synthesis of therapeutically active 1,3,4-oxadiazoles as antioxidants, selective COX-2 inhibitors and their in silico studies. Bioorg Med Chem Lett 2021; 43:128112. [PMID: 33991632 DOI: 10.1016/j.bmcl.2021.128112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/28/2022]
Abstract
A modest, competent and green synthetic procedure for novel coumarinyl-1,3,4-oxadiazolyl-2-mercaptobenzoxazoles 8i-t has been reported. Analysis of the docked (PDB ID: 5IKR; A-Chain) poses of the compounds illustrated that they adopt identical conformations to the extremely selective COX-2 inhibitor. The biological outcomes as well as computational study suggested that the compounds originated to have elevated resemblance towards COX-2 enzyme than COX-1. The compounds 8i, 8l, 8q, 8r, 8s and 8t emerged as most potent and selective COX-2 inhibitors in contrast with Mefenamic acid. The selectivity index of 8l, 8n and 8r was respectively found to be 33.95, 20.25 and 24.98 which manifested their high selectivity against COX-2. Interestingly, the compounds which were active as COX-2 inhibitors were also active as antioxidant agents.
Collapse
Affiliation(s)
- Aravind R Nesaragi
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India
| | - Ravindra R Kamble
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India.
| | - Shruti Dixit
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, India
| | - Barnabas Kodasi
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India
| | - Swati R Hoolageri
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India
| | | | | | - Shyamkumar Vootla
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, India
| | - Shrinivas D Joshi
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S.E.T.'s College of Pharmacy, Dharwad 580002, India
| | - Vijay M Kumbar
- Central Research Laboratory, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belagavi 590010, India
| |
Collapse
|
16
|
Vercauteren Drubbel A, Pirard S, Kin S, Dassy B, Lefort A, Libert F, Nomura S, Beck B. Reactivation of the Hedgehog pathway in esophageal progenitors turns on an embryonic-like program to initiate columnar metaplasia. Cell Stem Cell 2021; 28:1411-1427.e7. [PMID: 33882290 DOI: 10.1016/j.stem.2021.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/18/2020] [Accepted: 03/24/2021] [Indexed: 01/17/2023]
Abstract
Columnar metaplasia of the esophagus is the main risk factor for esophageal adenocarcinoma. There is a lack of evidence to demonstrate that esophageal progenitors can be the source of columnar metaplasia. In this study, using transgenic mouse models, lineage tracing, single-cell RNA sequencing, and transcriptomic and epigenetic profiling, we found that the activation of the Hedgehog pathway in esophageal cells modifies their differentiation status in vivo. This process involves an initial step of dedifferentiation into embryonic-like esophageal progenitors. Moreover, a subset of these cells undergoes full squamous-to-columnar conversion and expresses selected intestinal markers. These modifications of cell fate are associated with remodeling of the chromatin and the appearance of Sox9. Using a conditional knockout mouse, we show that Sox9 is required for columnar conversion but not for the step of dedifferentiation. These results provide insight into the mechanisms by which esophageal cells might initiate columnar metaplasia.
Collapse
Affiliation(s)
| | - Sheleya Pirard
- IRIBHM, ULB/Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium
| | - Simon Kin
- IRIBHM, ULB/Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium
| | - Benjamin Dassy
- IRIBHM, ULB/Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium
| | - Anne Lefort
- IRIBHM, ULB/Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium
| | - Frédérick Libert
- IRIBHM, ULB/Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Benjamin Beck
- IRIBHM, ULB/Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium; WELBIO/FNRS Principal Investigator at IRIBHM, ULB/Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium.
| |
Collapse
|
17
|
Baumeister T, Ingermann J, Marcazzan S, Fang HY, Oellinger R, Rad R, Engleitner T, Kleigrewe K, Anand A, Strangmann J, Schmid RM, Wang TC, Quante M. Anti-inflammatory chemoprevention attenuates the phenotype in a mouse model of esophageal adenocarcinoma. Carcinogenesis 2021; 42:1068-1078. [PMID: 33878160 DOI: 10.1093/carcin/bgab032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 01/20/2023] Open
Abstract
Barrett´s Esophagus (BE) is the main known precursor condition of Esophageal Adenocarcinoma (EAC). BE is defined by the presence of metaplasia above the normal squamous columnar junction and has mainly been attributed to gastroesophageal reflux disease (GERD) and chronic reflux esophagitis. Thus, the rising incidence of EAC in the Western world is likely mediated by chronic esophageal inflammation, secondary to GERD in combination with environmental risk factors such as a Western diet and obesity. However, (at present) risk prediction tools and endoscopic surveillance have shown limited effectiveness. Chemoprevention as an adjunctive approach remains an attractive option to reduce the incidence of neoplastic disease. Here, we investigate the feasibility of chemopreventive approaches in BE and EAC via inhibition of inflammatory signaling in a transgenic mouse model of BE and EAC (L2-IL1B mice), with accelerated tumor formation on a high fat diet (HFD). L2-IL1B mice were treated with the IL-1 receptor antagonist Anakinra and the nonsteroidal anti-inflammatory drugs (NSAIDs) aspirin or Sulindac. Interleukin-1b antagonism reduced tumor progression in L2-IL1B mice with or without a HFD, while both NSAIDs were effective chemoprevention agents in the accelerated HFD fed L2-IL1B mouse model. Sulindac treatment also resulted in a marked change in the immune profile of L2-IL-1B mice. In summary, anti-inflammatory treatment of HFD-treated L2-IL1B mice acted protectively on disease progression. These results from a mouse model of BE support results from clinical trials that suggest that anti-inflammatory medication may be effective in the chemoprevention of EAC.
Collapse
Affiliation(s)
- Theresa Baumeister
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Jonas Ingermann
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Sabrina Marcazzan
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Hsin-Yu Fang
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional Genomics, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Roland Rad
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany.,Institute of Molecular Oncology and Functional Genomics, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Karin Kleigrewe
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich
| | - Akanksha Anand
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Julia Strangmann
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Roland M Schmid
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany
| | - Timothy C Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Quante
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), Ismaninger Str, München, Germany.,Innere Medizin II, Universitätskliniken Freiburg, Universität Freiburg, Germany
| |
Collapse
|
18
|
Zhou W, Liu M, Li X, Zhang P, Li J, Zhao Y, Sun G, Mao W. Arsenic nano complex induced degradation of YAP sensitized ESCC cancer cells to radiation and chemotherapy. Cell Biosci 2020; 10:146. [PMID: 33353561 PMCID: PMC7756940 DOI: 10.1186/s13578-020-00508-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/27/2020] [Indexed: 02/01/2023] Open
Abstract
Background Increased reactive oxygen species (ROS) production by arsenic treatment in solid tumors showed to be effective to sensitize cancer cells to chemotherapies. Arsenic nano compounds are known to increase the ROS production in solid tumors. Methods In this study we developed arsenic–ferrosoferric oxide conjugated Nano Complex (As2S2–Fe3O4, AFCNC) to further promote the ROS induction ability of arsenic reagent in solid tumors. We screen for the molecular pathways that are affect by arsenic treatment in ESCC cancer cells. And explored the underlying molecular mechanism for the arsenic mediated degradations of the key transcription factor we identified in the gene microarray screen. Mouse xenograft model were used to further verify the synthetic effects of AFCNC with chemo and radiation therapies, and the molecular target of arsenic treatment is verified with IHC analysis. Results With gene expression microarray analysis we found Hippo signaling pathway is specifically affected by arsenic treatment, and induced ubiquitination mediated degradation of YAP in KYSE-450 esophageal squamous cell carcinoma (ESCC) cells. Mechanistically we proved PML physically interacted with YAP, and arsenic induced degradation PML mediated the degradation of YAP in ESCC cells. As a cancer stem cell related transcription factor, YAP 5SA over expressions in cancer cells are correlated with resistance to chemo and radiation therapies. We found AFCNC treatment inhibited the increased invasion and migration ability of YAP 5SA overexpressing KYSE-450 cells. AFCNC treatment also effectively reversed protective effects of YAP 5SA overexpression against cisplatin induced apoptosis in KYSE-450 cells. Lastly, with ESCC mouse xenograft model we found AFCNC combined with cisplatin treatment or radiation therapy significantly reduced the tumor volumes in vivo in the xenograft ESCC tumors. Conclusions Together, these findings suggested besides ROS, YAP is a potential target for arsenic based therapy in ESCC, which should play an important role in the synthetic effects of arsenic nano complex with chemo and radiation therapy.
Collapse
Affiliation(s)
- Wei Zhou
- Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine of Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Meiyue Liu
- School of Public Health, North China University of Science and Technology Affiliated People's Hospital, North China University of Science and Technology, Tangshan, 063001, China
| | - Xia Li
- Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine of Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Peng Zhang
- Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine of Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jiong Li
- Department of Medicinal Chemistry, Massey Cancer Center, Philips Institute for Oral Health Research , Virginia Commonwealth University, Richmond, VA, 23298-0540, USA
| | - Yue Zhao
- Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine of Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Guogui Sun
- School of Public Health, North China University of Science and Technology Affiliated People's Hospital, North China University of Science and Technology, Tangshan, 063001, China.
| | - Weimin Mao
- Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine of Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
19
|
Rosemurgy A, Wilfong C, Craigg D, Co F, Sucandy I, Ross S. The Evolving Landscape of Esophageal Cancer: A Four-Decade Analysis. Am Surg 2020. [DOI: 10.1177/000313481908500933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The incidence of esophageal cancer in the United States seems to have significantly increased since the 1970s. In undertaking this study, we sought to describe changes in the incidence, histologic type, and presenting stage of esophageal cancer over the past four decades. With Institutional Review Board approval, the Surveillance, Epidemiology, and End Results database of the National Cancer Institute was queried. Regression analysis was used to analyze data, and significance was accepted with 95 per cent probability. Forty-two thousand seven hundred thirty-nine patients had squamous cell carcinoma or adenocarcinoma located in their upper, middle, and/ or lower esophagus from 1973 through 2010, reflecting a 7.5-fold annual increase from 1973 through 2010. Squamous cell carcinoma increased annually 2.5-fold ( P < 0.001) and esophageal adenocarcinoma increased annually 57-fold from 1973 through 2010 ( P < 0.001), whereas the overall population in the United States increased only 43 per cent (215,092,900 to 308,745,538) in the same period. From 1973 through 2010, there was a significant increase in the incidence of esophageal cancer in the United States. This increase was much greater than the increase in the population in the United States. The incidence of adenocarcinoma increased much more than that of squamous cell carcinoma of the esophagus from 1973 through 2010.
Collapse
Affiliation(s)
| | | | | | - Franka Co
- From Advent Health Tampa, Tampa, Florida
| | | | | |
Collapse
|
20
|
Tan MC, El-Serag HB, Yu X, Thrift AP. Acid suppression medications reduce risk of oesophageal adenocarcinoma in Barrett's oesophagus: a nested case-control study in US male veterans. Aliment Pharmacol Ther 2018; 48:469-477. [PMID: 29956826 DOI: 10.1111/apt.14895] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/23/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Proton pump inhibitors (PPIs) and histamine-2 receptor antagonists (H2RAs) may reduce the risk of oesophageal adenocarcinoma (OAC) in Barrett's oesophagus; however, current epidemiologic studies are inconclusive. AIM To evaluate the independent effects of PPIs and H2RAs on risk of OAC in patients with Barrett's oesophagus. METHODS We conducted a nested case-control study of male veterans diagnosed with Barrett's oesophagus. Cases with incident OAC were matched by incidence density sampling on birth year and Barrett's diagnosis date to controls with Barrett's oesophagus who did not develop OAC. We identified prescription medication usage 1 year prior to Barrett's oesophagus diagnosis to 3 months prior to the OAC diagnosis. Odds ratios (OR) and 95% CI were estimated using conditional logistic regression. RESULTS Compared with 798 controls, the 300 cases were less likely to use PPIs (90.0% vs 94.5%, P = 0.01) and H2RAs (19.7% vs 25.7%, P = 0.04). In the multivariable model including the use of statins, H2RAs, aspirin and nonsteroidal anti-inflammatory drugs, PPI use was associated with 41% lower risk of OAC (OR 0.59, 95% CI 0.35-0.99). While risk reduction of OAC was stronger for high-dose PPIs (omeprazole daily dose >40 mg, adjusted OR 0.11, 95% 0.04-0.36), we did not find a dose-response relationship with PPI duration (P trend = 0.45). Likewise, H2RA use was independently associated with 30% lower risk of OAC (OR 0.70, 95% CI 0.50-0.99). CONCLUSION Use of PPIs and H2RAs among patients with Barrett's oesophagus are associated with lower risk of OAC. Further clinical trials are needed to confirm this possible chemopreventive effect.
Collapse
Affiliation(s)
- M C Tan
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - H B El-Serag
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - X Yu
- Department of Preventive Medicine and Community Health, Office of Biostatistics, University of Texas Medical Branch, Galveston, TX, USA
| | - A P Thrift
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
21
|
Abstract
Barrett's esophagus is common in Western countries, but progression to esophageal adenocarcinoma is uncommon. Chemoprevention therefore needs to consider whether benefits outweigh risks given an otherwise healthy population. This will depend on the particular population at risk and the relative safety of a potential preventive agent. Most evidence regarding the potential benefit of chemoprevention of Barrett's esophagus and prevention of progression to esophageal adenocarcinoma is based on observational studies such as case-control and cohort studies. Given the potential benefits and relatively low risks, patients with BE should receive once-daily PPI therapy, but routine use of twice-daily PPI is not recommended unless necessitated by poor control of reflux symptoms or esophagitis. Recent data suggest that the inverse associations between aspirin/NSAID use and esophageal adenocarcinoma may be the result of reducing neoplastic progression (from metaplasia to dysplasia and carcinoma) rather than initiation of Barrett's esophagus. While substantial associative data suggest a potential benefit of aspirin and nonaspirin NSAIDs in reducing the risk of progression of Barrett's esophagus, the low risk of progression and the potential risks (gastrointestinal bleeding, complicated ulcer disease, hemorrhagic stroke) do not warrant routine use, unless dictated by cardiovascular risk. Chemoprevention after mucosal ablation in those at highest risk of post-ablation recurrence (dysplastic Barrett's) is currently under investigation.
Collapse
Affiliation(s)
- Robert S Bresalier
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer, 1515 Holcombe Boulevard Unit 1466, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Xu F, Li M, Zhang C, Cui J, Liu J, Li J, Jiang H. Clinicopathological and prognostic significance of COX-2 immunohistochemical expression in breast cancer: a meta-analysis. Oncotarget 2018; 8:6003-6012. [PMID: 27999206 PMCID: PMC5351608 DOI: 10.18632/oncotarget.13990] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
The prognostic significance of COX-2 in patients with breast cancer remains controversial. The aims of our meta-analysis are to evaluate its association with clinicopathological characteristics and prognostic value in patients with breast cancer. PubMed, EMBASE, Web of Science, the Ovid Database and Grey literature were systematically searched up to May 2016. Twenty-one studies including 6739 patients with breast cancer were analyzed. The meta-analysis indicated that the incidence difference of COX-2 expression was significant when comparing the lymph node positive group to negative group (OR = 1.76, 95% CI [1.30, 2.39]) and the tumor size ≥ 2cm group to the tumor size < 2cm group (OR = 1.71, 95% CI [1.22, 2.39]). None of other clinicopathological parameters such as the ER status, PR status, HER2 status and the vascular invasion status were associated with COX-2 overexpression. The detection of COX-2 was significantly correlated with the disease-free survival (DFS) of patients (HR = 1.58, 95% CI [1.23, 2.03]) and the overall survival (OS) of patients (HR = 1.51, 95% CI [1.31, 1.72]). Our meta-analysis demonstrates that the presence of high levels of COX-2 is associated with poor prognosis for breast cancer patients and predicts bigger tumor size and lymph node metastasis.
Collapse
Affiliation(s)
- Feng Xu
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China, 100020
| | - Mengxin Li
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China, 100020
| | - Chao Zhang
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China, 100020
| | - Jianxiu Cui
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China, 100020
| | - Jun Liu
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China, 100020
| | - Jie Li
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China, 100020
| | - Hongchuan Jiang
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China, 100020
| |
Collapse
|
23
|
Clark RJ, Craig MP, Agrawal S, Kadakia M. microRNA involvement in the onset and progression of Barrett's esophagus: a systematic review. Oncotarget 2018; 9:8179-8196. [PMID: 29487725 PMCID: PMC5814292 DOI: 10.18632/oncotarget.24145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/22/2017] [Indexed: 12/13/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy that develops from Barrett's esophagus (BE), an intestinal metaplasia of the distal esophagus. microRNAs (miRNAs), short non-coding regulatory RNAs, are frequently dysregulated in BE and are thought to play key roles in the onset of BE and its progression to EAC. miRNAs thus have potential diagnostic and prognostic value and are increasingly being used as cancer biomarkers. This review summarizes the current literature related to miRNAs that are dysregulated in BE within the context of Hedgehog, Notch, MAPK, NF kappa-B, Wnt and epithelial-mesenchymal transition (EMT) signaling which are thought to drive BE onset and progression. This comprehensive analysis of miRNAs and their associated signaling in the regulation of BE provides an overview of vital discoveries in this field and highlights gaps in our understanding of BE pathophysiology that warrant further investigation.
Collapse
Affiliation(s)
- Reilly J Clark
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Michael P Craig
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | | | - Madhavi Kadakia
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
24
|
Abstract
Metaplasia is the replacement of one differentiated somatic cell type with another differentiated somatic cell type in the same tissue. Typically, metaplasia is triggered by environmental stimuli, which may act in concert with the deleterious effects of microorganisms and inflammation. The cell of origin for intestinal metaplasia in the oesophagus and stomach and for pancreatic acinar-ductal metaplasia has been posited through genetic mouse models and lineage tracing but has not been identified in other types of metaplasia, such as squamous metaplasia. A hallmark of metaplasia is a change in cellular identity, and this process can be regulated by transcription factors that initiate and/or maintain cellular identity, perhaps in concert with epigenetic reprogramming. Universally, metaplasia is a precursor to low-grade dysplasia, which can culminate in high-grade dysplasia and carcinoma. Improved clinical screening for and surveillance of metaplasia might lead to better prevention or early detection of dysplasia and cancer.
Collapse
Affiliation(s)
- Veronique Giroux
- University of Pennsylvania Perelman School of Medicine, 951 BRB, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Anil K Rustgi
- University of Pennsylvania Perelman School of Medicine, 951 BRB, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
25
|
Pérez S, Taléns-Visconti R, Rius-Pérez S, Finamor I, Sastre J. Redox signaling in the gastrointestinal tract. Free Radic Biol Med 2017; 104:75-103. [PMID: 28062361 DOI: 10.1016/j.freeradbiomed.2016.12.048] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 12/16/2022]
Abstract
Redox signaling regulates physiological self-renewal, proliferation, migration and differentiation in gastrointestinal epithelium by modulating Wnt/β-catenin and Notch signaling pathways mainly through NADPH oxidases (NOXs). In the intestine, intracellular and extracellular thiol redox status modulates the proliferative potential of epithelial cells. Furthermore, commensal bacteria contribute to intestine epithelial homeostasis through NOX1- and dual oxidase 2-derived reactive oxygen species (ROS). The loss of redox homeostasis is involved in the pathogenesis and development of a wide diversity of gastrointestinal disorders, such as Barrett's esophagus, esophageal adenocarcinoma, peptic ulcer, gastric cancer, ischemic intestinal injury, celiac disease, inflammatory bowel disease and colorectal cancer. The overproduction of superoxide anion together with inactivation of superoxide dismutase are involved in the pathogenesis of Barrett's esophagus and its transformation to adenocarcinoma. In Helicobacter pylori-induced peptic ulcer, oxidative stress derived from the leukocyte infiltrate and NOX1 aggravates mucosal damage, especially in HspB+ strains that downregulate Nrf2. In celiac disease, oxidative stress mediates most of the cytotoxic effects induced by gluten peptides and increases transglutaminase levels, whereas nitrosative stress contributes to the impairment of tight junctions. Progression of inflammatory bowel disease relies on the balance between pro-inflammatory redox-sensitive pathways, such as NLRP3 inflammasome and NF-κB, and the adaptive up-regulation of Mn superoxide dismutase and glutathione peroxidase 2. In colorectal cancer, redox signaling exhibits two Janus faces: On the one hand, NOX1 up-regulation and derived hydrogen peroxide enhance Wnt/β-catenin and Notch proliferating pathways; on the other hand, ROS may disrupt tumor progression through different pro-apoptotic mechanisms. In conclusion, redox signaling plays a critical role in the physiology and pathophysiology of gastrointestinal tract.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Isabela Finamor
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain.
| |
Collapse
|
26
|
Pang C, LaLonde A, Godfrey TE, Que J, Sun J, Wu TT, Zhou Z. Bile salt receptor TGR5 is highly expressed in esophageal adenocarcinoma and precancerous lesions with significantly worse overall survival and gender differences. Clin Exp Gastroenterol 2017; 10:29-37. [PMID: 28223834 PMCID: PMC5304980 DOI: 10.2147/ceg.s117842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bile acid reflux in the esophagus plays an important role in the carcinogenesis of esophageal adenocarcinoma (EAC). The G-protein coupled bile acid receptor (TGR5) has been associated with the development of gastrointestinal cancer. However, little is known regarding the role of TGR5 in esophageal carcinoma and precancerous lesions. We analyzed genomic DNA from 116 EACs for copy number aberrations via Affymetrix SNP6.0 microarrays. The TGR5 gene locus was amplified in 12.7% (14/116) of the EACs. The TGR5 protein expression was also assessed using immunohistochemistry from tissue microarrays, including Barrett’s esophagus (BE), low-(LGD) and high-grade dysplasia (HGD), columnar cell metaplasia (CM), squamous epithelium (SE), EAC and squamous cell carcinoma. The TGR5 protein was highly expressed in 71% of EAC (75/106), 100% of HGD (11/11), 72% of LGD (13/18), 66% of BE (23/35), 84% of CM (52/62), and 36% of SE (30/83). The patients with high expression of TGR5 exhibited significantly worse overall survival compared to the patients with nonhigh expression. TGR5 high expression was significantly increased in the males compared to the females in all cases with an odds ratio of 1.9 times. The vitamin D receptor (VDR) was significantly correlated with TGR5 expression. Our findings indicated that TGR5 may play an important role in the development and prognosis of EAC through a bile acid ligand. Gender differences in TGR5 and VDR expression may explain why males have a higher incidence of EAC compared to females.
Collapse
Affiliation(s)
- Chunhong Pang
- Department of Pathology, China-Japan Friendship Hospital; Department of Pathology and Laboratory Medicine
| | - Amy LaLonde
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY
| | - Tony E Godfrey
- Department of Surgery, Boston University Medical Center, Boston, MA
| | - Jianwen Que
- Center for Human Development; Division of Digestive and Liver Diseases, Columbia University, New York, NY
| | - Jun Sun
- Division of Gastroenterology and Hepatology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY
| | | |
Collapse
|
27
|
Liu D, Zhang R, Wu J, Pu Y, Yin X, Cheng Y, Wu J, Feng C, Luo Y, Zhang J. Interleukin-17A promotes esophageal adenocarcinoma cell invasiveness through ROS-dependent, NF-κB-mediated MMP-2/9 activation. Oncol Rep 2017; 37:1779-1785. [PMID: 28184939 DOI: 10.3892/or.2017.5426] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/28/2016] [Indexed: 11/06/2022] Open
Abstract
Interleukin-17A (IL-17A), a pro-inflammatory cytokine secreted primarily by Th17 cells, has been proved to be involved in the microenvironment of certain inflammation-related tumors. However, the role of IL-17A in cancer development has always been controversial. In this study, we investigated the effect of IL-17A on the regulation of esophageal adenocarcinoma (EAC) cell invasiveness and related molecular mechanism. Surface IL-17 receptor (IL-17R) expression on human EAC cell line OE19 was examined using flow cytometry. The effect of IL-17A on cell proliferation was measured by MTT assay. Cell migration and invasive ability in vitro were assessed by wound-healing and Matrigel-coated Transwell invasion assay. Intracellular reactive oxygen species (ROS) levels were determined by flow cytometry and fluorescence microscope. The protein expression levels of MMP-2, MMP-9, NF-κB and p-IκB-α were detected by western blotting. Our results showed that IL-17A promoted migration and invasion of OE19 cells in a dose-dependent manner, however it had less effect on OE19 cell proliferation. Furthermore, IL-17A treatment significantly upregulated the expression of MMP-2 and MMP-9, stimulated intracellular ROS production, increased IκB-α phosphorylation and NF-κB nuclear translocation. Nevertheless, IL-17A-induced expression of MMP-2/9 and OE19 cell invasiveness were both inhibited by pretreatment with N-acetyl-L-cysteine (NAC, a ROS scavenger) or pyrrolidine dithiocarbamate (PDTC, a NF-κB inhibitor). In conclusion, these findings demonstrate that IL-17A can promote the migration and invasiveness of EAC cells through ROS/NF-κB/MMP-2/9 signaling pathway activation, indicating that IL-17A may be a potential therapeutic target for EAC.
Collapse
Affiliation(s)
- Dong Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Rong Zhang
- Department of Gastroenterology, Shaanxi Provincal People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Jie Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yansong Pu
- Department of General Surgery, Shaanxi Provincal People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xiaoran Yin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yan Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jing Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Cheng Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yumei Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jun Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
28
|
Bhardwaj V, Horvat A, Korolkova O, Washington MK, El-Rifai W, Dikalov SI, Zaika AI. Prevention of DNA damage in Barrett's esophageal cells exposed to acidic bile salts. Carcinogenesis 2016; 37:1161-1169. [PMID: 27655834 DOI: 10.1093/carcin/bgw100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/01/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
Esophageal adenocarcinoma (EA) is one of the fastest rising tumors in the USA. The major risk factor for EA is gastroesophageal reflux disease (GERD). During GERD, esophageal cells are exposed to refluxate which contains gastric acid frequently mixed with duodenal bile. This may lead to mucosal injury and Barrett's metaplasia (BE) that are important factors contributing to development of EA. In this study, we investigated DNA damage in BE cells exposed to acidic bile salts and explored for potential protective strategies. Exposure of BE cells to acidic bile salts led to significant DNA damage, which in turn, was due to generation of reactive oxygen species (ROS). We found that acidic bile salts induce a rapid increase in superoxide radicals and hydrogen peroxide, which were determined using electron paramagnetic resonance spectroscopy and Amplex Red assay. Analyzing a panel of natural antioxidants, we identified apocynin to be the most effective in protecting esophageal cells from DNA damage induced by acidic bile salts. Mechanistic analyses showed that apocynin inhibited ROS generation and increases the DNA repair capacity of BE cells. We identified BRCA1 and p73 proteins as apocynin targets. Downregulation of p73 inhibited the protective effect of apocynin. Taken together, our results suggest potential application of natural compounds such as apocynin for prevention of reflux-induced DNA damage and GERD-associated tumorigenesis.
Collapse
Affiliation(s)
- Vikas Bhardwaj
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.,Department of Surgery
| | | | | | | | - Wael El-Rifai
- Department of Surgery.,Department of Cancer Biology and
| | - Sergey I Dikalov
- Division of Clinical Pharmacology, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Alexander I Zaika
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA, .,Department of Surgery.,Department of Cancer Biology and
| |
Collapse
|
29
|
Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab 2016; 4:11. [PMID: 27275383 PMCID: PMC4893840 DOI: 10.1186/s40170-016-0151-y] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/16/2016] [Indexed: 12/18/2022] Open
Abstract
Background Colorectal cancers (CRC) are associated with perturbations in cellular amino acids, nucleotides, pentose-phosphate pathway carbohydrates, and glycolytic, gluconeogenic, and tricarboxylic acid intermediates. A non-targeted global metabolome approach was utilized for exploring human CRC, adjacent mucosa, and stool. In this pilot study, we identified metabolite profile differences between CRC and adjacent mucosa from patients undergoing colonic resection. Metabolic pathway analyses further revealed relationships between complex networks of metabolites. Methods Seventeen CRC patients participated in this pilot study and provided CRC, adjacent mucosa ~10 cm proximal to the tumor, and stool. Metabolomes were analyzed by gas chromatography-mass spectrometry (GC/MS) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). All of the library standard identifications were confirmed and further analyzed via MetaboLyncTM for metabolic network interactions. Results There were a total of 728 distinct metabolites identified from colonic tissue and stool matrices. Nineteen metabolites significantly distinguished CRC from adjacent mucosa in our patient-matched cohort. Glucose-6-phosphate and fructose-6-phosphate demonstrated 0.64-fold and 0.75-fold lower expression in CRC compared to mucosa, respectively, whereas isobar: betaine aldehyde, N-methyldiethanolamine, and adenylosuccinate had 2.68-fold and 1.88-fold higher relative abundance in CRC. Eleven of the 19 metabolites had not previously been reported for CRC relevance. Metabolic pathway analysis revealed significant perturbations of short-chain fatty acid metabolism, fructose, mannose, and galactose metabolism, and glycolytic, gluconeogenic, and pyruvate metabolism. In comparison to the 500 stool metabolites identified from human CRC patients, only 215 of those stool metabolites were also detected in tissue. This CRC and stool metabolome investigation identified novel metabolites that may serve as key small molecules in CRC pathogenesis, confirmed the results from previously reported CRC metabolome studies, and showed networks for metabolic pathway aberrations. In addition, we found differences between the CRC and stool metabolomes. Conclusions Stool metabolite profiles were limited for direct associations with CRC and adjacent mucosa, yet metabolic pathways were conserved across both matrices. Larger patient-matched CRC, adjacent non-cancerous colonic mucosa, and stool cohort studies for metabolite profiling are needed to validate these small molecule differences and metabolic pathway aberrations for clinical application to CRC control, treatment, and prevention. Electronic supplementary material The online version of this article (doi:10.1186/s40170-016-0151-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University, 200 West Lake Street, 1680 Campus Delivery, Fort Collins, CO 80523 USA
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523 USA
| | - Joanne O'Malia
- University of Colorado Health-North, Fort Collins, CO 80522 USA
| | - Marlon Bazan
- University of Colorado Health-North, Fort Collins, CO 80522 USA
| | - Regina J Brown
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, 200 West Lake Street, 1680 Campus Delivery, Fort Collins, CO 80523 USA ; Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
30
|
The tumor microenvironment in esophageal cancer. Oncogene 2016; 35:5337-5349. [PMID: 26923327 PMCID: PMC5003768 DOI: 10.1038/onc.2016.34] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 02/08/2023]
Abstract
Esophageal cancer is a deadly disease, ranking sixth among all cancers in mortality. Despite incremental advances in diagnostics and therapeutics, esophageal cancer still carries a poor prognosis, and thus there remains a need to elucidate the molecular mechanisms underlying this disease. There is accumulating evidence that a comprehensive understanding of the molecular composition of esophageal cancer requires attention to not only tumor cells but also the tumor microenvironment, which contains diverse cell populations, signaling factors, and structural molecules that interact with tumor cells and support all stages of tumorigenesis. In esophageal cancer, environmental exposures can trigger chronic inflammation, which leads to constitutive activation of pro-inflammatory signaling pathways that promote survival and proliferation. Anti-tumor immunity is attenuated by cell populations such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), as well as immune checkpoints like programmed death-1 (PD-1). Other immune cells such as tumor-associated macrophages can have other pro-tumorigenic functions, including the induction of angiogenesis and tumor cell invasion. Cancer-associated fibroblasts secrete growth factors and alter the extracellular matrix (ECM) to create a tumor niche and enhance tumor cell migration and metastasis. Further study of how these TME components relate to the different stages of tumor progression in each esophageal cancer subtype will lead to development of novel and specific TME-targeting therapeutic strategies, which offer considerable potential especially in the setting of combination therapy.
Collapse
|
31
|
Thrift AP. Esophageal Adenocarcinoma: The Influence of Medications Used to Treat Comorbidities on Cancer Prognosis. Clin Gastroenterol Hepatol 2015; 13:2225-32. [PMID: 25835331 DOI: 10.1016/j.cgh.2015.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 02/07/2023]
Abstract
Esophageal adenocarcinoma has undergone a continuous rise in incidence since the early 1970s and is the fastest rising cancer among white men in the United States. Epidemiologic studies have demonstrated that medications commonly used to treat multiple chronic conditions (for example, aspirin, non-aspirin nonsteroidal anti-inflammatory drugs, and statins) as well as powerful acid suppressants such as proton pump inhibitors are associated with a reduced risk of esophageal adenocarcinoma. The chemopreventive potential of these classes of medications appears to be especially applicable to persons with Barrett's esophagus, the only known premalignant condition for esophageal adenocarcinoma. However, it is not known whether these medications also influence cancer recurrence and cancer-specific mortality in persons diagnosed with esophageal adenocarcinoma. This is an important question because most patients with esophageal adenocarcinoma have 1 or more comorbid conditions at the time of their cancer diagnosis and are receiving medication to treat these conditions. This article summarizes the evidence on the associations between 4 commonly used classes of medications and (1) risk of developing esophageal adenocarcinoma and Barrett's esophagus and (2) risk of cancer recurrence and cancer-specific mortality in patients with esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Aaron P Thrift
- Department of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
32
|
Zeb MH, Baruah A, Kossak SK, Buttar NS. Chemoprevention in Barrett's Esophagus: Current Status. Gastroenterol Clin North Am 2015; 44:391-413. [PMID: 26021201 DOI: 10.1016/j.gtc.2015.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemoprevention in Barrett's esophagus is currently applied only in research settings. Identifying pathways that can be targeted by safe, pharmaceutical or natural compounds is key to expanding the scope of chemoprevention. Defining meaningful surrogate markers of cancer progression is critical to test the efficacy of chemopreventive approaches. Combinatorial chemoprevention that targets multiple components of the same pathway or parallel pathways could reduce the risk and improve the efficacy of chemoprevention. Here we discuss the role of chemoprevention as an independent or an adjuvant management option in BE-associated esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Muhammad H Zeb
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Anushka Baruah
- Department of Internal Medicine, John H. Stroger, Jr. Hospital of Cook County, 1901 W. Harrison Street, Chicago, IL 60612, USA
| | - Sarah K Kossak
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Navtej S Buttar
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
33
|
Akiyama J, Alexandre L, Baruah A, Buttar N, Chandra R, Clark AB, Hart AR, Hawk E, Kandioler D, Kappel S, Krishnadath SK, Sharma A, Singh I, Straub D, Triadafilopoulos G, Umar A, Wolf B. Strategy for prevention of cancers of the esophagus. Ann N Y Acad Sci 2015; 1325:108-26. [PMID: 25266020 DOI: 10.1111/nyas.12529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The following, from the 12th OESO World Conference: Cancers of the Esophagus, includes commentaries on the animal reflux-inflammation models for Barrett's esophagus and esophageal adenocarcinoma; genomic/epigenomic analyses; eflornithine-based combinations; the molecular derangements that promote neoplastic transformation; the role of COX-2 inhibitors, proton pump inhibitors, and phase II trials in Barrett's adenocarcinoma; statins in chemoprevention and treatment of esophageal cancer; and biomarkers as potential targets in Barrett's adenocarcinoma.
Collapse
Affiliation(s)
- Junichi Akiyama
- National Center for Global Health and Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Baruah A, Buttar NS. Chemoprevention in Barrett's oesophagus. Best Pract Res Clin Gastroenterol 2015; 29:151-65. [PMID: 25743463 DOI: 10.1016/j.bpg.2014.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/11/2014] [Indexed: 01/31/2023]
Abstract
Increasing incidence of oesophageal adenocarcinoma along with poor survival entails novel preventive strategies. Agents that target pro-oncogenic pathways in Barrett's mucosa could halt this neoplastic transformation. In this review, we will use epidemiological associations and molecular mechanisms to identify novel chemoprevention targets in Barrett's oesophagus. We will also discuss recent chemoprevention trials.
Collapse
Affiliation(s)
- Anushka Baruah
- Mayo Clinic College of Medicine, Department of Gastroenterology and Hepatology, Rochester, MN, USA
| | - Navtej S Buttar
- Mayo Clinic College of Medicine, Department of Gastroenterology and Hepatology, Rochester, MN, USA.
| |
Collapse
|
35
|
Bile acids repress hypoxia-inducible factor 1 signaling and modulate the airway immune response. Infect Immun 2014; 82:3531-41. [PMID: 24914220 DOI: 10.1128/iai.00674-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gastroesophageal reflux (GER) frequently occurs in patients with respiratory disease and is particularly prevalent in patients with cystic fibrosis. GER is a condition in which the duodenogastric contents of the stomach leak into the esophagus, in many cases resulting in aspiration into the respiratory tract. As such, the presence of GER-derived bile acids (BAs) has been confirmed in the bronchoalveolar lavage fluid and sputum of affected patients. We have recently shown that bile causes cystic fibrosis-associated bacterial pathogens to adopt a chronic lifestyle and may constitute a major host trigger underlying respiratory infection. The current study shows that BAs elicit a specific response in humans in which they repress hypoxia-inducible factor 1α (HIF-1α) protein, an emerging master regulator in response to infection and inflammation. HIF-1α repression was shown to occur through the 26S proteasome machinery via the prolyl hydroxylase domain (PHD) pathway. Further analysis of the downstream inflammatory response showed that HIF-1α repression by BAs can significantly modulate the immune response of airway epithelial cells, correlating with a decrease in interleukin-8 (IL-8) production, while IL-6 production was strongly increased. Importantly, the effects of BAs on cytokine production can also be more dominant than the bacterium-mediated effects. However, the effect of BAs on cytokine levels cannot be fully explained by their ability to repress HIF-1α, which is not surprising, given the complexity of the immune regulatory network. The suppression of HIF-1 signaling by bile acids may have a significant influence on the progression and outcome of respiratory disease, and the molecular mechanism underpinning this response warrants further investigation.
Collapse
|
36
|
Hashimoto N. Effects of bile acids on cyclooxygenase-2 expression in a rat model of duodenoesophageal anastomosis. World J Gastroenterol 2014; 20:6541-6546. [PMID: 24914375 PMCID: PMC4047339 DOI: 10.3748/wjg.v20.i21.6541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/24/2014] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the expression of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in rat esophageal lesions induced by reflux of duodenal contents.
METHODS: Thirty 8-week-old male Wistar rats were exposed to duodenal content esophageal reflux. All animals underwent an esophagoduodenal anastomosis (EDA) with total gastrectomy to elicit chronic esophagitis. In ten rats sham operations with only a midline laparotomy were performed (Control). The rats were sacrificed at the 40th week, their esophagi were taken for hematoxylin and eosin staining and for examination of expression of COX2, PGE2, and proliferating cell nuclear antigen (PCNA), and total bile acids in the esophageal lumen was measured.
RESULTS: After 40 wk of reflux, columnar dysplasia, squamous cell carcinoma and adenocarcinoma were observed. Total bile acids in the esophageal lumen were significantly increased in the EDA group compared with the sham operated rats. PCNA labelling index and esophageal tissue PGE2 levels were higher in dysplastic and cancer tissues than in control tissues. Overexpression of COX2 was observed in dysplastic and cancer tissues.
CONCLUSION: Reflux of duodenal contents induces COX2 expression and increases prostaglandin synthesis in dysplastic and cancer tissues. This result suggests a possible mechanism by which bile acids promote esophageal cancer.
Collapse
|
37
|
Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 2014; 94:329-54. [PMID: 24692350 DOI: 10.1152/physrev.00040.2012] [Citation(s) in RCA: 1379] [Impact Index Per Article: 137.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are generated as by-products of normal cellular metabolic activities. Superoxide dismutase, glutathione peroxidase, and catalase are the enzymes involved in protecting cells from the damaging effects of ROS. ROS are produced in response to ultraviolet radiation, cigarette smoking, alcohol, nonsteroidal anti-inflammatory drugs, ischemia-reperfusion injury, chronic infections, and inflammatory disorders. Disruption of normal cellular homeostasis by redox signaling may result in cardiovascular, neurodegenerative diseases and cancer. ROS are produced within the gastrointestinal (GI) tract, but their roles in pathophysiology and disease pathogenesis have not been well studied. Despite the protective barrier provided by the mucosa, ingested materials and microbial pathogens can induce oxidative injury and GI inflammatory responses involving the epithelium and immune/inflammatory cells. The pathogenesis of various GI diseases including peptic ulcers, gastrointestinal cancers, and inflammatory bowel disease is in part due to oxidative stress. Unraveling the signaling events initiated at the cellular level by oxidative free radicals as well as the physiological responses to such stress is important to better understand disease pathogenesis and to develop new therapies to manage a variety of conditions for which current therapies are not always sufficient.
Collapse
|
38
|
Dang S, Xu H, Xu C, Cai W, Li Q, Cheng Y, Jin M, Wang RX, Peng Y, Zhang Y, Wu C, He X, Wan B, Zhang Y. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis. Autophagy 2014; 10:1301-15. [PMID: 24905997 PMCID: PMC4203554 DOI: 10.4161/auto.28771] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4+ T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy.
Collapse
Affiliation(s)
- Shipeng Dang
- Key Laboratory of Stem Cell Biology; Institute of Health Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (SJTUSM); and Shanghai Institute of Immunology; Institutes of Medical Sciences; SJTUSM; Shanghai, China
| | - Huanbai Xu
- Department of Endocrinology and Metabolism; Shanghai Jiao Tong University Affiliated First People's Hospital; Shanghai, China
| | - Congfeng Xu
- Key Laboratory of Stem Cell Biology; Institute of Health Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (SJTUSM); and Shanghai Institute of Immunology; Institutes of Medical Sciences; SJTUSM; Shanghai, China
| | - Wei Cai
- Department of Infectious Diseases; Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, China
| | - Qian Li
- Key Laboratory of Stem Cell Biology; Institute of Health Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (SJTUSM); and Shanghai Institute of Immunology; Institutes of Medical Sciences; SJTUSM; Shanghai, China
| | - Yiji Cheng
- Key Laboratory of Stem Cell Biology; Institute of Health Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (SJTUSM); and Shanghai Institute of Immunology; Institutes of Medical Sciences; SJTUSM; Shanghai, China
| | - Min Jin
- Key Laboratory of Stem Cell Biology; Institute of Health Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (SJTUSM); and Shanghai Institute of Immunology; Institutes of Medical Sciences; SJTUSM; Shanghai, China
| | - Ru-Xing Wang
- Department of Cardiology; Affiliated Hospital of Nanjing Medical University in Wuxi; Wuxi People's Hospital; Wuxi, China
| | - Yongde Peng
- Department of Endocrinology and Metabolism; Shanghai Jiao Tong University Affiliated First People's Hospital; Shanghai, China
| | - Yi Zhang
- Department of Internal Medicine; University of Michigan; Ann Arbor, MI USA
| | - Changping Wu
- Key Laboratory of Stem Cell Biology; Institute of Health Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (SJTUSM); and Shanghai Institute of Immunology; Institutes of Medical Sciences; SJTUSM; Shanghai, China; The First People's Hospital of Changzhou and the Third Affiliated Hospital of Soochow University; Changzhou, Jiangsu China
| | - Xiaozhou He
- Key Laboratory of Stem Cell Biology; Institute of Health Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (SJTUSM); and Shanghai Institute of Immunology; Institutes of Medical Sciences; SJTUSM; Shanghai, China; The First People's Hospital of Changzhou and the Third Affiliated Hospital of Soochow University; Changzhou, Jiangsu China
| | - Bing Wan
- Key Laboratory of Stem Cell Biology; Institute of Health Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (SJTUSM); and Shanghai Institute of Immunology; Institutes of Medical Sciences; SJTUSM; Shanghai, China
| | - Yanyun Zhang
- Key Laboratory of Stem Cell Biology; Institute of Health Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine (SJTUSM); and Shanghai Institute of Immunology; Institutes of Medical Sciences; SJTUSM; Shanghai, China
| |
Collapse
|
39
|
Sato S, Yamamoto H, Mukaisho KI, Saito S, Hattori T, Yamamoto G, Sugihara H. Continuous taurocholic acid exposure promotes esophageal squamous cell carcinoma progression due to reduced cell loss resulting from enhanced vascular development. PLoS One 2014; 9:e88831. [PMID: 24551170 PMCID: PMC3925151 DOI: 10.1371/journal.pone.0088831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 01/16/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Refluxogenic effects of smoking and alcohol abuse may be related to the risk of esophageal squamous cell carcinoma (ESCC). The present study attempts to clarify the effects of continuous taurocholic acid (TCA) exposure, which is neither mutagenic nor genotoxic, on ESCC progression. METHODS A squamous carcinoma cell line (ESCC-DR) was established from a tumor induced in a rat model of gastroduodenal reflux. ESCC-DR cells were incubated with 2 mM TCA for ≥2 months. The effects of continuous TCA exposure were evaluated in vitro on cell morphology, growth, and invasion and in vivo on xenograft tumor growth in nude mice. Moreover, the mean level of secreted transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF) proteins in cell culture supernatants and mRNA synthesis of TGF-β1 and VEGF-A of ESCC cells were measured. The angiogenic potential was further examined by a migration assay using human umbilical vein endothelial cells (HUVECs). RESULTS Continuous TCA exposure induced marked formation of filopodia in vitro. Expression levels of angiogenic factors were significantly higher in the cells treated with TCA than in control cells. Tumor xenografts derived from cells pre-exposed to TCA were larger and more vascularized than those derived from control cells. In addition, TCA exposure increased HUVEC migration. CONCLUSION Continuous TCA exposure enhanced ESCC progression due to reduced cell loss in vivo. Cell loss was inhibited by TCA-induced vascular endothelial cell migration, which was mediated by TGF-β1 and VEGF-A released from ESCC cells.
Collapse
MESH Headings
- Animals
- Carcinoma, Squamous Cell/blood supply
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/ultrastructure
- Cell Cycle/drug effects
- Cell Cycle/genetics
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Proliferation/drug effects
- Cell Shape/drug effects
- Cell Shape/genetics
- Disease Progression
- Esophageal Neoplasms/blood supply
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/pathology
- Esophageal Neoplasms/ultrastructure
- Esophageal Squamous Cell Carcinoma
- Flow Cytometry
- Gene Expression Regulation, Neoplastic/drug effects
- Human Umbilical Vein Endothelial Cells
- Humans
- Mice
- Mice, Nude
- Neoplasm Invasiveness
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Taurocholic Acid/adverse effects
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sho Sato
- Department of Pathology, Division of Molecular and Diagnostic Pathology, Shiga University of Medical Science, Shiga, Japan
- Department of Oral and Maxillofacial Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Hiroto Yamamoto
- Department of Pathology, Division of Molecular and Diagnostic Pathology, Shiga University of Medical Science, Shiga, Japan
| | - Ken-ichi Mukaisho
- Department of Pathology, Division of Molecular and Diagnostic Pathology, Shiga University of Medical Science, Shiga, Japan
- * E-mail:
| | - Shota Saito
- Department of Pathology, Division of Molecular and Diagnostic Pathology, Shiga University of Medical Science, Shiga, Japan
- Department of Oral and Maxillofacial Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Takanori Hattori
- Department of Pathology, Division of Molecular and Diagnostic Pathology, Shiga University of Medical Science, Shiga, Japan
| | - Gaku Yamamoto
- Department of Oral and Maxillofacial Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Hiroyuki Sugihara
- Department of Pathology, Division of Molecular and Diagnostic Pathology, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
40
|
Zhang R, Yin X, Shi H, Wu J, Shakya P, Liu D, Zhang J. Adiponectin modulates DCA-induced inflammation via the ROS/NF-κ B signaling pathway in esophageal adenocarcinoma cells. Dig Dis Sci 2014; 59:89-97. [PMID: 24096876 DOI: 10.1007/s10620-013-2877-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 09/04/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Deoxycholic acid (DCA) promotes the development and progression of esophageal adenocarcinoma (EAC) by inducing inflammation. Adiponectin is reported to have anti-inflammatory and anti-tumor effects. PURPOSE This study investigated the effects of two types of adiponectin, full-length adiponectin (f-Ad) and globular adiponectin (g-Ad), on DCA-induced inflammation, and investigated the involvement of the reactive oxygen species (ROS)/NF-κB signaling pathway in inflammation in EAC. METHODS OE19 cells were treated with DCA (50-300 μM) and/or f-Ad/g-Ad (10.0 μg/ml) or N-acetylcysteine (NAC). The viability of cells exposed to DCA was measured by use of the MTT assay. mRNA and protein levels of the inflammatory factors were examined by real-time PCR and ELISA. Intra-cellular ROS levels were determined by use of flow cytometry. Protein levels of total and p-NF-κB p65 were measured by western blot. RESULTS DCA induced dose and time-dependent cytotoxicity. mRNA and protein expression of TNF-α, IL-8, and IL-6 in cells treated with DCA alone were up-regulated, and intra-cellular ROS and p-NF-κB p65 protein levels were also increased. g-Ad promoted inflammatory factor production, ROS levels, and p-NF-κB p65 protein expression whereas f-Ad had a suppressive effect. When combined with DCA, g-Ad enhanced the pro-inflammatory effect of DCA whereas f-Ad, similar to NAC, suppressed the effect. CONCLUSION DCA has a pro-inflammatory effect in EAC. f-Ad has an anti-inflammatory effect whereas g-Ad seems to have a pro-inflammatory effect in an ROS/NF-κB p65-dependent manner. This indicates that f-Ad could be a potential anti-inflammatory reagent for cancer therapy.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of School of Medicine, Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, Shaanxi Province, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Kitamura T, Srivastava J, DiGiovanni J, Kiguchi K. Bile acid accelerates erbB2-induced pro-tumorigenic activities in biliary tract cancer. Mol Carcinog 2013; 54:459-72. [PMID: 24839254 DOI: 10.1002/mc.22118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/31/2013] [Accepted: 11/05/2013] [Indexed: 12/16/2022]
Abstract
Although very few studies have addressed the molecular and cellular mechanisms underlying the development of biliary tract cancer (BTC), several lines of evidence suggest a role for the erbB receptor family. Overexpression and activation of erbB2 has been reported in a significant percentage of human BTC. Further, we previously reported that overexpression of erbB2 basal epithelial cells of the biliary tract (BK5.erbB2 mouse) led to the development of BTC. However, the mechanisms by which erbB2 overexpression led to the spontaneous development of tumors specifically in the biliary tract are not completely understood. The goals of the current study were to (1) determine whether a cooperative relationship between bile acid exposure and erbB2 activation exists during biliary tract carcinogenesis and (2) to characterize the mechanism(s) underlying bile acid-mediated biliary tract carcinogenesis in cells with activated erbB2. In this study, we demonstrated that the secondary conjugated bile acid, taurochenodeoxycholic acid (TCDC), increased proliferation of primary cultured gallbladder epithelial cells from BK5.erbB2 mice and human BTC cells. TCDC treatment activated EGFR/erbB2 and downstream signaling molecules in both primary cultured cells and human BTC cells. TCDC also increased the expression of epidermal growth factor receptor (EGFR) ligands and TACE activity in human BTC cells. Inhibition of src activation led to attenuation of bile-induced upregulation of TACE activity as well as signaling through the EGFR/erbB2, suggesting that during the development of BTC erbB2 overexpression/activation accelerates the bile acid-induced signaling cascade: bile acid → src → TACE → EGFR/erbB2 → downstream signaling. We also provide direct evidence that bile acids possess tumor promoting capacity in epithelial cells overexpressing erbB2 using the two-stage skin carcinogenesis model. Collectively these findings suggest cooperative roles for bile acid and erbB2 activation in epithelial cell proliferation; bile acid appears to accelerate erbB2-induced pro-tumorigenic activities in the biliary tract and skin.
Collapse
Affiliation(s)
- Takuya Kitamura
- Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
| | | | | | | |
Collapse
|
42
|
EP2 signaling mediates suppressive effects of celecoxib on androgen receptor expression and cell proliferation in prostate cancer. Prostate Cancer Prostatic Dis 2013; 17:10-7. [DOI: 10.1038/pcan.2013.53] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/13/2013] [Accepted: 10/14/2013] [Indexed: 01/09/2023]
|
43
|
Yoshida K, Fujino H, Otake S, Seira N, Regan JW, Murayama T. Induction of cyclooxygenase-2 expression by prostaglandin E2 stimulation of the prostanoid EP4 receptor via coupling to Gαi and transactivation of the epidermal growth factor receptor in HCA-7 human colon cancer cells. Eur J Pharmacol 2013; 718:408-17. [DOI: 10.1016/j.ejphar.2013.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 07/17/2013] [Accepted: 08/14/2013] [Indexed: 11/28/2022]
|
44
|
Gronnier C, Bruyère E, Piessen G, Briez N, Bot J, Buob D, Leteurtre E, Van Seuningen I, Mariette C. Operatively induced chronic reflux in rats: a suitable model for studying esophageal carcinogenesis? Surgery 2013; 154:955-67. [PMID: 24084597 DOI: 10.1016/j.surg.2013.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 05/16/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND The mechanisms of esophageal reflux leading to esophageal adenocarcinoma (EA) remain poorly understood. This study appraises critically an operatively induced chronic reflux rat model. METHODS We randomized 108 Sprague-Dawley rats into 2 experimental groups; one was performing esophagoduodenal (ED) anastomosis with or without gastrectomy to induce duodeno-esophageal reflux (DER group; n = 63), and the other involved duodeno-gastro-esophageal reflux (DGER group; n = 45). Control groups included (i) Roux-en-Y esophagojejunal anastomosis, (ii) laparotomy alone, (iii) subtotal gastrectomy to induce duodenogastric reflux (DGR group), and (iv) the same procedure as in the DGER group plus proton pump inhibition (PPI group). The esophagus underwent histologic and molecular analyses. RESULTS The prevalence of Barrett's esophagus (BE), dysplasia, and EA in the experimental groups was 41%, 7%, and 11%, respectively. Histologic and molecular analyses in groups DER, DGER, and DGR suggested that BE occurred through de novo intestinal metaplasia and proximal migration of duodenal cells. No distant metastases were identified. The molecular characteristics of both BE and EA were similar to humans. BE was more common, and dysplasia and EA less frequent in the DER group when compared with the DGER group (44% vs 24% [P = .038] and 7% vs 25% [P = .012], respectively). Compared with the DGER group, carcinogenic sequence occurred less frequently in the PPI-treated group (P = .019). CONCLUSION Despite pathophysiologic differences with humans, the rat model of esophagoduodenostomy reproduces accurately histologic and molecular lesions in the carcinogenetic sequence of BE and allowed us to identify novel, tumor-associated proteins that may be potential biomarkers and new therapeutic targets in EA.
Collapse
Affiliation(s)
- Caroline Gronnier
- Inserm, UMR837, Jean-Pierre Aubert Research Center, Team 5 "Mucins, epithelial differentiation and carcinogenesis", Lille, France; Université Lille Nord de France, Lille, France; Department of Digestive and Oncological Surgery, University Hospital Claude Huriez, Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Clemons NJ, Phillips WA, Lord RV. Signaling pathways in the molecular pathogenesis of adenocarcinomas of the esophagus and gastroesophageal junction. Cancer Biol Ther 2013; 14:782-95. [PMID: 23792587 PMCID: PMC3909547 DOI: 10.4161/cbt.25362] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Esophageal adenocarcinoma develops in response to severe gastroesophageal reflux disease through the precursor lesion Barrett esophagus, in which the normal squamous epithelium is replaced by a columnar lining. The incidence of esophageal adenocarcinoma in the United States has increased by over 600% in the past 40 years and the overall survival rate remains less than 20% in the community. This review highlights some of the signaling pathways for which there is some evidence of a role in the development of esophageal adenocarcinoma. An increasingly detailed understanding of the biology of this cancer has emerged recently, revealing that in addition to the well-recognized alterations in single genes such as p53, p16, APC, and telomerase, there are interactions between the components of the reflux fluid, the homeobox gene Cdx2, and the Wnt, Notch, and Hedgehog signaling pathways.
Collapse
Affiliation(s)
- Nicholas J Clemons
- Surgical Oncology Research Laboratory; Peter MacCallum Cancer Centre; East Melbourne, Australia; Sir Peter MacCallum Department of Oncology; University of Melbourne, Melbourne, Australia; Department of Surgery (St. Vincent's Hospital); University of Melbourne; Melbourne, Australia
| | - Wayne A Phillips
- Surgical Oncology Research Laboratory; Peter MacCallum Cancer Centre; East Melbourne, Australia; Sir Peter MacCallum Department of Oncology; University of Melbourne, Melbourne, Australia; Department of Surgery (St. Vincent's Hospital); University of Melbourne; Melbourne, Australia
| | - Reginald V Lord
- St. Vincent's Centre for Applied Medical Research; Sydney, Australia; Notre Dame University School of Medicine; Sydney, Australia
| |
Collapse
|
46
|
Estores D, Velanovich V. Barrett esophagus: epidemiology, pathogenesis, diagnosis, and management. Curr Probl Surg 2013; 50:192-226. [PMID: 23601575 DOI: 10.1067/j.cpsurg.2013.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Falk GW, Buttar NS, Foster NR, Ziegler KLA, Demars CJ, Romero Y, Marcon NE, Schnell T, Corley DA, Sharma P, Cruz-Correa MR, Hur C, Fleischer DE, Chak A, Devault KR, Weinberg DS, Della'Zanna G, Richmond E, Smyrk TC, Mandrekar SJ, Limburg PJ. A combination of esomeprazole and aspirin reduces tissue concentrations of prostaglandin E(2) in patients with Barrett's esophagus. Gastroenterology 2012; 143:917-26.e1. [PMID: 22796132 PMCID: PMC3458136 DOI: 10.1053/j.gastro.2012.06.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 02/07/2023]
Abstract
UNLABELLED BACKGROUND& AIMS: Proton pump inhibitors and nonsteroidal anti-inflammatory drugs might prevent esophageal adenocarcinoma in patients with Barrett's esophagus (BE), but there are limited data from clinical trials to support this concept. We conducted a randomized, double-blind, placebo-controlled, phase 2 trial to assess the effects of the combination of aspirin (3 different doses) and esomeprazole on tissue concentrations of prostaglandin (PG) E(2) in patients with BE with no dysplasia or low-grade dysplasia. METHODS Participants were recruited through the multicenter Cancer Prevention Network and randomly assigned to groups that were given 40 mg esomeprazole twice daily in combination with an aspirin placebo once daily (arm A; n = 30), with 81 mg aspirin once daily (arm B; n = 47), or with 325 mg aspirin once daily (arm C; n = 45) for 28 days. We collected esophageal biopsy specimens before and after the intervention period to determine the absolute change in mean concentration of PGE(2) (the primary end point). RESULTS Based on data from 114 patients, baseline characteristics were similar among groups. The absolute mean tissue concentration of PGE(2) was reduced by 67.6 ± 229.68 pg/mL in arm A, 123.9 ± 284.0 pg/mL in arm B (P = .10 vs arm A), and 174.9 ± 263.62 pg/mL in arm C (P = .02 vs arm A). CONCLUSIONS In combination with esomeprazole, short-term administration of higher doses of aspirin, but not lower doses or no aspirin, significantly reduced tissue concentrations of PGE(2) in patients with BE with either no dysplasia or low-grade dysplasia. These data support further evaluation of higher doses of aspirin and esomeprazole to prevent esophageal adenocarcinoma in these patients. Clinical trial registration number NCT00474903.
Collapse
Affiliation(s)
- Gary W Falk
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nelsen EM, Hawes RH, Iyer PG. Diagnosis and management of Barrett's esophagus. THE SURGICAL CLINICS OF NORTH AMERICA 2012. [PMID: 23026274 DOI: 10.1016/j.suc.2012.07.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Barrett esophagus is characterized by the replacement of squamous mucosa in the esophagus by specialized intestinal metaplasia. Its clinical significance lies in it being the strongest risk factor for and known precursor for esophageal adenocarcinoma. Diagnosis requires endoscopic confirmation of columnar metaplasia in the distal esophagus and histologic confirmation of specialized intestinal metaplasia. Recommendations for the management of subjects diagnosed with Barrett esophagus include periodic endoscopic surveillance to detect the development of high-grade dysplasia or adenocarcinoma. Careful endoscopic evaluation with high-resolution endoscopy and endoscopic resection is recommended in the evaluation of subjects with high-grade dysplasia and early adenocarcinoma.
Collapse
Affiliation(s)
- Eric M Nelsen
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
49
|
Abstract
Barrett esophagus is characterized by the replacement of squamous mucosa in the esophagus by specialized intestinal metaplasia. Its clinical significance lies in it being the strongest risk factor for and known precursor for esophageal adenocarcinoma. Diagnosis requires endoscopic confirmation of columnar metaplasia in the distal esophagus and histologic confirmation of specialized intestinal metaplasia. Recommendations for the management of subjects diagnosed with Barrett esophagus include periodic endoscopic surveillance to detect the development of high-grade dysplasia or adenocarcinoma. Careful endoscopic evaluation with high-resolution endoscopy and endoscopic resection is recommended in the evaluation of subjects with high-grade dysplasia and early adenocarcinoma.
Collapse
|
50
|
Gonçalves P, Catarino T, Gregório I, Martel F. Inhibition of butyrate uptake by the primary bile salt chenodeoxycholic acid in intestinal epithelial cells. J Cell Biochem 2012; 113:2937-47. [DOI: 10.1002/jcb.24172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|