1
|
Wang S, Liu Q, Sun X, Wei W, Ding L, Zhao X. Identification of novel ABCB4 variants and genotype-phenotype correlation in progressive familial intrahepatic cholestasis type 3. Sci Rep 2024; 14:27381. [PMID: 39521930 PMCID: PMC11550383 DOI: 10.1038/s41598-024-79123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a severe hepatic disorder characterized by cholestasis. Elucidating the genotype-phenotype correlations and expanding the mutational spectrum of the ABCB4 gene are crucial for enhancing diagnostic accuracy and therapeutic strategies.Clinical and genetic data from 2 original PFIC3 patients from our institution, along with 118 additional cases identified through a comprehensive literature review, were integrated for a comprehensive analysis. The study included statistical analysis of clinical information, genetic analysis, multi-species sequence alignment, protein structure modeling, and pathogenicity assessment. Machine learning techniques were applied to identify genotype-phenotype relationships. We identified three novel ABCB4 mutations: two missense mutations (c.904G > T and c.2493G > C) and one splicing mutation (c.1230 + 1G > A). Homozygous mutations were associated with significantly earlier disease onset compared to compound heterozygous mutations (p < 0.0001). Missense mutations were predominant (76.9%), with Exon 7 being the most frequently affected region. A random forest model indicated that Exon 10 had the highest feature importance score (9.9%). Liver transplantation remains the most effective treatment modality for PFIC3. This investigation broadens the known mutation spectrum of the ABCB4 gene and identifies key variant sites associated with clinical manifestations. These insights lay a foundation for early diagnosis, optimal treatment selection, and further research into PFIC3.
Collapse
Affiliation(s)
- Senyan Wang
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Sun
- Department of Oncology, Henan Cancer Hospital, Zhengzhou University Affiliated Cancer Hospital, Zhengzhou, China
| | - Wenjuan Wei
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China
| | - Leilei Ding
- Department of Obstetrics and Gynecology, Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xiaofang Zhao
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
2
|
Hof WFJ, de Boer JF, Verkade HJ. Emerging drugs for the treatment of progressive familial intrahepatic cholestasis: a focus on phase II and III trials. Expert Opin Emerg Drugs 2024; 29:305-320. [PMID: 38571480 DOI: 10.1080/14728214.2024.2336986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Progressive familial intrahepatic cholestasis (PFIC) is a group of disorders characterized by inappropriate bile formation, causing hepatic accumulation of bile acids and, subsequently, liver injury. Until recently, no approved treatments were available for these patients. AREAS COVERED Recent clinical trials for PFIC treatment have focused on intestine-restricted ileal bile acid transporter (IBAT) inhibitors. These compounds aim to reduce the pool size of bile acids by interrupting their enterohepatic circulation. Other emerging treatments in the pipeline include systemic IBAT inhibitors, synthetic bile acid derivatives, compounds targeting bile acid synthesis via the FXR/FGF axis, and chaperones/potentiators that aim to enhance the residual activity of the mutated transporters. EXPERT OPINION Substantial progress has been made in drug development for PFIC patients during the last couple of years. Although data concerning long-term efficacy are as yet only scarcely available, new therapies have demonstrated robust efficacy in a considerable fraction of patients at least on the shorter term. However, a substantial fraction of PFIC patients do not respond to these novel therapies and thus still requires surgical treatment, including liver transplantation before adulthood. Hence, there is still an unmet medical need for long-term effective medical, preferably non-surgical, treatment for all PFIC patients.
Collapse
Affiliation(s)
- Willemien F J Hof
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Henkjan J Verkade
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Verkade HJ, Felzen A, Keitel V, Thompson R, Gonzales E, Strnad P, Kamath B, van Mil S. EASL Clinical Practice Guidelines on genetic cholestatic liver diseases. J Hepatol 2024; 81:303-325. [PMID: 38851996 DOI: 10.1016/j.jhep.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 06/10/2024]
Abstract
Genetic cholestatic liver diseases are caused by (often rare) mutations in a multitude of different genes. While these diseases differ in pathobiology, clinical presentation and prognosis, they do have several commonalities due to their cholestatic nature. These Clinical Practice Guidelines (CPGs) offer a general approach to genetic testing and management of cholestatic pruritus, while exploring diagnostic and treatment approaches for a subset of genetic cholestatic liver diseases in depth. An expert panel appointed by the European Association for the Study of the Liver has created recommendations regarding diagnosis and treatment, based on the best evidence currently available in the fields of paediatric and adult hepatology, as well as genetics. The management of these diseases generally takes place in a tertiary referral centre, in order to provide up-to-date approaches and expertise. These CPGs are intended to support hepatologists (for paediatric and adult patients), residents and other healthcare professionals involved in the management of these patients with concrete recommendations based on currently available evidence or, if not available, on expert opinion.
Collapse
|
4
|
Guerrero L, Carmona-Rodríguez L, Santos FM, Ciordia S, Stark L, Hierro L, Pérez-Montero P, Vicent D, Corrales FJ. Molecular basis of progressive familial intrahepatic cholestasis 3. A proteomics study. Biofactors 2024; 50:794-809. [PMID: 38284625 DOI: 10.1002/biof.2041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a severe rare liver disease that affects between 1/50,000 and 1/100,000 children. In physiological conditions, bile is produced by the liver and stored in the gallbladder, and then it flows to the small intestine to play its role in fat digestion. To prevent tissue damage, bile acids (BAs) are kept in phospholipid micelles. Mutations in phosphatidyl choline transporter ABCB4 (MDR3) lead to intrahepatic accumulation of free BAs that result in liver damage. PFIC3 onset usually occurs at early ages, progresses rapidly, and the prognosis is poor. Currently, besides the palliative use of ursodeoxycholate, the only available treatment for this disease is liver transplantation, which is really challenging for short-aged patients. To gain insight into the pathogenesis of PFIC3 we have performed an integrated proteomics and phosphoproteomics study in human liver samples to then validate the emerging functional hypotheses in a PFIC3 murine model. We identified 6246 protein groups, 324 proteins among them showing differential expression between control and PFIC3. The phosphoproteomic analysis allowed the identification of 5090 phosphopeptides, from which 215 corresponding to 157 protein groups, were differentially phosphorylated in PFIC3, including MDR3. Regulation of essential cellular processes and structures, such as inflammation, metabolic reprogramming, cytoskeleton and extracellular matrix remodeling, and cell proliferation, were identified as the main drivers of the disease. Our results provide a strong molecular background that significantly contributes to a better understanding of PFIC3 and provides new concepts that might prove useful in the clinical management of patients.
Collapse
Affiliation(s)
- Laura Guerrero
- Functional Proteomics Labortory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Fátima Milhano Santos
- Functional Proteomics Labortory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Sergio Ciordia
- Functional Proteomics Labortory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Luiz Stark
- IdiPAZ, Instituto de Investigación Sanitaria [Health Research Institute] of Hospital Universitario La Paz, Madrid, Spain
| | - Loreto Hierro
- IdiPAZ, Instituto de Investigación Sanitaria [Health Research Institute] of Hospital Universitario La Paz, Madrid, Spain
| | - Pablo Pérez-Montero
- Servicio de Anatomía Patológica, Hospital Universitario La Paz, Madrid, Spain
| | - David Vicent
- IdiPAZ, Instituto de Investigación Sanitaria [Health Research Institute] of Hospital Universitario La Paz, Madrid, Spain
| | - Fernando J Corrales
- Functional Proteomics Labortory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
5
|
Cao L, Ling X, Yan J, Feng D, Dong Y, Xu Z, Wang F, Zhu S, Gao Y, Cao Z, Zhang M. Clinical and genetic study of ABCB4 gene-related cholestatic liver disease in China: children and adults. Orphanet J Rare Dis 2024; 19:157. [PMID: 38610052 PMCID: PMC11010299 DOI: 10.1186/s13023-024-03179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND ABCB4 gene-related cholestatic liver diseases have a wide spectrum of clinical and genetic variations. The correlation between genotype and clinical phenotype still unclear. This study retrospectively analyzed the clinical and pathological characteristics of 23 patients with ABCB4 gene-related cholestatic liver diseases. Next-generation sequencing was used to identify the genetic causes. RESULTS The 23 included patients (15 children and 8 adults) were diagnosed as progressive familial intrahepatic cholestasis type 3 (PFIC3), drug-induced liver injury (DILI), cirrhosis cholestasis, cirrhosis, and mild liver fibrosis. Nineteen patients underwent liver pathological examination of the liver, exhibiting fibrosis, small bile duct hyperplasia, CK7(+), Cu(+), bile duct deletion, and cirrhosis. Thirty ABCB4 variants were identified, including 18 novel variants. CONCLUSION ABCB4 gene-related cholestatic liver diseases have a wide spectrum of clinical and genetic variations. Biallelic ABCB4 mutation carriers tended to severe PFIC3, which mostly occurs in children; while ABCB4 non-biallelic variants can lead to milder ICP, LACP, DILI or overlapping, mostly in adults. Thus, the ABCB4 genotype has a specific correlation with the phenotype, but there are exceptions. Non-biallelic null mutations can cause severe diseases. The mechanisms underlying this genetic phenotype require further investigation.
Collapse
Affiliation(s)
- Lili Cao
- Department of Hepatology, Fifth Medical Center, PLA General Hospital, No.100, West Fourth Ring Road, Fengtai District, Beijing, 100039, China
| | - Xiuxin Ling
- Grandomics Biosciences, Beijing, 100098, China
| | - Jianguo Yan
- Department of Hepatology, Fifth Medical Center, PLA General Hospital, No.100, West Fourth Ring Road, Fengtai District, Beijing, 100039, China
| | - Danni Feng
- Department of Hepatology, Fifth Medical Center, PLA General Hospital, No.100, West Fourth Ring Road, Fengtai District, Beijing, 100039, China
| | - Yi Dong
- Department of Hepatology, Fifth Medical Center, PLA General Hospital, No.100, West Fourth Ring Road, Fengtai District, Beijing, 100039, China
| | - Zhiqiang Xu
- Department of Hepatology, Fifth Medical Center, PLA General Hospital, No.100, West Fourth Ring Road, Fengtai District, Beijing, 100039, China
| | - Fuchuan Wang
- Department of Hepatology, Fifth Medical Center, PLA General Hospital, No.100, West Fourth Ring Road, Fengtai District, Beijing, 100039, China
| | - Shishu Zhu
- Department of Hepatology, Fifth Medical Center, PLA General Hospital, No.100, West Fourth Ring Road, Fengtai District, Beijing, 100039, China
| | - Yinjie Gao
- Department of Hepatology, Fifth Medical Center, PLA General Hospital, No.100, West Fourth Ring Road, Fengtai District, Beijing, 100039, China
| | - Zhenhua Cao
- Grandomics Biosciences, Beijing, 100098, China
| | - Min Zhang
- Department of Hepatology, Fifth Medical Center, PLA General Hospital, No.100, West Fourth Ring Road, Fengtai District, Beijing, 100039, China.
| |
Collapse
|
6
|
Hegarty R, Gurra O, Tarawally J, Allouni S, Rahman O, Strautnieks S, Kyrana E, Hadzic N, Thompson RJ, Grammatikopoulos T. Clinical outcomes of ABCB4 heterozygosity in infants and children with cholestatic liver disease. J Pediatr Gastroenterol Nutr 2024; 78:339-349. [PMID: 38374565 DOI: 10.1002/jpn3.12080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Biallelic variants in the adenosine triphosphate binding cassette subfamily B member 4 (ABCB4) gene which encodes the multidrug resistance 3 protein (MDR3) leads to progressive familiar intrahepatic cholestasis type 3. However, monoallelic variants are increasingly recognized as contributing to liver disease in adults. Our aim was to describe the clinical characteristics of MDR3 heterozygous variants in a large cohort of infants and children with cholestatic liver disease. METHODS The clinical and genotypic data on pediatric patients seen at King's College Hospital, London, between 2004 and 2022 and found to harbour heterozygous variants in ABCB4 were reviewed. RESULTS Ninety-two patients amongst 1568 tested were identified with a monoallelic variant (5.9%). The most common presenting problem was conjugated hyperbilirubinemia (n = 46; 50%) followed by cholelithiasis (n = 12; 13%) and cholestatic hepatitis (n = 10; 11%). The median values of liver biochemistry at presentation were: GGT 105 IU/L and total bilirubin 86 µmol/L. Thirty-two genetic variants were identified including 22 missense (69%), 4 deletions (13%), 5 splice site (16%) and 1 termination (3%). At a median follow up of 1 year there was resolution of liver disease. CONCLUSIONS Rare variants in ABCB4 were found amongst infants and children with cholestatic liver disease. The presenting problems were variable and abnormalities tended to normalize over time. Those with severe mutations could develop liver disease later in life when exposed to further insult and should be counseled appropriately.
Collapse
Affiliation(s)
- Robert Hegarty
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK
| | | | | | - Sammi Allouni
- Liver Molecular Genetics Lab, Institute of Liver Studies, King's College Hospital, London, UK
| | - Obydur Rahman
- Liver Molecular Genetics Lab, Institute of Liver Studies, King's College Hospital, London, UK
| | - Sandra Strautnieks
- Liver Molecular Genetics Lab, Institute of Liver Studies, King's College Hospital, London, UK
| | - Eirini Kyrana
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK
| | - Nedim Hadzic
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK
| | - Richard J Thompson
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK
- Liver Molecular Genetics Lab, Institute of Liver Studies, King's College Hospital, London, UK
| | - Tassos Grammatikopoulos
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK
- King's College London, London, UK
| |
Collapse
|
7
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
8
|
Gonzales E, Gardin A, Almes M, Darmellah-Remil A, Seguin H, Mussini C, Franchi-Abella S, Duché M, Ackermann O, Thébaut A, Habes D, Hermeziu B, Lapalus M, Falguières T, Combal JP, Benichou B, Valero S, Davit-Spraul A, Jacquemin E. Outcomes of 38 patients with PFIC3: Impact of genotype and of response to ursodeoxycholic acid therapy. JHEP Rep 2023; 5:100844. [PMID: 37701337 PMCID: PMC10494458 DOI: 10.1016/j.jhepr.2023.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 09/14/2023] Open
Abstract
Background & Aims Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare liver disease caused by biallelic variations in ABCB4. Data reporting on the impact of genotype and of response to ursodeoxycholic acid (UDCA) therapy on long-term outcomes are scarce. Methods We retrospectively describe a cohort of 38 patients with PFIC3 with a median age at last follow-up of 19.5 years (range 3.8-53.8). Results Twenty patients presented with symptoms before 1 year of age. Thirty-one patients received ursodeoxycholic acid (UDCA) therapy resulting in serum liver test improvement in 20. Twenty-seven patients had cirrhosis at a median age of 8.1 years of whom 18 received a liver transplant at a median age of 8.5 years. Patients carrying at least one missense variation were more likely to present with positive (normal or decreased) canalicular MDR3 expression in the native liver and had prolonged native liver survival (NLS; median 12.4 years [range 3.8-53.8]). In contrast, in patients with severe genotypes (no missense variation), there was no detectable canalicular MDR3 expression, symptom onset and cirrhosis occurred earlier, and all underwent liver transplantation (at a median age of 6.7 years [range 2.3-10.3]). The latter group was refractory to UDCA treatment, whereas 87% of patients with at least one missense variation displayed an improvement in liver biochemistry in response to UDCA. Biliary phospholipid levels over 6.9% of total biliary lipid levels predicted response to UDCA. Response to UDCA predicted NLS. Conclusions Patients carrying at least one missense variation, with positive canalicular expression of MDR3 and a biliary phospholipid level over 6.9% of total biliary lipid levels were more likely to respond to UDCA and to exhibit prolonged NLS. Impact and implications In this study, data show that genotype and response to ursodeoxycholic acid therapy predicted native liver survival in patients with PFIC3 (progressive familial intrahepatic cholestasis type 3). Patients carrying at least one missense variation, with positive (decreased or normal) immuno-staining for canalicular MDR3, and a biliary phospholipid level over 6.9% of total biliary lipids were more likely to respond to ursodeoxycholic acid therapy and to exhibit prolonged native liver survival.
Collapse
Affiliation(s)
- Emmanuel Gonzales
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Antoine Gardin
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Marion Almes
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Amaria Darmellah-Remil
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
| | - Hanh Seguin
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
| | - Charlotte Mussini
- Pathology, Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Stéphanie Franchi-Abella
- Pediatric Radiology, Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Mathieu Duché
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Pediatric Radiology, Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Oanez Ackermann
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Alice Thébaut
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Dalila Habes
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Bogdan Hermeziu
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Martine Lapalus
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | | | | | | | | | - Anne Davit-Spraul
- Biochemistry; Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Emmanuel Jacquemin
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| |
Collapse
|
9
|
Qiao F, Ren F, Lu W, Yang H, Mo G, Wang S, Liu L, Xu X. A female of progressive familial intrahepatic cholestasis type 3 caused by heterozygous mutations of ABCB4 gene and her cirrhosis improved after treatment of ursodeoxycholic acid: a case report. BMC Med Genomics 2023; 16:171. [PMID: 37488596 PMCID: PMC10367406 DOI: 10.1186/s12920-023-01602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis (PFIC) is a group of rapidly progressive autosomal recessive disorders characterized by intrahepatic cholestasis. PFIC-3 is caused by mutations in the ATP-binding cassette subfamily B member 4 gene (ABCB4), which encodes multidrug resistance protein 3 (MDR3/ABCB4). Patients are usually in infancy or childhood, but cirrhosis and portal hypertension may be the first manifestation in older children or young adults. CASE PRESENTATION A 25-year-old young woman with recurrent abnormal hepatic function was mainly characterized by increased gamma glutamyl transpeptidase (GGT) and bile acid with cryptogenic cirrhosis. After 7 months of treatment with ursodeoxycholic acid (UDCA), her hepatic pathology suggested there were also obvious widening and venous fibrosis around the portal vein, and slight bile duct hyperplasia at the edge of the portal area. Infiltration of inflammatory cells around the portal vein and hepatocyte ABCB4/MDR3 protein was basically normal. Sequencing indicated the patient had heterozygous mutations in the ABCB4 gene: c.2696C > G and wes [hg19]7q21.12(87032513-87033422) × 1. Through SWISS-MODEL Predict for protein structures, the missense mutation results in protein side chain missing a methyl group (-CH3), and the deletion mutation results in the serious damage to the structure of MDR3 protein which lead to phosphatidylcholine deficiency of bile in the capillary bile ducts. The toxic effect of bile salts then damages the bile ducts, causing cholestasis and cholangitis, which can then develop into biliary cirrhosis. Through the analysis of pathogenicity prediction software, the mutations led to PFIC3. After treatment of UDCA for 29 months, her cirrhosis was improved, hepatic function was close to normal. CONCLUSION Novel heterozygous mutations are the molecular pathological cause of PFIC3 in this patient. All young adult patients with occult cirrhosis should be tested for ABCB4. Early diagnosis of PFIC3 and continued treatment with UDCA are key to improving prognosis and delaying the onset of end-stage liver disease.
Collapse
Affiliation(s)
- Fei Qiao
- Department of Hepatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Ren
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiting Lu
- Department of Hepatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoran Yang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guiling Mo
- Medical Laboratory Science, Guangzhou KingMed Center For Clinical Laboratory Co, Ltd, Guangzhou, China
| | - Shuangshuang Wang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lina Liu
- Department of Hepatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- College of Traditional Chinese Medicine and Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xiangtao Xu
- Department of Hepatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
10
|
Xie S, Wei S, Ma X, Wang R, He T, Zhang Z, Yang J, Wang J, Chang L, Jing M, Li H, Zhou X, Zhao Y. Genetic alterations and molecular mechanisms underlying hereditary intrahepatic cholestasis. Front Pharmacol 2023; 14:1173542. [PMID: 37324459 PMCID: PMC10264785 DOI: 10.3389/fphar.2023.1173542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Hereditary cholestatic liver disease caused by a class of autosomal gene mutations results in jaundice, which involves the abnormality of the synthesis, secretion, and other disorders of bile acids metabolism. Due to the existence of a variety of gene mutations, the clinical manifestations of children are also diverse. There is no unified standard for diagnosis and single detection method, which seriously hinders the development of clinical treatment. Therefore, the mutated genes of hereditary intrahepatic cholestasis were systematically described in this review.
Collapse
Affiliation(s)
- Shuying Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Xiao Ma
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruilin Wang
- Department of Pharmacy, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting He
- Department of Pharmacy, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhao Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Yang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawei Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Chang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Manyi Jing
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanling Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Zöllner J, Finer S, Linton KJ, van Heel DA, Williamson C, Dixon PH. Rare variant contribution to cholestatic liver disease in a South Asian population in the United Kingdom. Sci Rep 2023; 13:8120. [PMID: 37208429 PMCID: PMC10199085 DOI: 10.1038/s41598-023-33391-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
This study assessed the contribution of five genes previously known to be involved in cholestatic liver disease in British Bangladeshi and Pakistani people. Five genes (ABCB4, ABCB11, ATP8B1, NR1H4, TJP2) were interrogated by exome sequencing data of 5236 volunteers. Included were non-synonymous or loss of function (LoF) variants with a minor allele frequency < 5%. Variants were filtered, and annotated to perform rare variant burden analysis, protein structure, and modelling analysis in-silico. Out of 314 non-synonymous variants, 180 fulfilled the inclusion criteria and were mostly heterozygous unless specified. 90 were novel and of those variants, 22 were considered likely pathogenic and 9 pathogenic. We identified variants in volunteers with gallstone disease (n = 31), intrahepatic cholestasis of pregnancy (ICP, n = 16), cholangiocarcinoma and cirrhosis (n = 2). Fourteen novel LoF variants were identified: 7 frameshift, 5 introduction of premature stop codon and 2 splice acceptor variants. The rare variant burden was significantly increased in ABCB11. Protein modelling demonstrated variants that appeared to likely cause significant structural alterations. This study highlights the significant genetic burden contributing to cholestatic liver disease. Novel likely pathogenic and pathogenic variants were identified addressing the underrepresentation of diverse ancestry groups in genomic research.
Collapse
Affiliation(s)
| | - Sarah Finer
- Institute for Population Health Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kenneth J Linton
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David A van Heel
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Catherine Williamson
- Department of Women and Children's Health, School of Life Course Sciences, FOLSM, King's College London, 2.30W Hodgkin Building, Guy's Campus, London, SE1 1UL, UK.
| | - Peter H Dixon
- Department of Women and Children's Health, School of Life Course Sciences, FOLSM, King's College London, 2.30W Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
12
|
Wang R, Wang Y, Yu R, Xu W, Zhang T, Xiao Y. Case report: Osteo-oto-hepato-enteric syndrome caused by UNC45A deficiency. Front Genet 2023; 13:1079481. [PMID: 36699472 PMCID: PMC9868473 DOI: 10.3389/fgene.2022.1079481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Recently, UNC45 myosin chaperone A (UNC45A) deficiency was identified as a cause of osteo-oto-hepato-enteric syndrome (O2HE) characterized by congenital diarrhea, neonatal cholestasis, deafness, and bone fragility. To date, only a few O2HE cases have been reported in the literature. Case presentation: Here, we present a child from China diagnosed with O2HE with novel compound heterozygous variants in UNC45A. The patient suffered with neonatal jaundice, cholestasis, and intractable diarrhea after birth. Laboratory tests revealed highly elevated levels of total serum bilirubin (TB), direct bilirubin (DB), and total bile acid (TBA). The patient was managed with ursodeoxycholic acid (UDCA)-based treatments, and the clinical symptoms and abnormal liver functions were significantly relieved. The patient's hearing was normal, and no sign of bone fragility was observed. Exome sequencing (ES) identified novel compound heterozygote variants c.292C>T (p.Arg98Trp)/c.2534-2545del (p.Leu845-Met848del) in UNC45A, which were inherited from her mother and father, respectively. Both variants are predicted to be deleterious by in silico predictors. Conclusion: We present an O2HE child from China with novel compound heterozygous variants in UNC45A. Our patient's clinical manifestations were less severe than those of the previous reported cases, which expands the clinical spectrum of O2HE.
Collapse
Affiliation(s)
- Ruixue Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yizhong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Gut Microbiota and Metabolic Research Center, Immunity and Critical Care Medicine, School of Medicine, Institute of Pediatric Infection, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghua Yu
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wuhen Xu
- Molecular Diagnostic Laboratory, School of Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Gut Microbiota and Metabolic Research Center, Immunity and Critical Care Medicine, School of Medicine, Institute of Pediatric Infection, Shanghai Jiao Tong University, Shanghai, China
| | - Yongmei Xiao
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Yongmei Xiao,
| |
Collapse
|
13
|
Chen R, Yang FX, Tan YF, Deng M, Li H, Xu Y, Ouyang WX, Song YZ. Clinical and genetic characterization of pediatric patients with progressive familial intrahepatic cholestasis type 3 (PFIC3): identification of 14 novel ABCB4 variants and review of the literatures. Orphanet J Rare Dis 2022; 17:445. [PMID: 36550572 PMCID: PMC9773540 DOI: 10.1186/s13023-022-02597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis type 3 (PFIC3) is an autosomal recessive disease caused by pathogenic variants of the gene ABCB4. This study aimed to investigate the ABCB4 genotypic and the clinical phenotypic features of PFIC3 patients. METHODS The clinical and molecular genetic data of 13 new pediatric patients with PFIC3 as well as 82 reported ones in the PubMed and CNKI databases were collected and analyzed. RESULTS The 13 new PFIC3 patients included six females and seven males, and the main presentations were hepatomegaly, splenomegaly, jaundice, and pruritus, as well as increased levels of gamma-glutamyl transpeptidase (GGT). Fourteen new ABCB4 variants were detected, including eight diagnosed to be likely-pathogenic and six, pathogenic. Among all the 95 PFIC3 cases, hepatomegaly was observed in 85.3% (81/95), pruritus in 67.4% (64/95), splenomegaly in 52.6% (50/95), jaundice in 48.4% (46/95), portal hypertension in 34.7% (33/95) and GGT elevation in 100% (88/88) of the patients. Positive responses at varied degrees to oral ursodeoxycholic acid (UDCA) treatment were observed in 66.1% (39/59) of the patients, among whom 38.5% (15/39) fully recovered in terms of the laboratory changes. Although the condition remained stable in 53 patients (58.9%, 53/90), the clinical outcomes were not promising in the rest 37 cases (41.1%, 37/90), including 7 died, 27 having undergone while another 3 waiting for liver transplantation. A total of 96 ABCB4 variants were detected in the 95 patients. PFIC3 patients with biallelic null variants exhibited earlier onset ages [10.5 (2, 18) vs. 19 (8, 60) months, p = 0.007], lower UDCA response rate [18.2% (2/11) vs. 77.1% (37/48), p = 0.001], and more unpromising clinical outcomes [80% (12/15) vs. 33.3% (25/75), p = 0.001], compared with those with non-biallelic null variants. CONCLUSIONS PFIC3 presented with hepatomegaly, pruritus, splenomegaly and jaundice with increased serum GGT level as a biochemistry hallmark. Although varying degrees of improvement in response to UDCA therapy were observed, 41.1% of PFIC3 patients exhibited unfavorable prognosis. ABCB4 genotypes of biallelic null variants were associated with severer PFIC3 phenotypes. Moreover, the 14 novel variants in this study expanded the ABCB4 mutation spectrum, and provided novel molecular biomarkers for diagnosis of PFIC3 patients.
Collapse
Affiliation(s)
- Rong Chen
- grid.258164.c0000 0004 1790 3548Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, 510630 China
| | - Feng-Xia Yang
- grid.413428.80000 0004 1757 8466Department of Infectious Diseases, Guangzhou Women and Children’s Medical Center, Guangzhou, 510120 China
| | - Yan-Fang Tan
- grid.440223.30000 0004 1772 5147Department of Hepatopathy, Hunan Children’s Hospital, Changsha, 410007 China
| | - Mei Deng
- grid.258164.c0000 0004 1790 3548Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, 510630 China
| | - Hua Li
- grid.258164.c0000 0004 1790 3548Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, 510630 China
| | - Yi Xu
- grid.413428.80000 0004 1757 8466Department of Infectious Diseases, Guangzhou Women and Children’s Medical Center, Guangzhou, 510120 China
| | - Wen-Xian Ouyang
- grid.440223.30000 0004 1772 5147Department of Hepatopathy, Hunan Children’s Hospital, Changsha, 410007 China
| | - Yuan-Zong Song
- grid.258164.c0000 0004 1790 3548Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, 510630 China
| |
Collapse
|
14
|
Wang HH, Portincasa P, Liu M, Wang DQH. Genetic Analysis of ABCB4 Mutations and Variants Related to the Pathogenesis and Pathophysiology of Low Phospholipid-Associated Cholelithiasis. Genes (Basel) 2022; 13:1047. [PMID: 35741809 PMCID: PMC9222727 DOI: 10.3390/genes13061047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022] Open
Abstract
Clinical studies have revealed that the ABCB4 gene encodes the phospholipid transporter on the canalicular membrane of hepatocytes, and its mutations and variants are the genetic basis of low phospholipid-associated cholelithiasis (LPAC), a rare type of gallstone disease caused by a single-gene mutation or variation. The main features of LPAC include a reduction or deficiency of phospholipids in bile, symptomatic cholelithiasis at <40 years of age, intrahepatic sludge and microlithiasis, mild chronic cholestasis, a high cholesterol/phospholipid ratio in bile, and recurrence of biliary symptoms after cholecystectomy. Needle-like cholesterol crystals, putatively “anhydrous” cholesterol crystallization at low phospholipid concentrations in model and native bile, are characterized in ABCB4 knockout mice, a unique animal model for LPAC. Gallbladder bile with only trace amounts of phospholipids in these mice is supersaturated with cholesterol, with lipid composition plotting in the left two-phase zone of the ternary phase diagram, consistent with “anhydrous” cholesterol crystallization. In this review, we summarize the molecular biology and physiological functions of ABCB4 and comprehensively discuss the latest advances in the genetic analysis of ABCB4 mutations and variations and their roles in the pathogenesis and pathophysiology of LPAC in humans, based on the results from clinical studies and mouse experiments. To date, approximately 158 distinct LPAC-causing ABCB4 mutations and variants in humans have been reported in the literature, indicating that it is a monogenic risk factor for LPAC. The elucidation of the ABCB4 function in the liver, the identification of ABCB4 mutations and variants in LPAC patients, and the exploration of gene therapy for ABCB4 deficiency in animal models can help us to better understand the cellular, molecular, and genetic mechanisms underlying the onset of the disease, and will pave the way for early diagnosis and prevention of susceptible subjects and effective intervention for LPAC in patients.
Collapse
Affiliation(s)
- Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy;
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA;
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
15
|
Martínez-García J, Molina A, González-Aseguinolaza G, Weber ND, Smerdou C. Gene Therapy for Acquired and Genetic Cholestasis. Biomedicines 2022; 10:biomedicines10061238. [PMID: 35740260 PMCID: PMC9220166 DOI: 10.3390/biomedicines10061238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cholestatic diseases can be caused by the dysfunction of transporters involved in hepatobiliary circulation. Although pharmacological treatments constitute the current standard of care for these diseases, none are curative, with liver transplantation being the only long-term solution for severe cholestasis, albeit with many disadvantages. Liver-directed gene therapy has shown promising results in clinical trials for genetic diseases, and it could constitute a potential new therapeutic approach for cholestatic diseases. Many preclinical gene therapy studies have shown positive results in animal models of both acquired and genetic cholestasis. The delivery of genes that reduce apoptosis or fibrosis or improve bile flow has shown therapeutic effects in rodents in which cholestasis was induced by drugs or bile duct ligation. Most studies targeting inherited cholestasis, such as progressive familial intrahepatic cholestasis (PFIC), have focused on supplementing a correct version of a mutated gene to the liver using viral or non-viral vectors in order to achieve expression of the therapeutic protein. These strategies have generated promising results in treating PFIC3 in mouse models of the disease. However, important challenges remain in translating this therapy to the clinic, as well as in developing gene therapy strategies for other types of acquired and genetic cholestasis.
Collapse
Affiliation(s)
- Javier Martínez-García
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
| | - Angie Molina
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
| | - Gloria González-Aseguinolaza
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
| | - Nicholas D. Weber
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
- Correspondence: (N.D.W.); (C.S.); Tel.: +34-948194700 (N.D.W. & C.S.)
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain
- Correspondence: (N.D.W.); (C.S.); Tel.: +34-948194700 (N.D.W. & C.S.)
| |
Collapse
|
16
|
DNA Copy Number Aberrations and Expression of ABC Transporter Genes in Breast Tumour: Correlation with the Effect of Neoadjuvant Chemotherapy and Prognosis of the Disease. Pharmaceutics 2022; 14:pharmaceutics14050948. [PMID: 35631534 PMCID: PMC9146568 DOI: 10.3390/pharmaceutics14050948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
One of the important reasons for the ineffectiveness of chemotherapy in breast cancer (BC) is considered to be the formation of a multidrug resistance phenotype in tumour cells, which is caused by the expression of energy-dependent ABC transporters. The aim of this work was to assess chromosomal aberrations and the level of transcripts of all 49 known ABC transporter genes in breast tumours. Materials and Methods. The study included 129 patients with breast cancer. A microarray study of all tumour samples was carried out on microchips. Results. This study established that the presence of a deletion in genes ABCB1, ABCB4, ABCB8, ABCC7, ABCC11, ABCC12, ABCF2, and ABCG4 is associated with an objective response to treatment (p ≤ 0.05). A decrease in the expression of genes was associated with a good response to chemotherapy, whereas an increase in expression caused the progression and stabilization of the tumour. Analysis of metastatic-free survival rates showed that the presence of ABCB1/4 and ABCC1/6 deletions was associated with 100% survival (log-rank test p = 0.01 and p = 0.03). Conclusions. The study showed that the aberrant state of ABC transporter genes, as well as a decrease in the expression of these genes, is a predictor of the effectiveness of therapeutic treatment and a potential prognostic marker of metastatic survival.
Collapse
|
17
|
Tanimizu N. The neonatal liver: Normal development and response to injury and disease. Semin Fetal Neonatal Med 2022; 27:101229. [PMID: 33745829 DOI: 10.1016/j.siny.2021.101229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The liver emerges from the ventral foregut endoderm around 3 weeks in human and 1 week in mice after fertilization. The fetal liver works as a hematopoietic organ and then develops functions required for performing various metabolic reactions in late fetal and neonatal periods. In parallel with functional differentiation, the liver establishes three dimensional tissue structures. In particular, establishment of the bile excretion system consisting of bile canaliculi of hepatocytes and bile ducts of cholangiocytes is critical to maintain healthy tissue status. This is because hepatocytes produce bile as they functionally mature, and if allowed to remain within the liver tissue can lead to cytotoxicity. In this review, we focus on epithelial tissue morphogenesis in the perinatal period and cholestatic liver diseases caused by abnormal development of the biliary system.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
18
|
Gao W, Li Z, Chu H, Yuan H, Hu L, Yao L, Zhang L, Wang W, Lin R, Yang L. Ursodeoxycholic Acid in Liver Cirrhosis: A Chinese Perspective. PHARMACOTHERAPY FOR LIVER CIRRHOSIS AND ITS COMPLICATIONS 2022:81-111. [DOI: 10.1007/978-981-19-2615-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Jüngst C, Justinger C, Fischer J, Berg T, Lammert F. Common ABCB4 and ABCB11 Genotypes Are Associated with Idiopathic Chronic Cholestasis in Adults. Dig Dis 2021; 40:489-496. [PMID: 34348275 DOI: 10.1159/000518203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/14/2021] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Pathogenic mutations in genes encoding the hepatocanalicular transporters ATP8B1, ABCB11 and ABCB4 are causative for progressive cholestatic liver disease in children. In adults, less severe variants such as the common ABCB4 c.711A>T polymorphism have been associated with intrahepatic cholestasis in pregnancy and elevated liver enzymes. Hence, our aim was to study the role of common polymorphisms in adult patients with chronic unexplained cholestasis. METHODS Screening of outpatients of two university hospitals identified a cohort of 94 patients with chronic cholestasis of unknown origin after thorough exclusion of other causes. Genotyping was performed using TaqMan assays, and frequencies for the ABCB4 rs2109505 (c.711A>T), rs1202283 (c.504T>C), ABCB11 rs2287622 (p.A444V) and rs497692 (c.3084A>G) variants of the study cohort were compared to a cohort of 254 healthy controls. RESULTS The dominating symptoms of the patients were pruritus and jaundice, though the majority of them did not report symptoms at inclusion. Advanced fibrosis or cirrhosis was present in 11 patients (11.7%) only. Genotyping revealed the presence of the ABCB4 c.711A>T risk variant in 79 patients (84%), a frequency that is significantly (p = 0.037) higher than that in controls (71%). The ABCB11 p.A444V variant was also more frequent in cholestatic patients (p = 0.042). CONCLUSION The common ABCB4 c.711A>T and ABCB11 p.A444V polymorphisms are more prevalent in adult patients with idiopathic cholestasis than in healthy controls and may therefore represent risk factors for the development of chronic cholestatic liver disease.
Collapse
Affiliation(s)
- Christoph Jüngst
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.,Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Christina Justinger
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Janett Fischer
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.,Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
20
|
Aydın GA, Özgen G, Görükmez O. The role of genetic mutations in intrahepatic cholestasis of pregnancy. Taiwan J Obstet Gynecol 2021; 59:706-710. [PMID: 32917322 DOI: 10.1016/j.tjog.2020.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Intrahepatic cholestasis of pregnancy (ICP) is a liver disorder of pregnancy characterized by pruritus, elevated liver enzymes and fasting serum bile acids. Genetic predisposition has been suggested to play a role in its etiology and mutations in the ATP8B1(OMIM ∗602397) (FIC1), ABCB11(OMIM ∗603201) (BSEP), and ABCB4(OMIM ∗171060) (MDR3) genes have been implicated. In the present study, we aimed to investigate the possible role of ATP8B1, ABCB11, and ABCB4 gene mutations in the patients with ICP. MATERIALS AND METHODS A total of 25 patients who were diagnosed with ICP were included in the study. Genetic test results and mutation status of the patients as assessed by the next-generation sequencing technology were retrospectively retrieved from the hospital database. RESULTS Of all patients, significant alterations in the ATP8B1 (n = 2), ABCB11 (n = 1), and ABCB4 (n = 7) genes were observed in 10 patients using the molecular analysis testing. All these alterations were heterozygous. Of these alterations, four were reported in the literature previously, while six were not. Using the in-silico parameters, there was a pathogenic alteration in the ABCB4 gene in one patient, while there was no clinically relevant alteration in the other gene mutations in the remaining nine patients. CONCLUSION Considering the fact that the alterations were compatible with clinical presentations of the ICP patients and the incidence of these mutations is low in the general population, we believe that our study results are clinically relevant. Further molecular genetic tests in ICP patients and functional studies supporting the results would shed light into the clinical importance of these alterations.
Collapse
Affiliation(s)
- Gültekin Adanaş Aydın
- Bursa Yüksek İhtisas Training and Research Hospital, Department of Obstetrics and Gynecology, 16330, Bursa, Turkey.
| | - Gülten Özgen
- Bursa Yüksek İhtisas Training and Research Hospital, Department of Obstetrics and Gynecology, 16330, Bursa, Turkey
| | - Orhan Görükmez
- Bursa Yüksek İhtisas Training and Research Hospital, Department of Medical Genetics, 16330, Bursa, Turkey
| |
Collapse
|
21
|
Kroll T, Smits SHJ, Schmitt L. Monomeric bile acids modulate the ATPase activity of detergent-solubilized ABCB4/MDR3. J Lipid Res 2021; 62:100087. [PMID: 34022183 PMCID: PMC8233136 DOI: 10.1016/j.jlr.2021.100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
ABCB4, also called multidrug-resistant protein 3 (MDR3), is an ATP binding cassette transporter located in the canalicular membrane of hepatocytes that specifically translocates phosphatidylcholine (PC) lipids from the cytoplasmic to the extracellular leaflet. Due to the harsh detergent effect of bile acids, PC lipids provided by ABCB4 are extracted into the bile. While it is well known that bile acids are the major extractor of PC lipids from the membrane into bile, it is unknown whether only PC lipid extraction is improved or whether bile acids also have a direct effect on ABCB4. Using in vitro experiments, we investigated the modulation of ATP hydrolysis of ABC by different bile acids commonly present in humans. We demonstrated that all tested bile acids stimulated ATPase activity except for taurolithocholic acid, which inhibited ATPase activity due to its hydrophobic nature. Additionally, we observed a nearly linear correlation between the critical micelle concentration and maximal stimulation by each bile acid, and that this modulation was maintained in the presence of PC lipids. This study revealed a large effect of 24-nor-ursodeoxycholic acid, suggesting a distinct mode of regulation of ATPase activity compared with other bile acids. In addition, it sheds light on the molecular cross talk of canalicular ABC transporters of the human liver.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
22
|
Bai J, Li L, Liu H, Liu S, Bai L, Ning H, Song W, Zou H, Wang X, Chen Y, Zheng S, Duan Z. A novel compound heterozygous mutation in ABCB4 gene in a pedigree with progressive familial intrahepatic cholestasis 3: a case report. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:426. [PMID: 33842647 PMCID: PMC8033375 DOI: 10.21037/atm-20-3747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Progressive familial intrahepatic cholestasis (PFIC) includes a group of genetic autosomal recessive disorders that predominantly affects young children and results in early-onset progressive liver damage. Variations in ABCB4 have been shown to cause PFIC3. However, the association between ABCB4 genotype and clinical manifestations remains unclear. We investigated the clinical manifestations and genetic features of a Chinese Han pedigree with PFIC3. A 15-year-old boy, with high-serum gamma-glutamyl transferase (γ-GT) cholestatic cirrhosis, was diagnosed with PIFC3. After ursodeoxycholic acid (UDCA) treatment, the boy stayed in a relatively stable state with mild itching, and elevated γ-GT exhibited a remarkable decrease. Genetic testing identified a novel compound heterozygous mutation L842P/V1051A in ABCB4, which was inherited from his mother and father, respectively. Several predictive software suggested that these two mutations are pathogenic. Interestingly, the same compound heterozygous mutation was also found in his two sisters, one of whom had a history of intrahepatic cholestasis of pregnancy (ICP) and the other had asymptomatic gallstones. Therefore, this novel compound heterozygous mutation L842P/V1051A caused a continuum of ABCB4-related diseases including ICP, cholelithiasis and PFIC3 in our pedigree. The inconsistency between genotypes and phenotypes may be influenced by other factors. Genetic testing will be useful for diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Jie Bai
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You An Hospital, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Lu Li
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Hui Liu
- Department of Pathology, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Shuang Liu
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Li Bai
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Hanbing Ning
- Department of Digestive Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenyan Song
- Department of Radiology, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Huaibin Zou
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Xinxin Wang
- Department of Pathology, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You An Hospital, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Sujun Zheng
- First Department of Liver Disease, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Zhongping Duan
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You An Hospital, Capital Medical University, Beijing, China.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| |
Collapse
|
23
|
A Link between Intrahepatic Cholestasis and Genetic Variations in Intracellular Trafficking Regulators. BIOLOGY 2021; 10:biology10020119. [PMID: 33557414 PMCID: PMC7914782 DOI: 10.3390/biology10020119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Cholestasis refers to a medical condition in which the liver is not capable of secreting bile. The consequent accumulation of toxic bile components in the liver leads to liver failure. Cholestasis can be caused by mutations in genes that code for proteins involved in bile secretion. Recently mutations in other genes have been discovered in patients with cholestasis of unknown origin. Interestingly, many of these newly discovered genes code for proteins that regulate the intracellular distribution of other proteins, including those involved in bile secretion. This group of genes thus suggests the deregulated intracellular distribution of bile-secreting proteins as an important but still poorly understood mechanism that underlies cholestasis. To expedite a better understanding of this mechanism, we have reviewed these genes and their mutations and we discuss these in the context of cholestasis. Abstract Intrahepatic cholestasis is characterized by the accumulation of compounds in the serum that are normally secreted by hepatocytes into the bile. Genes associated with familial intrahepatic cholestasis (FIC) include ATP8B1 (FIC1), ABCB11 (FIC2), ABCB4 (FIC3), TJP2 (FIC4), NR1H4 (FIC5) and MYO5B (FIC6). With advanced genome sequencing methodologies, additional mutated genes are rapidly identified in patients presenting with idiopathic FIC. Notably, several of these genes, VPS33B, VIPAS39, SCYL1, and AP1S1, together with MYO5B, are functionally associated with recycling endosomes and/or the Golgi apparatus. These are components of a complex process that controls the sorting and trafficking of proteins, including those involved in bile secretion. These gene variants therefore suggest that defects in intracellular trafficking take a prominent place in FIC. Here we review these FIC-associated trafficking genes and their variants, their contribution to biliary transporter and canalicular protein trafficking, and, when perturbed, to cholestatic liver disease. Published variants for each of these genes have been summarized in table format, providing a convenient reference for those who work in the intrahepatic cholestasis field.
Collapse
|
24
|
Wang Y, Peng X, Zhang Y, Yang Q, Xiao Y, Chen Y. Ursodeoxycholic acid improves pregnancy outcome in patients with intrahepatic cholestasis during pregnancy: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e23627. [PMID: 33530164 PMCID: PMC7850722 DOI: 10.1097/md.0000000000023627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Intrahepatic cholestasis of pregnancy (ICP) is a common complication in the third trimester of pregnancy, which may result in premature delivery, fetal distress, stillbirth, and other adverse pregnancy outcomes. Ursodeoxycholic acid (UDCA) is a first-line treatment for ICP and has been controversial in improving adverse pregnancy outcomes. The purpose of this protocol is to systematically evaluate the effect of UDCA on pregnancy outcomes in patients with intrahepatic cholestasis during pregnancy. METHODS To search the databases PubMed, Embase, Web of Science, the Cochrane Library, CNKI, WanFang, VIP, CBMDIsc by computer, then to include randomized controlled clinical studies on UDCA for treatment of intrahepatic cholestasis during pregnancy from the establishment of the database to October 1, 2020. Two researchers independently extract and evaluate the data of the included studies, and meta-analysis is conducted on the included literatures using RevMan5.3 software. RESULTS This protocol evaluates the outcome of UDCA in improving ICP by incidence of postpartum hemorrhage in pregnant women preterm birth rates meconium contamination rate in amniotic fluid incidence of fetal distress scale of newborns scoring <7 in 5-min Apgar incidence of neonatal admission to neonatal intensive care unit. CONCLUSION This protocol will provide an evidence-based basis for clinical use of UDCA in the treatment of intrahepatic cholestasis during pregnancy. ETHICS AND DISSEMINATION Private information from individuals will not be published. This systematic review also does not involve endangering participant rights. Ethical approval was not required. The results may be published in a peer-reviewed journal or disseminated at relevant conferences. OSF REGISTRATION NUMBER DOI 10.17605 / OSF.IO / BE67H.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan
| | - Xiabiao Peng
- Department of Gastroenterology, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan
| | - Yongyuan Zhang
- Department of Gastroenterology, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan
| | - Qiuchen Yang
- Department of Gastroenterology, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan
| | - Yuhong Xiao
- Department of Gastroenterology, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan
| | - Yuezhou Chen
- Reproductive and Genetic Medicine Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong province, China
| |
Collapse
|
25
|
Goubran M, Aderibigbe A, Jacquemin E, Guettier C, Girgis S, Bain V, Mason AL. Case report: progressive familial intrahepatic cholestasis type 3 with compound heterozygous ABCB4 variants diagnosed 15 years after liver transplantation. BMC MEDICAL GENETICS 2020; 21:238. [PMID: 33256620 PMCID: PMC7708126 DOI: 10.1186/s12881-020-01173-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis (PFIC) type 3 is an autosomal recessive disorder arising from mutations in the ATP-binding cassette subfamily B member 4 (ABCB4) gene. This gene encodes multidrug resistance protein-3 (MDR3) that acts as a hepatocanalicular floppase that transports phosphatidylcholine from the inner to the outer canalicular membrane. In the absence of phosphatidylcholine, the detergent activity of bile salts is amplified and this leads to cholangiopathy, bile duct loss and biliary cirrhosis. Patients usually present in infancy or childhood and often progress to end-stage liver disease before adulthood. CASE PRESENTATION We report a 32-year-old female who required cadaveric liver transplantation at the age of 17 for cryptogenic cirrhosis. When the patient developed chronic ductopenia in the allograft 15 years later, we hypothesized that the patient's original disease was due to a deficiency of a biliary transport protein and the ductopenia could be explained by an autoimmune response to neoantigen that was not previously encountered by the immune system. We therefore performed genetic analyses and immunohistochemistry of the native liver, which led to a diagnosis of PFIC3. However, there was no evidence of humoral immune response to the MDR3 and therefore, we assumed that the ductopenia observed in the allograft was likely due to chronic rejection rather than autoimmune disease in the allograft. CONCLUSIONS Teenage patients referred for liver transplantation with cryptogenic liver disease should undergo work up for PFIC3. An accurate diagnosis of PFIC 3 is key for optimal management, therapeutic intervention, and avoidance of complications before the onset of end-stage liver disease.
Collapse
Affiliation(s)
- Mariam Goubran
- Department of Medicine, University of Alberta Hospital, Edmonton, Canada
| | - Ayodeji Aderibigbe
- Department of Medicine, University of Alberta Hospital, Edmonton, Canada
| | - Emmanuel Jacquemin
- Paediatric Hepatology & Paediatric Liver Transplant Department, Reference Center for Rare Paediatric Liver Diseases, FILFOIE, ERN RARE LIVER, Assistance Publique-Hôpitaux de Paris, Faculty of Medicine and University Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France
| | - Catherine Guettier
- Pathology Department, Assistance Publique-Hôpitaux de Paris, Faculty of Medicine and University Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France
| | - Safwat Girgis
- Department of Laboratory Medicine and Pathology, University of Alberta Hospital, Edmonton, Canada
| | - Vincent Bain
- Department of Medicine, University of Alberta Hospital, Edmonton, Canada
| | - Andrew L Mason
- Department of Medicine, University of Alberta Hospital, Edmonton, Canada.
- Division of Gastroenterology, 7-142 KGR, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
26
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Ikeda Y. [Mechanism of Taurohyodeoxycholate-induced Biliary Phospholipid Efflux -Understanding the Function of the ABCB4 Enhancer for Developing Therapeutic Agents against Bile Salt-induced Liver Injury]. YAKUGAKU ZASSHI 2020; 140:1329-1334. [PMID: 33132268 DOI: 10.1248/yakushi.20-00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biliary lipids primarily consist of bile salts, phospholipids, and cholesterol. Bile salts have potent detergent properties and deleterious effects on the cell membrane and are cytotoxic to hepatocytes. We have previously reported that phosphatidylcholine (PC), the predominant bile phospholipid, protects hepatocytes from the cytotoxicity of bile salts, whereas cholesterol reverses the cytoprotective effects of PC against bile salts. ABCB4, a member of the ATP-binding cassette transporter family, secretes biliary phospholipids, especially PC, from the hepatocytes into the bile. Using Abcb4 knockout mice and HEK293 cells that stably expressed ABCB4, we examined the effects of taurine- or glycine-conjugated cholate, ursodeoxycholate, and hyodeoxycholate on the ABCB4-mediated efflux of PC. We observed that the biliary secretion of PC in wild-type mice significantly increased following infusion of all the tested bile salts, especially taurohyodeoxycholate. On the other hand, the biliary secretion of PC in Abcb4 knockout mice was not affected by the bile salt infusions. The results also demonstrated that the efflux of PC from ABCB4-expressing HEK293 cells was significantly stimulated by taurohyodeoxycholate, which has a strong potential to form mixed micelles with PC. Furthermore, the results of our study emphasized the possibility that the specific interactions of bile salts with ABCB4 are necessary for the release of PC molecules from the binding pocket of ABCB4 into the aqueous environment. Further understanding of this mechanism will aid in the development of novel therapeutic agents for cholestatic liver diseases.
Collapse
Affiliation(s)
- Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital
| |
Collapse
|
28
|
Zhang W, Lin R, Lu Z, Sheng H, Xu Y, Li X, Cheng J, Cai Y, Mao X, Liu L. Phenotypic and Molecular Characteristics of Children with Progressive Familial Intrahepatic Cholestasis in South China. Pediatr Gastroenterol Hepatol Nutr 2020; 23:558-566. [PMID: 33215027 PMCID: PMC7667226 DOI: 10.5223/pghn.2020.23.6.558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/21/2020] [Accepted: 06/23/2020] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Progressive familial intrahepatic cholestasis (PFIC) is a rare genetic autosomal recessive disease caused by mutations in ATP8B1, ABCB11 or ABCB4. Mutational analysis of these genes is a reliable approach to identify the disorder. METHODS We collected and analyzed relevant data related to clinical diagnosis, biological investigation, and molecular determination in nine children carrying these gene mutations, who were from unrelated families in South China. RESULTS Of the nine patients (five males, four females) with PFIC, one case of PFIC1, four cases of PFIC2, and four cases of PFIC3 were diagnosed. Except in patient no. 8, jaundice and severe pruritus were the major clinical signs in all forms. γ-glutamyl transpeptidase was low in patients with PFIC1/PFIC2, and remained mildly elevated in patients with PFIC3. We identified 15 different mutations, including nine novel mutations (p.R470HfsX8, p.Q794X and p.I1170T of ABCB11 gene mutations, p.G319R, p.A1047P, p.G1074R, p.T830NfsX11, p.A1047PfsX8 and p.N1048TfsX of ABCB4 gene mutations) and six known mutations (p.G446R and p.F529del of ATP8B1 gene mutations, p.A588V, p.G1004D and p.R1057X of ABCB11 gene mutations, p.P479L of ABCB4 gene mutations). The results showed that compared with other regions, these three types of PFIC genes had different mutational spectrum in China. CONCLUSION The study expands the genotypic spectrum of PFIC. We identified nine novel mutations of PFIC and our findings could help in the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ruizhu Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zhikun Lu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Huiying Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yi Xu
- Department of Infectious Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xiuzhen Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jing Cheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yanna Cai
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xiaojian Mao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
29
|
Evaluation of a Novel Missense Mutation in ABCB4 Gene Causing Progressive Familial Intrahepatic Cholestasis Type 3. DISEASE MARKERS 2020; 2020:6292818. [PMID: 32626542 PMCID: PMC7315263 DOI: 10.1155/2020/6292818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a hepatic disorder occurring predominantly in childhood and is difficult to diagnose. PFIC3, being a rare autosomal recessive disease, is caused by genetic mutations in both alleles of ABCB4, resulting in the disruption of the bile secretory pathway. The identification of pathogenic effects resulting from different mutations in ABCB4 is the key to revealing the internal cause of disease. These mutations cause truncation, instability, misfolding, and impaired trafficking of the MDR3 protein. Here, we reported a girl, with a history of intrahepatic cholestasis and progressive liver cirrhosis, with an elevated gamma-glutamyltransferase level. Genetic screening via whole exome sequencing found a novel homozygous missense mutation ABCB4:c.1195G>C:p.V399L, and the patient was diagnosed with PFIC3. Various computational tools predicted the variant to be deleterious and evolutionary conserved. For functional characterization studies, plasmids, encoding ABCB4 wild-type and selected established mutant constructs, were expressed in human embryonic kidney (HEK-293T) and hepatocellular carcinoma (HepG2) cells. In vitro expression analysis observed a reduced expression of mutant protein compared to wild-type protein. We found that ABCB4 wild type was localized at the apical canalicular membrane, while mutant p.V399L showed intracellular retention. Intracellular mistrafficking proteins usually undergo proteasomal or lysosomal degradation. We found that after treatment with proteasomal inhibitor MG132 and lysosomal inhibitor bafilomycin A1, MDR3 expression of V399L was significantly increased. A decrease in MDR3 expression of mutant V399L protein may be a result of proteasomal or lysosomal degradation. Pharmacological modulator cyclosporin A and intracellular low temperature (30°C) treatment significantly rescued both the folding defect and the active maturation of the mutant protein. Our study identified a novel pathogenic mutation which expanded the mutational spectrum of the ABCB4 gene and may contribute to understanding the molecular basis of PFIC3. Therefore, genetic screening plays a conclusive role in the diagnosis of rare heterogenic disorders like PFIC3.
Collapse
|
30
|
Weber ND, Odriozola L, Martínez-García J, Ferrer V, Douar A, Bénichou B, González-Aseguinolaza G, Smerdou C. Gene therapy for progressive familial intrahepatic cholestasis type 3 in a clinically relevant mouse model. Nat Commun 2019; 10:5694. [PMID: 31836711 PMCID: PMC6910969 DOI: 10.1038/s41467-019-13614-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare monogenic disease caused by mutations in the ABCB4 gene, resulting in a reduction in biliary phosphatidylcholine. Reduced biliary phosphatidylcholine cannot counteract the detergent effects of bile salts, leading to cholestasis, cholangitis, cirrhosis and ultimately liver failure. Here, we report results from treating two- or five-week-old Abcb4-/- mice with an AAV vector expressing human ABCB4, resulting in significant decreases of PFIC3 disease biomarkers. All male mice achieved a sustained therapeutic effect up through 12 weeks, but the effect was achieved in only 50% of females. However, two-week-old females receiving a second inoculation three weeks later maintained the therapeutic effect. Upon sacrifice, markers of PFIC3 disease such as, hepatosplenomegaly, biliary phosphatidylcholine and liver histology were significantly improved. Thus, AAV-mediated gene therapy successfully prevented PFIC3 symptoms in a clinically relevant mouse model, representing a step forward in improving potential therapy options for PFIC3 patients.
Collapse
Affiliation(s)
| | - Leticia Odriozola
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain
| | - Javier Martínez-García
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain
| | | | - Anne Douar
- Vivet Therapeutics S.A.S., Paris, France
| | | | - Gloria González-Aseguinolaza
- Vivet Therapeutics S.L., Pamplona, Spain.
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.
| |
Collapse
|
31
|
Prescher M, Kroll T, Schmitt L. ABCB4/MDR3 in health and disease – at the crossroads of biochemistry and medicine. Biol Chem 2019; 400:1245-1259. [DOI: 10.1515/hsz-2018-0441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Abstract
Several ABC transporters of the human liver are responsible for the secretion of bile salts, lipids and cholesterol. Their interplay protects the biliary tree from the harsh detergent activity of bile salts. Among these transporters, ABCB4 is essential for the translocation of phosphatidylcholine (PC) lipids from the inner to the outer leaflet of the canalicular membrane of hepatocytes. ABCB4 deficiency can result in altered PC to bile salt ratios, which led to intrahepatic cholestasis of pregnancy, low phospholipid associated cholelithiasis, drug induced liver injury or even progressive familial intrahepatic cholestasis type 3. Although PC lipids only account for 30–40% of the lipids in the canalicular membrane, 95% of all phospholipids in bile are PC lipids. We discuss this discrepancy in the light of PC synthesis and bile salts favoring certain lipids. Nevertheless, the in vivo extraction of PC lipids from the outer leaflet of the canalicular membrane by bile salts should be considered as a separate step in bile formation. Therefore, methods to characterize disease causing ABCB4 mutations should be considered carefully, but such an analysis represents a crucial point in understanding the currently unknown transport mechanism of this ABC transporter.
Collapse
|
32
|
Ishizawa T, Makino N, Kakizaki Y, Ando Y, Matsuda A, Kobayashi T, Ikeda C, Sugahara S, Tsunoda M, Sato H, Murakami R, Ueno Y. A novel pathogenic variant of ATP-binding cassette subfamily B member 4 causing gallstones in a young adult. Clin J Gastroenterol 2019; 12:637-641. [DOI: 10.1007/s12328-019-00991-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022]
|
33
|
Ge T, Zhang X, Xiao Y, Wang Y, Zhang T. Novel compound heterozygote mutations of TJP2 in a Chinese child with progressive cholestatic liver disease. BMC MEDICAL GENETICS 2019; 20:18. [PMID: 30658709 PMCID: PMC6339326 DOI: 10.1186/s12881-019-0753-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022]
Abstract
Background Progressive familial intrahepatic cholestasis (PFIC) is a group of genetic autosomal recessive disorders that predominantly affects young children and results in early-onset progressive liver damage. Several types of PFIC were defined based on different genetic aetiologies in last decades. Case presentation Here, we report a Chinese young child diagnosed as PFIC with variants in tight junction protein 2 (TJP2). The patient was affected by a long history of jaundice, pruritus, and failure to thrive. Highly elevated level of serum total bile acid (TBA) and normal levels of gamma-glutamyltransferase (GGT) were observed at hospitalization. The patient’s clinical symptoms could be alleviated by administration of ursodeoxycholic acid. Genetic testing by next generation sequencing (NGS) found novel compound heterozygote mutations c.2448 + 1G > C/c.2639delC (p.T880Sfs*12) in TJP2, which were inherited from her mother and father, respectively. Both mutations were predicted to abolish TJP2 protein translation, and neither has previously been identified. Conclusion We report a Chinese female PFIC child with novel compound heterozygous mutations of TJP2. Genetic testing by NGS is valuable in the clinical diagnosis of hereditary liver disease. Electronic supplementary material The online version of this article (10.1186/s12881-019-0753-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ting Ge
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Xinyue Zhang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yongmei Xiao
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yizhong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
| | - Ting Zhang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
| |
Collapse
|
34
|
Gan L, Pan S, Cui J, Bai J, Jiang P, He Y. Functional analysis of the correlation between ABCB11 gene mutation and primary intrahepatic stone. Mol Med Rep 2018; 19:195-204. [PMID: 30431138 PMCID: PMC6297787 DOI: 10.3892/mmr.2018.9661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
Abstract
The adenosine 5'‑triphosphate binding cassette subfamily B member (ABCB)11 gene is involved in bile transport, and mutations in this gene are associated with cholestasis and cholelithiasis. Therefore, the aim of the present study was to investigate the association between ABCB11 gene mutation and primary intrahepatic stone (PIS)s and to investigate the mechanism through which ABCB11 gene mutations affect the expression of the corresponding protein. Mutations of the ABCB11 gene in 443 PIS patients and 560 healthy participants were detected by exon sequencing. The expression levels of ABCB11 mRNA and bile salt export pump (BSEP) protein in the liver tissues of patients with PISs were measured by quantitative polymerase chain reaction and western blot analysis. The mutant plasmids constructed by site‑directed mutagenesis of the human BSEP gene were transfected into human embryonic kidney 293 (293) cells and Madin‑Darby canine kidney (MDCK) cells, and the expression and distribution of rs118109635 of BSEP was measured. There were two significant mutations in the ABCB11 gene of the PIS patients compared with the healthy population; a missense mutation, rs118109635 (P=0.025), and a synonymous mutation, rs497692 (P=0.006). The two mutations were associated with the occurrence of preoperative jaundice (P=0.026, and P=0.011, respectively). The expression levels of BSEP in PIS patients with the missense mutation rs118109635 was decreased, whereas its mRNA expression levels remained unchanged. In PIS patients with the synonymous mutation rs497692, the expression levels of ABCB11 were decreased at both the mRNA and protein level. It was also found that mutation A865V reduced the expression levels of BSEP in 293 cells at the cellular level; its distribution in MDCK cell membranes was decreased, whereas its mRNA levels remained unchanged. The mutated loci at rs118109635 and rs497692 of the ABCB11 gene were correlated with PISs, causing a decreased expression of BSEP and reduced distribution of the protein in the cell membrane. Therefore, mutations at rs118109635 and rs497692 of the ABCB11 gene may be risk factors for PISs.
Collapse
Affiliation(s)
- Lang Gan
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Shuguang Pan
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Jinchi Cui
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Jie Bai
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Peng Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Yu He
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| |
Collapse
|
35
|
Khabou B, Mahjoub B, Barbu V, Balhoudi N, Wardani A, Sfar MT, Fakhfakh F. Phenotypic variability in Tunisian PFIC3 patients harboring a complex genotype with a differential clinical outcome of UDCA treatment. Clin Chim Acta 2018; 486:122-128. [DOI: 10.1016/j.cca.2018.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/09/2018] [Accepted: 07/19/2018] [Indexed: 12/27/2022]
|
36
|
Tedesco D, Thapa M, Chin CY, Ge Y, Gong M, Li J, Gumber S, Speck P, Elrod EJ, Burd EM, Kitchens WH, Magliocca JF, Adams AB, Weiss DS, Mohamadzadeh M, Grakoui A. Alterations in Intestinal Microbiota Lead to Production of Interleukin 17 by Intrahepatic γδ T-Cell Receptor-Positive Cells and Pathogenesis of Cholestatic Liver Disease. Gastroenterology 2018; 154:2178-2193. [PMID: 29454797 PMCID: PMC5985208 DOI: 10.1053/j.gastro.2018.02.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/16/2018] [Accepted: 02/07/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Variants at the ABCB4 or MDR2 locus, which encodes a biliary transport protein, are associated with a spectrum of cholestatic liver diseases. Exacerbation of liver disease has been linked to increased hepatic levels of interleukin (IL) 17, yet the mechanisms of this increase are not understood. We studied mice with disruption of Mdr2 to determine how defects in liver and alteration in the microbiota contribute to production of IL17 by intrahepatic γδ T cells. METHODS We performed studies with Mdr2-/- and littermate FVB/NJ (control) mice. IL17 was measured in serum samples by an enzyme-linked immunosorbent assay. Mice were injected with neutralizing antibodies against the γδ T-cell receptor (TCR; anti-γδ TCR) or mouse IL17A (anti-IL17A). Livers were collected and bacteria were identified in homogenates by culture procedures; TCRγδ+ cells were isolated by flow cytometry. Fecal samples were collected from mice and analyzed by 16S ribosomal DNA sequencing. Cells were stimulated with antibodies or bacteria, and cytokine production was measured. We obtained tissues from 10 patients undergoing liver transplantation for primary sclerosing cholangitis or chronic hepatitis C virus infection. Tissues were analyzed for cytokine production by γδ TCR+ cells. RESULTS Mdr2-/- mice had collagen deposition around hepatic bile ducts and periportal-bridging fibrosis with influx of inflammatory cells and increased serum levels of IL17 compared with control mice. Administration of anti-IL17A reduced hepatic fibrosis. Livers from Mdr2-/- mice had increased numbers of IL17A+ γδTCR+ cells-particularly of IL17A+ Vγ6Jγ1 γδ TCR+ cells. Fecal samples from Mdr2-/- mice were enriched in Lactobacillus, and liver tissues were enriched in Lactobacillus gasseri compared with control mice. Mdr2-/- mice also had increased intestinal permeability. The γδ TCR+ cells isolated from Mdr2-/- livers produced IL17 in response to heat-killed L gasseri. Intraperitoneal injection of control mice with L gasseri led to increased serum levels of IL17 and liver infiltration by inflammatory cells; injection of these mice with anti-γδ TCR reduced serum level of IL17. Intravenous injections of Mdr2-/- mice with anti-γδ TCR reduced fibrosis; liver levels of IL17, and inflammatory cells; and serum levels of IL17. γδTCR+ cells isolated from livers of patients with primary sclerosing cholangitis, but not hepatitis C virus infection, produced IL17. CONCLUSIONS In Mdr2-/- mice, we found development of liver fibrosis and inflammation to require hepatic activation of γδ TCR+ cells and production of IL17 mediated by exposure to L gasseri. This pathway appears to contribute to development of cholestatic liver disease in patients.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Adult
- Aged
- Animals
- Bile Ducts/cytology
- Bile Ducts/immunology
- Bile Ducts/microbiology
- Cells, Cultured
- Cholangitis, Sclerosing/microbiology
- Cholangitis, Sclerosing/pathology
- Cholangitis, Sclerosing/surgery
- Cholestasis/immunology
- Cholestasis/microbiology
- Cholestasis/pathology
- Cholestasis/surgery
- Disease Models, Animal
- End Stage Liver Disease/microbiology
- End Stage Liver Disease/pathology
- End Stage Liver Disease/surgery
- Female
- Gastrointestinal Microbiome
- Hepatitis C, Chronic/pathology
- Hepatitis C, Chronic/surgery
- Hepatitis C, Chronic/virology
- Humans
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/blood
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Intraepithelial Lymphocytes/metabolism
- Lactobacillus gasseri/immunology
- Liver/cytology
- Liver/immunology
- Liver/microbiology
- Liver/pathology
- Liver Cirrhosis/immunology
- Liver Cirrhosis/microbiology
- Liver Cirrhosis/pathology
- Liver Cirrhosis/surgery
- Liver Transplantation
- Male
- Mice
- Mice, Knockout
- Middle Aged
- Receptors, Antigen, T-Cell, gamma-delta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Young Adult
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Dana Tedesco
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, Georgia
| | - Manoj Thapa
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, Georgia
| | - Chui Yoke Chin
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Emory Antibiotic Resistance Center, Atlanta, Georgia
| | - Yong Ge
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Minghao Gong
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Jing Li
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Sanjeev Gumber
- Division of Pathology and Laboratory Medicine, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, Georgia
| | - Patrick Speck
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, Georgia
| | - Elizabeth J Elrod
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, Georgia
| | - Eileen M Burd
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Emory Antibiotic Resistance Center, Atlanta, Georgia; Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - William H Kitchens
- Department of Surgery, Transplant, Emory University School of Medicine, Atlanta, Georgia
| | - Joseph F Magliocca
- Department of Surgery, Transplant, Emory University School of Medicine, Atlanta, Georgia
| | - Andrew B Adams
- Department of Surgery, Transplant, Emory University School of Medicine, Atlanta, Georgia
| | - David S Weiss
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Emory Antibiotic Resistance Center, Atlanta, Georgia
| | - Mansour Mohamadzadeh
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida; Division of Hepatology, Gastroenterology, and Nutrition; University of Florida, Gainesville, Florida
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes Research Primate Center, Emory University School of Medicine, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
37
|
Schatz SB, Jüngst C, Keitel‐Anselmo V, Kubitz R, Becker C, Gerner P, Pfister E, Goldschmidt I, Junge N, Wenning D, Gehring S, Arens S, Bretschneider D, Grothues D, Engelmann G, Lammert F, Baumann U. Phenotypic spectrum and diagnostic pitfalls of ABCB4 deficiency depending on age of onset. Hepatol Commun 2018; 2:504-514. [PMID: 29761167 PMCID: PMC5944585 DOI: 10.1002/hep4.1149] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/09/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
Genetic variants in the adenosine triphosphate-binding cassette subfamily B member 4 (ABCB4) gene, which encodes hepatocanalicular phosphatidylcholine floppase, can lead to different phenotypes, such as progressive familial intrahepatic cholestasis (PFIC) type 3, low phospholipid-associated cholelithiasis, and intrahepatic cholestasis of pregnancy. The aim of this multicenter project was to collect information on onset and progression of this entity in different age groups and to assess the relevance of this disease for the differential diagnosis of chronic liver disease. Clinical and laboratory data of 38 patients (17 males, 21 females, from 29 families) with homozygous or (compound) heterozygous ABCB4 mutations were retrospectively collected. For further analysis, patients were grouped according to the age at clinical diagnosis of ABCB4-associated liver disease into younger age (<18 years) or adult age (≥18 years). All 26 patients diagnosed in childhood presented with pruritus (median age 1 year). Hepatomegaly and splenomegaly were present in 85% and 96% of these patients, respectively, followed by jaundice (62%) and portal hypertension (69%). Initial symptoms preceded diagnosis by 1 year, and 13 patients received a liver transplant (median age 6.9 years). Of note, 9 patients were misdiagnosed as biliary atresia, Alagille syndrome, or PFIC type 1. In the 12 patients with diagnosis in adulthood, the clinical phenotype was generally less severe, including intrahepatic cholestasis of pregnancy, low phospholipid-associated cholelithiasis, or (non)cirrhotic PFIC3. Conclusion: ABCB4 deficiency with onset in younger patients caused a more severe PFIC type 3 phenotype with the need for liver transplantation in half the children. Patients with milder phenotypes are often not diagnosed before adulthood. One third of the children with PFIC type 3 were initially misdiagnosed, indicating the need for better diagnostic tools and medical education. (Hepatology Communications 2018;2:504-514).
Collapse
Affiliation(s)
- Stephanie Barbara Schatz
- Hannover Medical School, Division of Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic DiseasesHannoverGermany
| | - Christoph Jüngst
- Department of Medicine IISaarland University Medical CenterHomburgGermany
| | - Verena Keitel‐Anselmo
- University Hospital, Heinrich Heine University Düsseldorf, Department of Gastroenterology, Hepatology and Infectious DiseasesDüsseldorfGermany
| | - Ralf Kubitz
- University Hospital, Heinrich Heine University Düsseldorf, Department of Gastroenterology, Hepatology and Infectious DiseasesDüsseldorfGermany
| | - Christina Becker
- Department of Medicine IISaarland University Medical CenterHomburgGermany
| | - Patrick Gerner
- Division of Pediatric Gastroenterology, Clinic for Pediatrics IIUniversity Hospital, University EssenEssenGermany
| | - Eva‐Doreen Pfister
- Hannover Medical School, Division of Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic DiseasesHannoverGermany
| | - Imeke Goldschmidt
- Hannover Medical School, Division of Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic DiseasesHannoverGermany
| | - Norman Junge
- Hannover Medical School, Division of Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic DiseasesHannoverGermany
| | - Daniel Wenning
- Department of General PediatricsUniversity HospitalHeidelbergGermany
| | - Stephan Gehring
- Department of PediatricsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Stefan Arens
- Klinikum KasselPediatric GastroenterologyKasselGermany
| | | | - Dirk Grothues
- KUNO University Children's HospitalRegensburgGermany
| | | | - Frank Lammert
- Department of Medicine IISaarland University Medical CenterHomburgGermany
| | - Ulrich Baumann
- Hannover Medical School, Division of Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic DiseasesHannoverGermany
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
38
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
39
|
Xiang D, He J, Wang H, Xiong F, Cheng H, Ai J, Shan R, Wan R, Zhang L, Shi J. Liver transplantation for decompensated liver cirrhosis caused by progressive familial intrahepatic cholestasis type 3: A case report. Medicine (Baltimore) 2017; 96:e9158. [PMID: 29390323 PMCID: PMC5815735 DOI: 10.1097/md.0000000000009158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Progressive familial intrahepatic cholestasis (PFIC) type 3, characterized by high gamma glutamyl transferase (GGT), is an autosomal recessive genetic disease. It often occurs in patients' first years of age. However, high GGT type PFIC is still rare. PATIENT CONCERNS The present study reports a case of liver transplantation for decompensated liver cirrhosis caused by PFIC type 3. An 18-year-old male presented with a history of abdominal distension and jaundice for 2 months. He had abdominal tenderness but no rebounding pain. Moreover, his dullness was felt over the liver and the spleen was palpable 8 cm below the ribs. DIAGNOSES Computed tomography and magnetic resonance cholangiopancreato graphy of the upper abdomen revealed cirrhosis, portal hypertension, collateral circulation formation, large spleen, and ascites. Blood biochemistry showed high alanine transaminase, aspartate transaminase, and GGT. The diagnosis of decompensated liver cirrhosis caused by PFIC-3 was finally confirmed by plasma gene detecting. INTERVENTIONS The patient received an open surgery named allogeneic liver transplantation after successful matching of immune types between the recipient and donor. Peritoneal puncture and catheter drainage under B-ultrasound was performed when an encapsulated effusion between the liver and stomach arose. OUTCOMES The patient was discharged without specific discomfort and was almost free of fluid accumulation 51 days after the surgery. At the 6-month follow-up, he had no discomfort and the blood routine, liver functions showed no abnormalities. LESSONS We found a new mutant fragment of ABCB4 gene in the process of diagnosis. Liver transplantation remains the most definitive treatment for PFIC. Current medical therapies and surgical interventions such as biliary diversion have potentially created a synergistic outcome.
Collapse
Affiliation(s)
- Deng Xiang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University
| | - Jiannan He
- Department of General Surgery, The First Affiliated Hospital of Nanchang University
| | - Hongmei Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University
| | - Fangfang Xiong
- Basic Nursing Teaching and Research Office, Nanchang City Health School
| | - Hao Cheng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University
| | - Junhua Ai
- Department of General Surgery, The First Affiliated Hospital of Nanchang University
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University
| | - Lunli Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Shi
- Department of General Surgery, The First Affiliated Hospital of Nanchang University
| |
Collapse
|
40
|
Cariello M, Piccinin E, Garcia-Irigoyen O, Sabbà C, Moschetta A. Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1308-1318. [PMID: 28965883 DOI: 10.1016/j.bbadis.2017.09.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023]
Abstract
The nuclear receptor farnesoid X receptor (FXR) is the master regulator of bile acids (BAs) homeostasis since it transcriptionally drives modulation of BA synthesis, influx, efflux, and detoxification along the enterohepatic axis. Due to its crucial role, FXR alterations are involved in the progression of a plethora of BAs associated inflammatory disorders in the liver and in the gut. The involvement of the FXR pathway in cholestasis development and management has been elucidated so far with a direct role of FXR activating therapy in this condition. However, the recent identification of a new type of genetic progressive familial intrahepatic cholestasis (PFIC) linked to FXR mutations has strengthen also the bona fide beneficial effects of target therapies that by-pass FXR activation, directly promoting the action of its target, namely the enterokine FGF19, in the repression of hepatic BAs synthesis with reduction of total BA levels in the liver and serum, accomplishing one of the major goals in cholestasis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni and Peter Jansen.
Collapse
Affiliation(s)
- Marica Cariello
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Elena Piccinin
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy
| | - Oihane Garcia-Irigoyen
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy; National Cancer Center, IRCCS Istituto Oncologico "Giovanni Paolo II", 70124 Bari, Italy.
| |
Collapse
|
41
|
An expanded role for heterozygous mutations of ABCB4, ABCB11, ATP8B1, ABCC2 and TJP2 in intrahepatic cholestasis of pregnancy. Sci Rep 2017; 7:11823. [PMID: 28924228 PMCID: PMC5603585 DOI: 10.1038/s41598-017-11626-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) affects 1/140 UK pregnancies; with pruritus, hepatic impairment and elevated serum bile acids. Severe disease is complicated by spontaneous preterm delivery and stillbirth. Previous studies have reported mutations in hepatocellular transporters (ABCB4, ABCB11). High throughput sequencing in 147 patients was performed in the transporters ABCB4, ABCB11, ATP8B1, ABCC2 and tight junction protein 2 (TJP2). Twenty-six potentially damaging variants were identified with the following predicted protein changes: Twelve ABCB4 mutations - Arg47Gln, Met113Val, Glu161Gly, Thr175Ala, Glu528Glyfs*6, Arg590Gln, Ala601Ser, Glu884Ter, Gly722Ala, Tyr775Met (x2), Trp854Ter. Four potential ABCB11 mutations - Glu297Gly (x3) and a donor splice site mutation (intron 19). Five potential ATP8B1 mutations - Asn45Thr (x3), and two others, Glu114Gln and Lys203Glu. Two ABCC2 mutations - Glu1352Ala and a duplication (exons 24 and 25). Three potential mutations were identified in TJP2; Thr62Met (x2) and Thr626Ser. No patient harboured more than one mutation. All were heterozygous. An additional 545 cases were screened for the potential recurrent mutations of ATP8B1 (Asn45Thr) and TJP2 (Thr62Met) identifying three further occurrences of Asn45Thr. This study has expanded known mutations in ABCB4 and ABCB11 and identified roles in ICP for mutations in ATP8B1 and ABCC2. Possible novel mutations in TJP2 were also discovered.
Collapse
|
42
|
Khabou B, Durand-Schneider AM, Delaunay JL, Aït-Slimane T, Barbu V, Fakhfakh F, Housset C, Maurice M. Comparison of in silico prediction and experimental assessment of ABCB4 variants identified in patients with biliary diseases. Int J Biochem Cell Biol 2017; 89:101-109. [DOI: 10.1016/j.biocel.2017.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 12/12/2022]
|
43
|
Long-term challenges and perspectives of pre-adolescent liver disease. Lancet Gastroenterol Hepatol 2017; 2:435-445. [DOI: 10.1016/s2468-1253(16)30160-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
|
44
|
Higashiyama H, Ozawa A, Sumitomo H, Uemura M, Fujino K, Igarashi H, Imaimatsu K, Tsunekawa N, Hirate Y, Kurohmaru M, Saijoh Y, Kanai-Azuma M, Kanai Y. Embryonic cholecystitis and defective gallbladder contraction in the Sox17-haploinsufficient mouse model of biliary atresia. Development 2017; 144:1906-1917. [PMID: 28432216 DOI: 10.1242/dev.147512] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 04/12/2017] [Indexed: 12/15/2022]
Abstract
The gallbladder excretes cytotoxic bile acids into the duodenum through the cystic duct and common bile duct system. Sox17 haploinsufficiency causes biliary atresia-like phenotypes and hepatitis in late organogenesis mouse embryos, but the molecular and cellular mechanisms underlying this remain unclear. In this study, transcriptomic analyses revealed the early onset of cholecystitis in Sox17+/- embryos, together with the appearance of ectopic cystic duct-like epithelia in their gallbladders. The embryonic hepatitis showed positive correlations with the severity of cholecystitis in individual Sox17+/- embryos. Embryonic hepatitis could be induced by conditional deletion of Sox17 in the primordial gallbladder epithelia but not in fetal liver hepatoblasts. The Sox17+/- gallbladder also showed a drastic reduction in sonic hedgehog expression, leading to aberrant smooth muscle formation and defective contraction of the fetal gallbladder. The defective gallbladder contraction positively correlated with the severity of embryonic hepatitis in Sox17+/- embryos, suggesting a potential contribution of embryonic cholecystitis and fetal gallbladder contraction in the early pathogenesis of congenital biliary atresia.
Collapse
Affiliation(s)
- Hiroki Higashiyama
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Aisa Ozawa
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Sumitomo
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mami Uemura
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,Center for Experimental Animals, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ko Fujino
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hitomi Igarashi
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kenya Imaimatsu
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoki Tsunekawa
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshikazu Hirate
- Center for Experimental Animals, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masamichi Kurohmaru
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukio Saijoh
- Department of Neurobiology and Anatomy, The University of Utah, Salt Lake City, UT 84132-3401, USA
| | - Masami Kanai-Azuma
- Center for Experimental Animals, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
45
|
Shagrani M, Burkholder J, Broering D, Abouelhoda M, Faquih T, El-Kalioby M, Subhani SN, Goljan E, Albar R, Monies D, Mazhar N, AlAbdulaziz BS, Abdelrahman KA, Altassan N, Alkuraya FS. Genetic profiling of children with advanced cholestatic liver disease. Clin Genet 2017; 92:52-61. [PMID: 28039895 DOI: 10.1111/cge.12959] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022]
Abstract
Advanced cholestatic liver disease is a leading referral to pediatric liver transplant centers. Recent advances in the genetic classification of this group of disorders promise a highly personalized management although the genetic heterogeneity also poses a diagnostic challenge. Using a next-generation sequencing-based multi-gene panel, we performed retrospective analysis of 98 pediatric patients who presented with advanced cholestatic liver disease. A likely causal mutation was identified in the majority (61%), spanning many genes including ones that have only rarely been reported to cause cholestatic liver disease, e.g. TJP2 and VIPAS39. We find no evidence to support mono-allelic phenotypic expression in the carrier parents despite the severe nature of the respective mutations, and no evidence of oligogenicity. The high-carrier frequency of the founder mutations identified in our cohort (1 in 87) suggests a minimum incidence of 1:7246, an alarmingly high disease burden that calls for the primary prevention through carrier screening.
Collapse
Affiliation(s)
- M Shagrani
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - J Burkholder
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - D Broering
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - M Abouelhoda
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - T Faquih
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - M El-Kalioby
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - S N Subhani
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - E Goljan
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - R Albar
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - D Monies
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - N Mazhar
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - B S AlAbdulaziz
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - K A Abdelrahman
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - N Altassan
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - F S Alkuraya
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
van der Woerd WL, Houwen RHJ, van de Graaf SFJ. Current and future therapies for inherited cholestatic liver diseases. World J Gastroenterol 2017; 23:763-775. [PMID: 28223721 PMCID: PMC5296193 DOI: 10.3748/wjg.v23.i5.763] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/16/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
Familial intrahepatic cholestasis (FIC) comprises a group of rare cholestatic liver diseases associated with canalicular transport defects resulting predominantly from mutations in ATP8B1, ABCB11 and ABCB4. Phenotypes range from benign recurrent intrahepatic cholestasis (BRIC), associated with recurrent cholestatic attacks, to progressive FIC (PFIC). Patients often suffer from severe pruritus and eventually progressive cholestasis results in liver failure. Currently, first-line treatment includes ursodeoxycholic acid in patients with ABCB4 deficiency (PFIC3) and partial biliary diversion in patients with ATP8B1 or ABCB11 deficiency (PFIC1 and PFIC2). When treatment fails, liver transplantation is needed which is associated with complications like rejection, post-transplant hepatic steatosis and recurrence of disease. Therefore, the need for more and better therapies for this group of chronic diseases remains. Here, we discuss new symptomatic treatment options like total biliary diversion, pharmacological diversion of bile acids and hepatocyte transplantation. Furthermore, we focus on emerging mutation-targeted therapeutic strategies, providing an outlook for future personalized treatment for inherited cholestatic liver diseases.
Collapse
|
47
|
Wang NL, Lu YL, Zhang P, Zhang MH, Gong JY, Lu Y, Xie XB, Qiu YL, Yan YY, Wu BB, Wang JS. A Specially Designed Multi-Gene Panel Facilitates Genetic Diagnosis in Children with Intrahepatic Cholestasis: Simultaneous Test of Known Large Insertions/Deletions. PLoS One 2016; 11:e0164058. [PMID: 27706244 PMCID: PMC5051675 DOI: 10.1371/journal.pone.0164058] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Large indels are commonly identified in patients but are not detectable by routine Sanger sequencing and panel sequencing. We specially designed a multi-gene panel that could simultaneously test known large indels in addition to ordinary variants, and reported the diagnostic yield in patients with intrahepatic cholestasis. METHODS The panel contains 61 genes associated with cholestasis and 25 known recurrent large indels. The amplicon library was sequenced on Ion PGM system. Sequencing data were analyzed using a routine data analysis protocol and an internal program encoded for large indels test simultaneously. The validation phase was performed using 54 patients with known genetic diagnosis, including 5 with large insertions. At implement phase, 141 patients with intrahepatic cholestasis were evaluated. RESULTS At validation phase, 99.6% of the variations identified by Sanger sequencing could be detected by panel sequencing. Following the routine protocol, 99.8% of false positives could be filtered and 98.8% of retained variations were true positives. Large insertions in the 5 patients with known genetic diagnosis could be correctly detected using the internal program. At implementation phase, 96.9% of the retained variations, following the routine protocol, were confirmed to be true. Twenty-nine patients received a potential genetic diagnosis when panel sequencing data were analyzed using the routine protocol. Two additional patients, who were found to harbor large insertions in SLC25A13, obtained a potential genetic diagnosis when sequencing data were further analyzed using the internal program. A total of 31 (22.0%) patients obtained a potential genetic diagnosis. Nine different genetic disorders were diagnosed, and citrin deficiency was the commonest. CONCLUSION Specially designed multi-gene panel can correctly detect large indels simultaneously. By using it, we assigned a potential genetic diagnosis to 22.0% of patients with intrahepatic cholestasis.
Collapse
Affiliation(s)
- Neng-Li Wang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yu-Lan Lu
- The Molecular Genetic Diagnosis Center, Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
| | - Ping Zhang
- The Molecular Genetic Diagnosis Center, Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
| | - Mei-Hong Zhang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jing-Yu Gong
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yi Lu
- The Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Xin-Bao Xie
- The Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Yi-Ling Qiu
- The Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Yan-Yan Yan
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Bing-bing Wu
- The Molecular Genetic Diagnosis Center, Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail: (JSW); (BBW)
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail: (JSW); (BBW)
| |
Collapse
|
48
|
Mehl A, Bohorquez H, Serrano MS, Galliano G, Reichman TW. Liver transplantation and the management of progressive familial intrahepatic cholestasis in children. World J Transplant 2016; 6:278-290. [PMID: 27358773 PMCID: PMC4919732 DOI: 10.5500/wjt.v6.i2.278] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/24/2016] [Accepted: 03/14/2016] [Indexed: 02/05/2023] Open
Abstract
Progressive familial intrahepatic cholestasis (PFIC) is a constellation of inherited disorders that result in the impairment of bile flow through the liver that predominantly affects children. The accumulation of bile results in progressive liver damage, and if left untreated leads to end stage liver disease and death. Patients often present with worsening jaundice and pruritis within the first few years of life. Many of these patients will progress to end stage liver disease and require liver transplantation. The role and timing of liver transplantation still remains debated especially in the management of PFIC1. In those patients who are appropriately selected, liver transplantation offers an excellent survival benefit. Appropriate timing and selection of patients for liver transplantation will be discussed, and the short and long term management of patients post liver transplantation will also be described.
Collapse
|
49
|
Delaunay JL, Durand-Schneider AM, Dossier C, Falguières T, Gautherot J, Davit-Spraul A, Aït-Slimane T, Housset C, Jacquemin E, Maurice M. A functional classification of ABCB4 variations causing progressive familial intrahepatic cholestasis type 3. Hepatology 2016; 63:1620-31. [PMID: 26474921 DOI: 10.1002/hep.28300] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/24/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED Progressive familial intrahepatic cholestasis type 3 is caused by biallelic variations of ABCB4, most often (≥70%) missense. In this study, we examined the effects of 12 missense variations identified in progressive familial intrahepatic cholestasis type 3 patients. We classified these variations on the basis of the defects thus identified and explored potential rescue of trafficking-defective mutants by pharmacological means. Variations were reproduced in the ABCB4 complementary DNA and the mutants, thus obtained, expressed in HepG2 and HEK293 cells. Three mutants were either fully (I541F and L556R) or largely (Q855L) retained in the endoplasmic reticulum, in an immature form. Rescue of the defect, i.e., increase in the mature form at the bile canaliculi, was obtained by cell treatments with cyclosporin A or C and, to a lesser extent, B, D, or H. Five mutations with little or no effect on ABCB4 expression at the bile canaliculi caused a decrease (F357L, T775M, and G954S) or almost absence (S346I and P726L) of phosphatidylcholine secretion. Two mutants (T424A and N510S) were normally processed and expressed at the bile canaliculi, but their stability was reduced. We found no defect of the T175A mutant or of R652G, previously described as a polymorphism. In patients, the most severe phenotypes appreciated by the duration of transplant-free survival were caused by ABCB4 variants that were markedly retained in the endoplasmic reticulum and expressed in a homozygous status. CONCLUSION ABCB4 variations can be classified as follows: nonsense variations (I) and, on the basis of current findings, missense variations that primarily affect the maturation (II), activity (III), or stability (IV) of the protein or have no detectable effect (V); this classification provides a strong basis for the development of genotype-based therapies.
Collapse
Affiliation(s)
- Jean-Louis Delaunay
- Sorbonne Universités, UPMC Université Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Anne-Marie Durand-Schneider
- Sorbonne Universités, UPMC Université Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Claire Dossier
- Sorbonne Universités, UPMC Université Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Thomas Falguières
- Sorbonne Universités, UPMC Université Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Julien Gautherot
- Sorbonne Universités, UPMC Université Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Anne Davit-Spraul
- Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Laboratoire de biochimie, Le Kremlin Bicêtre, France
| | - Tounsia Aït-Slimane
- Sorbonne Universités, UPMC Université Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Chantal Housset
- Sorbonne Universités, UPMC Université Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre de Référence Maladies Rares Maladies Inflammatoires des Voies Biliaires & Service d'Hépatologie, Paris, France
| | - Emmanuel Jacquemin
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Hépatologie Pédiatrique & Unité de Transplantation Hépatique, Centre de Référence Maladies Rares Atrésies des Voies Biliaires de l'Enfant, Le Kremlin Bicêtre, France.,Université Paris-Sud 11, INSERM, UMR_S 1174, Hepatinov, Orsay, France
| | - Michèle Maurice
- Sorbonne Universités, UPMC Université Paris 06, INSERM, UMR_S 938, Centre de Recherche Saint-Antoine, Paris, France
| |
Collapse
|
50
|
Bezerra JA. MDR3 mutation analysis: A step closer to precision medicine. Hepatology 2016; 63:1421-3. [PMID: 26680260 PMCID: PMC4840076 DOI: 10.1002/hep.28408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/14/2015] [Indexed: 12/07/2022]
Affiliation(s)
- Jorge A Bezerra
- Division of Gastroenterology, Hepatology and Nutrition, Liver Care Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|