1
|
Ghadersoltani P, Shoraka S, Sadjadi A, Saniee P. Long-term assessment of Helicobacter pylori cagA EPIYA motif changes and pathology outcomes in gastric biopsies of dyspeptic patients: 10-year follow-up. BMC Gastroenterol 2024; 24:466. [PMID: 39702056 DOI: 10.1186/s12876-024-03516-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Helicobacter pylori exhibit considerable genetic diversity, especially in the cagA gene, which is prone to rearrangement, affecting gastric pathology. This study aims to identify changes in the cagA EPIYA motif patterns and gastric pathology during long-term colonization and to explore how factors such as smoking, alcohol consumption, gender, and age influence these changes. METHODS Paired formalin-fixed paraffin-embedded (FFPE) gastric biopsies from 100 H. pylori-positive patients with digestive disorders obtained 10 years apart. After DNA extraction, the presence of H. pylori was detected by PCR amplification of the 16 S rRNA gene, and the cagA gene and its EPIYA motif patterns were identified by PCR using specific primers. RESULTS Our results showed that 90% and 91% of primary and secondary samples were cagA positive respectively. The most frequent patterns were AB and ABC, and in 52% of patients, notable changes occurred in the motif pattern of cagA. The most frequent gastric pathology was chronic inflammation in both sets of samplings and in 45% of patients, changes in pathology outcomes were reported. A significant association was found between changes in pathology outcomes and gender (P = 0.01), with alterations observed in 24 male patients and 21 female patients, and between changes in pathology outcomes and smoking (P = 0.00). Among those with changes in pathology outcomes, only 18 patients had smoking habits, indicating a potential inverse correlation between smoking and the observed changes. A logistic regression analysis was performed to examine the association between smoking, gender, changes in cagA and alterations in gastric pathology. The finding revealed no significant relationship with smoking (P = 0.978 OR = 1.012) and gender (P = 0.901, OR = 0.950), but identified a significant association with changes in the cagA gene (p = 0.001, OR = 0.296), CONCLUSION: he study highlights substantial heterogeneity in the cagA EPIYA motif patterns in long-term H. pylori colonization and notes an inverse relationship between pathology outcomes and smoking, warranting further investigation.
Collapse
Affiliation(s)
- Paria Ghadersoltani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shahrzad Shoraka
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Alireza Sadjadi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Saniee
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
2
|
Souque C, González Ojeda I, Baym M. From Petri Dishes to Patients to Populations: Scales and Evolutionary Mechanisms Driving Antibiotic Resistance. Annu Rev Microbiol 2024; 78:361-382. [PMID: 39141706 DOI: 10.1146/annurev-micro-041522-102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Tackling the challenge created by antibiotic resistance requires understanding the mechanisms behind its evolution. Like any evolutionary process, the evolution of antimicrobial resistance (AMR) is driven by the underlying variation in a bacterial population and the selective pressures acting upon it. Importantly, both selection and variation will depend on the scale at which resistance evolution is considered (from evolution within a single patient to the host population level). While laboratory experiments have generated fundamental insights into the mechanisms underlying antibiotic resistance evolution, the technological advances in whole genome sequencing now allow us to probe antibiotic resistance evolution beyond the lab and directly record it in individual patients and host populations. Here we review the evolutionary forces driving antibiotic resistance at each of these scales, highlight gaps in our current understanding of AMR evolution, and discuss future steps toward evolution-guided interventions.
Collapse
Affiliation(s)
- Célia Souque
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Indra González Ojeda
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Michael Baym
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| |
Collapse
|
3
|
Fang Y, Jiang S, Zhou X, Zhou W, Jiang X, Chen L, Wang M, Chen Y, Li L. Whole-genome sequencing analyses and antibiotic resistance situation of 48 Helicobacter pylori strains isolated in Zhejiang, China. Gut Pathog 2024; 16:62. [PMID: 39444024 PMCID: PMC11515586 DOI: 10.1186/s13099-024-00656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE In the Zhejiang region, research on Helicobacter pylori is lacking. The purpose of this study was to assess the extent of antibiotic resistance in H. pylori in this region, explore alternative methods for predicting the resistance patterns of H. pylori, and investigate the colonization of native gastric mucosa by other clades of H. pylori in the structure population of this bacterium. METHODS Strains were cultured under microaerobic conditions, and antimicrobial susceptibility testing (AST) was performed via agar dilution. Whole-genome sequencing (WGS) was performed via next-generation sequencing (NGS) technology. Epidemiological data including data from this study and reported articles from Zhejiang, China, were included. Further analyses based on AST, WGS, and epidemiological date include virulence genes, antibiotic resistance-related mutations, and phylogenetic trees based on 7 housekeeping genes and core-genome single nucleotide polymorphisms (SNPs). RESULTS The bacterial isolates in this study presented higher antibiotic resistance rates than previously reported, especially against levofloxacin and clarithromycin. The point mutation A2147G in 23 S rRNA is specific to clarithromycin resistance. Mutations at position/s 87 and/or 91 of the gyrA gene amino acid sequence are highly consistent with levofloxacin resistance highly. The point mutations C1707T in 23 S rRNA and E463K in the gyrB gene have not been previously documented in China. All the bacterial isolates belong to Asian branches in the structure population. The resistance rate to clarithromycin of isolates from hosts born after January 1, 1977 is statistically higher than that of hosts born before 1977. CONCLUSION Eradication therapy based on AST results is urgently needed in Zhejiang. The point mutation A2147G in 23 S rRNA and point mutations in the gyrA gene at amino acid/s 87 and/or 91 are sufficient for predicting resistance to clarithromycin and levofloxacin, respectively. The isolate with the mutation E463K in the gyrB gene represents a significant contribution to the field. Mutations in 23 S rRNA may offer valuable insights into the dynamics of H. pylori transmission among hosts.
Collapse
Affiliation(s)
- Yunhui Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Wangxiao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China
| | - Xinrong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China
| | - Lifeng Chen
- Department of Medical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Mengting Wang
- Zhejiang University of Finance & Economics, Hangzhou, Zhejiang Province, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China.
| |
Collapse
|
4
|
Liu Z, Good BH. Dynamics of bacterial recombination in the human gut microbiome. PLoS Biol 2024; 22:e3002472. [PMID: 38329938 PMCID: PMC10852326 DOI: 10.1371/journal.pbio.3002472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/14/2023] [Indexed: 02/10/2024] Open
Abstract
Horizontal gene transfer (HGT) is a ubiquitous force in microbial evolution. Previous work has shown that the human gut is a hotspot for gene transfer between species, but the more subtle exchange of variation within species-also known as recombination-remains poorly characterized in this ecosystem. Here, we show that the genetic structure of the human gut microbiome provides an opportunity to measure recent recombination events from sequenced fecal samples, enabling quantitative comparisons across diverse commensal species that inhabit a common environment. By analyzing recent recombination events in the core genomes of 29 human gut bacteria, we observed widespread heterogeneities in the rates and lengths of transferred fragments, which are difficult to explain by existing models of ecological isolation or homology-dependent recombination rates. We also show that natural selection helps facilitate the spread of genetic variants across strain backgrounds, both within individual hosts and across the broader population. These results shed light on the dynamics of in situ recombination, which can strongly constrain the adaptability of gut microbial communities.
Collapse
Affiliation(s)
- Zhiru Liu
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
| | - Benjamin H. Good
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
5
|
Boyanova L, Boyanova L, Hadzhiyski P, Kandilarov N, Yordanov D, Gergova R, Markovska R. Mixed (multiple-genotype) Helicobacter pylori infections in Bulgarian patients. Diagn Microbiol Infect Dis 2023; 107:116073. [PMID: 37717293 DOI: 10.1016/j.diagmicrobio.2023.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023]
Abstract
The aim of the study was to evaluate the frequency and characteristics of mixed (multiple-genotype) Helicobacter pylori infections (MGIs) in 155 Bulgarian symptomatic patients (21 children and 134 adults). MGIs were common (36.1%), including double-strain (34.8%) and triple-strain infections (1.3%). None of the 8 ulcer patients harbored multiple subtypes. We detected 18 multiple allelic combinations, of which the most frequent subtypes (17.4%) were vacA s1as2 and vacA s1cs2. The 2 patients with triple-strain infections had vacA s1bs1cs2i1i2/iceA1A2 and vacA s1as1cs2 subtypes. They were both adult men with chronic gastritis and both were examined in 2022. The prevalence of MGIs (51.7%) was 2-fold higher in 2020 to 2022 than in 2015 to 2019 (26.3%). Putative factors for the increase may be the patient's characteristics and COVID-19 pandemic-associated factors. MGI rates corresponded to the high infection seroprevalence (72.4% in 2011) in Bulgaria. The evolution and clinical importance of mixed H. pylori infections merit extensive evaluation.
Collapse
Affiliation(s)
- Lyudmila Boyanova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria.
| | - Liliya Boyanova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Petyo Hadzhiyski
- Specialized Hospital for Active Pediatric Treatment, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Nayden Kandilarov
- Department of General and Hepatobiliary Pancreatic Surgery, Department of Surgery, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Daniel Yordanov
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Raina Gergova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
6
|
Yamaoka Y, Saruuljavkhlan B, Alfaray RI, Linz B. Pathogenomics of Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:117-155. [PMID: 38231217 DOI: 10.1007/978-3-031-47331-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human stomach bacterium Helicobacter pylori, the causative agent of gastritis, ulcers and adenocarcinoma, possesses very high genetic diversity. H. pylori has been associated with anatomically modern humans since their origins over 100,000 years ago and has co-evolved with its human host ever since. Predominantly intrafamilial and local transmission, along with genetic isolation, genetic drift, and selection have facilitated the development of distinct bacterial populations that are characteristic for large geographical areas. H. pylori utilizes a large arsenal of virulence and colonization factors to mediate the interaction with its host. Those include various adhesins, the vacuolating cytotoxin VacA, urease, serine protease HtrA, the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system and its effector protein CagA, all of which contribute to disease development. While many pathogenicity-related factors are present in all strains, some belong to the auxiliary genome and are associated with specific phylogeographic populations. H. pylori is naturally competent for DNA uptake and recombination, and its genome evolution is driven by extraordinarily high recombination and mutation rates that are by far exceeding those in other bacteria. Comparative genome analyses revealed that adaptation of H. pylori to individual hosts is associated with strong selection for particular protein variants that facilitate immune evasion, especially in surface-exposed and in secreted virulence factors. Recent studies identified single-nucleotide polymorphisms (SNPs) in H. pylori that are associated with the development of severe gastric disease, including gastric cancer. Here, we review the current knowledge about the pathogenomics of H. pylori.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, 60286, East Java, Indonesia
| | - Bodo Linz
- Division of Microbiology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
7
|
Cheng S, Fleres G, Chen L, Liu G, Hao B, Newbrough A, Driscoll E, Shields RK, Squires KM, Chu TY, Kreiswirth BN, Nguyen MH, Clancy CJ. Within-Host Genotypic and Phenotypic Diversity of Contemporaneous Carbapenem-Resistant Klebsiella pneumoniae from Blood Cultures of Patients with Bacteremia. mBio 2022; 13:e0290622. [PMID: 36445082 PMCID: PMC9765435 DOI: 10.1128/mbio.02906-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
It is unknown whether bacterial bloodstream infections (BSIs) are commonly caused by single organisms or mixed microbial populations. We hypothesized that contemporaneous carbapenem-resistant Klebsiella pneumoniae (CRKP) strains from blood cultures of individual patients are genetically and phenotypically distinct. We determined short-read whole-genome sequences of 10 sequence type 258 (ST258) CRKP strains from blood cultures in each of 6 patients (Illumina HiSeq). Strains clustered by patient by core genome and pan-genome phylogeny. In 5 patients, there was within-host strain diversity by gene mutations, presence/absence of antibiotic resistance or virulence genes, and/or plasmid content. Accessory gene phylogeny revealed strain diversity in all 6 patients. Strains from 3 patients underwent long-read sequencing for genome completion (Oxford Nanopore) and phenotypic testing. Genetically distinct strains within individuals exhibited significant differences in carbapenem and other antibiotic responses, capsular polysaccharide (CPS) production, mucoviscosity, and/or serum killing. In 2 patients, strains differed significantly in virulence during mouse BSIs. Genetic or phenotypic diversity was not observed among strains recovered from blood culture bottles seeded with index strains from the 3 patients and incubated in vitro at 37°C. In conclusion, we identified genotypic and phenotypic variant ST258 CRKP strains from blood cultures of individual patients with BSIs, which were not detected by the clinical laboratory or in seeded blood cultures. The data suggest a new paradigm of CRKP population diversity during BSIs, at least in some patients. If validated for BSIs caused by other bacteria, within-host microbial diversity may have implications for medical, microbiology, and infection prevention practices and for understanding antibiotic resistance and pathogenesis. IMPORTANCE The long-standing paradigm for pathogenesis of bacteremia is that, in most cases, a single organism passes through a bottleneck and establishes itself in the bloodstream (single-organism hypothesis). In keeping with this paradigm, standard practice in processing positive microbiologic cultures is to test single bacterial strains from morphologically distinct colonies. This study is the first genome-wide analysis of within-host diversity of Klebsiella pneumoniae strains recovered from individual patients with bloodstream infections (BSIs). Our finding that positive blood cultures comprised genetically and phenotypically heterogeneous carbapenem-resistant K. pneumoniae strains challenges the single-organism hypothesis and suggests that at least some BSIs are caused by mixed bacterial populations that are unrecognized by the clinical laboratory. The data support a model of pathogenesis in which pressures in vivo select for strain variants with particular antibiotic resistance or virulence attributes and raise questions about laboratory protocols and treatment decisions directed against single strains.
Collapse
Affiliation(s)
- Shaoji Cheng
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Guojun Liu
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Binghua Hao
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | | | - Ryan K. Shields
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Ting-yu Chu
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Barry N. Kreiswirth
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - M. Hong Nguyen
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Cornelius J. Clancy
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
The Remarkable Genetics of Helicobacter pylori. mBio 2022; 13:e0215822. [PMID: 36286549 PMCID: PMC9765472 DOI: 10.1128/mbio.02158-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Helicobacter pylori genome is more thoroughly mixed by homologous recombination than by any other organism that has been investigated, leading to apparent "free recombination" within populations. A recent mBio article by F. Ailloud, I. Estibariz, G. Pfaffinger, and S. Suerbaum (mBio 13:e01811-22, 2022, https://doi.org/10.1128/mbio.01811-22) helps to elucidate the cellular machinery that is used to achieve these unusual rates of genetic exchange. Specifically, they show that the UvrC gene, which is part of the repair machinery for DNA damage caused by ultraviolet light, has evolved an additional function in H. pylori, allowing very short tracts of DNA-with a mean length of only 28 bp-to be imported into the genome during natural transformation.
Collapse
|
9
|
The Helicobacter pylori UvrC Nuclease Is Essential for Chromosomal Microimports after Natural Transformation. mBio 2022; 13:e0181122. [PMID: 35876509 PMCID: PMC9426483 DOI: 10.1128/mbio.01811-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterial carcinogenic pathogen that infects the stomachs of half of the human population. It is a natural mutator due to a deficient DNA mismatch repair pathway and is naturally competent for transformation. As a result, it is one of the most genetically diverse human bacterial pathogens. The length of chromosomal imports in H. pylori follows an unusual bimodal distribution consisting of macroimports with a mean length of 1,645 bp and microimports with a mean length of 28 bp. The mechanisms responsible for this import pattern were unknown. Here, we used a high-throughput whole-genome transformation assay to elucidate the role of nucleotide excision repair pathway (NER) components on import length distribution. The data show that the integration of microimports depended on the activity of the UvrC endonuclease, while none of the other components of the NER pathway was required. Using H. pylori site-directed mutants, we showed that the widely conserved UvrC nuclease active sites, while essential for protection from UV light, one of the canonical NER functions, are not required for generation of microimports. A quantitative analysis of recombination patterns based on over 1,000 imports from over 200 sequenced recombinant genomes showed that microimports occur frequently within clusters of multiple imports, strongly suggesting they derive from a single strand invasion event. We propose a hypothetical model of homologous recombination in H. pylori, involving a novel function of UvrC, that reconciles the available experimental data about recombination patterns in H. pylori. IMPORTANCE Helicobacter pylori is one of the most common and genetically diverse human bacterial pathogens. It is responsible for chronic gastritis and represents the main risk factor for gastric cancer. In H. pylori, DNA fragments can be imported by recombination during natural transformation. The length of those fragments determines how many potentially beneficial or deleterious alleles are acquired and thus influences adaptation to the gastric niche. Here, we used a transformation assay to examine imported fragments across the chromosome. We show that UvrC, an endonuclease involved in DNA repair, is responsible for the specific integration of short DNA fragments. This suggests that short and long fragments are imported through distinct recombination pathways. We also show that short fragments are frequently clustered with longer fragments, suggesting that both pathways may be mechanistically linked. These findings provide a novel basis to explain how H. pylori can fine-tune the genetic diversity acquired by transformation.
Collapse
|
10
|
Foster-Nyarko E, Pallen MJ. The microbial ecology of Escherichia coli in the vertebrate gut. FEMS Microbiol Rev 2022; 46:fuac008. [PMID: 35134909 PMCID: PMC9075585 DOI: 10.1093/femsre/fuac008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli has a rich history as biology's 'rock star', driving advances across many fields. In the wild, E. coli resides innocuously in the gut of humans and animals but is also a versatile pathogen commonly associated with intestinal and extraintestinal infections and antimicrobial resistance-including large foodborne outbreaks such as the one that swept across Europe in 2011, killing 54 individuals and causing approximately 4000 infections and 900 cases of haemolytic uraemic syndrome. Given that most E. coli are harmless gut colonizers, an important ecological question plaguing microbiologists is what makes E. coli an occasionally devastating pathogen? To address this question requires an enhanced understanding of the ecology of the organism as a commensal. Here, we review how our knowledge of the ecology and within-host diversity of this organism in the vertebrate gut has progressed in the 137 years since E. coli was first described. We also review current approaches to the study of within-host bacterial diversity. In closing, we discuss some of the outstanding questions yet to be addressed and prospects for future research.
Collapse
Affiliation(s)
- Ebenezer Foster-Nyarko
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, United Kingdom
| |
Collapse
|
11
|
Li Y, Huang Z, Shang Y, Xie X, Yang R, Chen H, Wang Z, Xue L, Pang R, Zhang J, Ding Y, Chen M, Wang J, Chen J, Wu Q. Exploration of the molecular mechanisms underlying the antibiotic resistance of Helicobacter pylori: A whole-genome sequencing-based study in Southern China. Helicobacter 2022; 27:e12879. [PMID: 35124867 DOI: 10.1111/hel.12879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although antimicrobial resistance (AMR) in Helicobacter pylori is a global threat to human health and the underlying molecular mechanisms have been explored previously, only a few of them are fully elucidated. MATERIALS AND METHODS In the present study, we isolated 54 Helicobacter pylori strains from Southern China and assessed their susceptibility to five antibiotics using the agar dilution assay. Whole-genome sequencing was performed to screen the AMR genotypes of the Helicobacter pylori isolates. RESULTS Our study revealed a high prevalence of resistance to clarithromycin (CLR), levofloxacin (LVX), and metronidazole (MTZ) in the Chinese isolates, 55.56% of which showed multidrug-resistant phenotypes. We screened for the 94 types of previously reported AMR mutations in 12 genes, but only a few of them were related to the AMR phenotype. Furthermore, we discovered four new mutations in the 23S rRNA gene and one mutation in infB related to CLR resistance. Another three mutations in gyrA and one in gyrB were closely correlated with the AMR pattern against LVX. We also demonstrated that the mutations R16C/H in rdxA, V56I in rpsU, and D54A in sodB might contribute to resistance to MTZ, which were previously reported in laboratory experiments but not found in clinical strains. We examined the concordance between the genotype and phenotype of AMR and identified several potential molecular biomarkers for predicting CLR and LVX resistance. CONCLUSIONS Our study explored the molecular mechanisms underlying the antibiotic resistance of Helicobacter pylori isolates from Southern China. We propose further epidemiologic investigations in China.
Collapse
Affiliation(s)
- Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhixin Huang
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanyan Shang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Runshi Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhen Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhi Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianhui Chen
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
12
|
You Y, Thorell K, He L, Yahara K, Yamaoka Y, Cha JH, Murakami K, Katsura Y, Kobayashi I, Falush D, Zhang J. Genomic differentiation within East Asian Helicobacter pylori. Microb Genom 2022; 8. [PMID: 35188454 PMCID: PMC8942036 DOI: 10.1099/mgen.0.000676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The East Asian region, including China, Japan and Korea, accounts for half of gastric cancer deaths. However, different areas have contrasting gastric cancer incidences and the population structure of Helicobacter pylori in this ethnically diverse region is yet unknown. We aimed to investigate genomic differences in H. pylori between these areas to identify sequence polymorphisms associated with increased cancer risk. We analysed 381 H. pylori genomes collected from different areas of the three countries using phylogenetic and population genetic tools to characterize population differentiation. The functional consequences of SNPs with a highest fixation index (Fst) between subpopulations were examined by mapping amino acid changes on 3D protein structure, solved or modelled. Overall, 329/381 genomes belonged to the previously identified hspEAsia population indicating that import of bacteria from other regions of the world has been uncommon. Seven subregional clusters were found within hspEAsia, related to subpopulations with various ethnicities, geographies and gastric cancer risks. Subpopulation-specific amino acid changes were found in multidrug exporters (hefC), transporters (frpB-4), outer membrane proteins (hopI) and several genes involved in host interaction, such as a catalase site, involved in H2O2 entrance, and a flagellin site mimicking host glycosylation. Several of the top hits, including frpB-4, hefC, alpB/hopB and hofC, have been found to be differentiated within the Americas in previous studies, indicating that a handful of genes may be key to local geographic adaptation. H. pylori within East Asia are not homogeneous but have become differentiated geographically at multiple loci that might have facilitated adaptation to local conditions and hosts. This has important implications for further evaluation of these changes in relation to the varying gastric cancer incidence between geographical areas in this region.
Collapse
Affiliation(s)
- Yuanhai You
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Kaisa Thorell
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Västra Götaland 12 Region, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Lihua He
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Jeong-Heon Cha
- Department of Oral Biology, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yukako Katsura
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka-shi, Tokyo, Japan
- I2BC, University of Paris-Saclay, Gif-sur-Yvette, France
- Research Center for Micro-Nano Technology, Hosei University, Koganei-shi, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Daniel Falush
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, PR China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | | |
Collapse
|
13
|
Ailloud F, Estibariz I, Suerbaum S. Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori. FEMS Microbiol Rev 2021; 45:5900976. [PMID: 32880636 DOI: 10.1093/femsre/fuaa042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a Gram-negative, spiral shaped bacterium that selectively and chronically infects the gastric mucosa of humans. The clinical course of this infection can range from lifelong asymptomatic infection to severe disease, including peptic ulcers or gastric cancer. The high mutation rate and natural competence typical of this species are responsible for massive inter-strain genetic variation exceeding that observed in all other bacterial human pathogens. The adaptive value of such a plastic genome is thought to derive from a rapid exploration of the fitness landscape resulting in fast adaptation to the changing conditions of the gastric environment. Nevertheless, diversity is also lost through recurrent bottlenecks and H. pylori's lifestyle is thus a perpetual race to maintain an appropriate pool of standing genetic variation able to withstand selection events. Another aspect of H. pylori's diversity is a large and variable repertoire of restriction-modification systems. While not yet completely understood, methylome evolution could generate enough transcriptomic variation to provide another intricate layer of adaptive potential. This review provides an up to date synopsis of this rapidly emerging area of H. pylori research that has been enabled by the ever-increasing throughput of Omics technologies and a multitude of other technological advances.
Collapse
Affiliation(s)
- Florent Ailloud
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Iratxe Estibariz
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany.,DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Pettenkoferstr. 9a, 80336 München, Germany.,National Reference Center for Helicobacter pylori, Pettenkoferstr. 9a, 80336 München, Germany
| |
Collapse
|
14
|
Saniee P, Jalili S, Ghadersoltani P, Daliri L, Siavoshi F. Individual hosts carry H. pylori isolates with different cagA features - motifs and copy number. INFECTION GENETICS AND EVOLUTION 2021; 93:104961. [PMID: 34119688 DOI: 10.1016/j.meegid.2021.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/23/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND H. pylori strains with different genetic contents may infect different or an individual human host. Genetic diversity of cagA is thought to contribute to differences in H. pylori strains pathogenicity. In this study, diversity of cagA genotype, EPIYA motif and copy number was assessed in H. pylori single colonies isolated from individual patients. MATERIALS AND METHODS Gastric biopsies from 14H. pylori-positive dyspeptic patients were cultured on selective brucella blood agar and incubated at 37 °C under microaerobic conditions. Four single colonies were obtained from each biopsy subculture on brucella blood agar under similar incubation condition. Presence of cagA and types of EPIYA motifs was determined by polymerase chain reaction (PCR) and cagA copy number by quantitative real-time (RT) PCR. RESULTS Single colonies of 5 patients showed no variation in cagA genotype, EPIYA motif and copy number. Out of the remaining 9 patients, 1 patient showed presence or absence of cagA gene, 2 patients had mixed EPIYA motifs, 2 patients had different cagA copy number, 1 patient showed absence or presence of cagA and mixed motifs, 2 patients had cagA genes with different nucleotide sequences, 1 patient showed presence or absence of cagA and difference in cagA nucleotide sequence. Four isolates that contained multiple copies of cagA, carried EPIYA-ABC motif. CONCLUSION Genetic diversity of cagA among single colonies isolated from individual patients represents evidence that gastric mucosa of every individual is colonized with a specific and heterogeneous population of H. pylori. Future studies on patients in different disease groups may elucidate the role of mixed populations of H. pylori in development of gastric diseases.
Collapse
Affiliation(s)
- Parastoo Saniee
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran.
| | - Shiva Jalili
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| | - Paria Ghadersoltani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| | - Layegheh Daliri
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Gantuya B, Serag HBE, Saruuljavkhlan B, Azzaya D, Matsumoto T, Uchida T, Oyuntsetseg K, Oyunbileg N, Davaadorj D, Yamaoka Y. Advantage of 16S rRNA amplicon sequencing in Helicobacter pylori diagnosis. Helicobacter 2021; 26:e12790. [PMID: 33596345 PMCID: PMC8122063 DOI: 10.1111/hel.12790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND 16S rRNA amplicon sequencing is an accurate method of detecting microbial infection without culture. It is unclear if sequencing has additional benefits over routine diagnostic methods for Helicobacter pylori testing. METHODS We enrolled Mongolian volunteers with dyspepsia. Using routine diagnostic methods, positive H. pylori was defined as positive results on histology/immunohistochemistry, culture, rapid urease test, or serology; negative H. pylori was defined by negative results from all these tests. We performed 16S rRNA sequencing on gastric biopsy specimens and calculated cutoffs for operational taxonomic units (OTUs) and relative abundance (RA) to define positive results using ROC curves. RESULTS We examined 161 individuals with a mean age of 43.6 years, and 64.6% were women. Using routine diagnostic methods, 122 (75.8%) participants were H. pylori positive, the sensitivity and specificity for 16S rRNA sequencing were 94.3% and 82.1% or 93.4% and 82.1% when cutoff values were set to 1113 (OTU number) or 4.4% RA, respectively (both p < .001). When combining the validated values, the concordance rate was high (91.1%); however, 16S rRNA sequencing had additional positive yield in 9 cases (5.6%) compared with routine diagnostic methods, and much greater additional positive yield compared to histopathology/IHC, culture, RUT, serology separately with 12 (7.4%), 37 (23.0%) and 43 (26.7%). CONCLUSION 16S rRNA amplicon sequencing detects potentially important proportion of H. pylori-positive cases that test negative with routine diagnostic methods. The quantitative number of H. pylori can help to understand how it can be changing by diseases and RA give opportunity to understand how H. pylori communicate with other microbiota.
Collapse
Affiliation(s)
- Boldbaatar Gantuya
- Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia,Endoscopy Unit, Mongolia—Japan teaching hospital, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Hashem B. El Serag
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | - Dashdorj Azzaya
- Department of Environmental and Preventive Medicine, Oita University of Medicine, Yufu, Japan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University of Medicine, Yufu, Japan
| | - Tomohisa Uchida
- Department of Molecular Pathology, Oita University of Medicine, Yufu, Japan
| | - Khasag Oyuntsetseg
- Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia,Endoscopy Unit, Mongolia—Japan teaching hospital, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Nyamdorj Oyunbileg
- Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Duger Davaadorj
- Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia,Endoscopy Unit, Mongolia—Japan teaching hospital, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Yoshio Yamaoka
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, Texas 77030, USA,Department of Environmental and Preventive Medicine, Oita University of Medicine, Yufu, Japan
| |
Collapse
|
16
|
Palau M, Piqué N, Ramírez-Lázaro MJ, Lario S, Calvet X, Miñana-Galbis D. Whole-Genome Sequencing and Comparative Genomics of Three Helicobacter pylori Strains Isolated from the Stomach of a Patient with Adenocarcinoma. Pathogens 2021; 10:331. [PMID: 33809022 PMCID: PMC7998635 DOI: 10.3390/pathogens10030331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022] Open
Abstract
Helicobacter pylori is a common pathogen associated with several severe digestive diseases. Although multiple virulence factors have been described, it is still unclear the role of virulence factors on H. pylori pathogenesis and disease progression. Whole genome sequencing could help to find genetic markers of virulence strains. In this work, we analyzed three complete genomes from isolates obtained at the same point in time from a stomach of a patient with adenocarcinoma, using multiple available bioinformatics tools. The genome analysis of the strains B508A-S1, B508A-T2A and B508A-T4 revealed that they were cagA, babA and sabB/hopO negative. The differences among the three genomes were mainly related to outer membrane proteins, methylases, restriction modification systems and flagellar biosynthesis proteins. The strain B508A-T2A was the only one presenting the genotype vacA s1, and had the most distinct genome as it exhibited fewer shared genes, higher number of unique genes, and more polymorphisms were found in this genome. With all the accumulated information, no significant differences were found among the isolates regarding virulence and origin of the isolates. Nevertheless, some B508A-T2A genome characteristics could be linked to the pathogenicity of H. pylori.
Collapse
Affiliation(s)
- Montserrat Palau
- Secció de Microbiologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Catalonia, Spain; (M.P.); (N.P.)
| | - Núria Piqué
- Secció de Microbiologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Catalonia, Spain; (M.P.); (N.P.)
| | - M. José Ramírez-Lázaro
- Digestive Diseases Service, Hospital de Sabadell, Institut Universitari Parc Taulí-UAB, Parc Tauli 1, 08208 Sabadell, Catalonia, Spain; (M.J.R.-L.); (S.L.); (X.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Monforte de Lemos 3–5, 28029 Madrid, Community of Madrid, Spain
| | - Sergio Lario
- Digestive Diseases Service, Hospital de Sabadell, Institut Universitari Parc Taulí-UAB, Parc Tauli 1, 08208 Sabadell, Catalonia, Spain; (M.J.R.-L.); (S.L.); (X.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Monforte de Lemos 3–5, 28029 Madrid, Community of Madrid, Spain
| | - Xavier Calvet
- Digestive Diseases Service, Hospital de Sabadell, Institut Universitari Parc Taulí-UAB, Parc Tauli 1, 08208 Sabadell, Catalonia, Spain; (M.J.R.-L.); (S.L.); (X.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Monforte de Lemos 3–5, 28029 Madrid, Community of Madrid, Spain
| | - David Miñana-Galbis
- Secció de Microbiologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Catalonia, Spain; (M.P.); (N.P.)
| |
Collapse
|
17
|
Jackson LK, Potter B, Schneider S, Fitzgibbon M, Blair K, Farah H, Krishna U, Bedford T, Peek RM, Salama NR. Helicobacter pylori diversification during chronic infection within a single host generates sub-populations with distinct phenotypes. PLoS Pathog 2020; 16:e1008686. [PMID: 33370399 PMCID: PMC7794030 DOI: 10.1371/journal.ppat.1008686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/08/2021] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori chronically infects the stomach of approximately half of the world's population. Manifestation of clinical diseases associated with H. pylori infection, including cancer, is driven by strain properties and host responses; and as chronic infection persists, both are subject to change. Previous studies have documented frequent and extensive within-host bacterial genetic variation. To define how within-host diversity contributes to phenotypes related to H. pylori pathogenesis, this project leverages a collection of 39 clinical isolates acquired prospectively from a single subject at two time points and from multiple gastric sites. During the six years separating collection of these isolates, this individual, initially harboring a duodenal ulcer, progressed to gastric atrophy and concomitant loss of acid secretion. Whole genome sequence analysis identified 1,767 unique single nucleotide polymorphisms (SNPs) across isolates and a nucleotide substitution rate of 1.3x10-4 substitutions/site/year. Gene ontology analysis identified cell envelope genes among the genes with excess accumulation of nonsynonymous SNPs (nSNPs). A maximum likelihood tree based on genetic similarity clusters isolates from each time point separately. Within time points, there is segregation of subgroups with phenotypic differences in bacterial morphology, ability to induce inflammatory cytokines, and mouse colonization. Higher inflammatory cytokine induction in recent isolates maps to shared polymorphisms in the Cag PAI protein, CagY, while rod morphology in a subgroup of recent isolates mapped to eight mutations in three distinct helical cell shape determining (csd) genes. The presence of subgroups with unique genetic and phenotypic properties suggest complex selective forces and multiple niches within the stomach during chronic infection.
Collapse
Affiliation(s)
- Laura K. Jackson
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Barney Potter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Sean Schneider
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Matthew Fitzgibbon
- Genomics & Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Kris Blair
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Hajirah Farah
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Uma Krishna
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Trevor Bedford
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Nina R. Salama
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
18
|
Detection of Helicobacter pylori Microevolution and Multiple Infection from Gastric Biopsies by Housekeeping Gene Amplicon Sequencing. Pathogens 2020; 9:pathogens9020097. [PMID: 32033301 PMCID: PMC7168683 DOI: 10.3390/pathogens9020097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the great efforts devoted to research on Helicobacter pylori, the prevalence of single-strain infection or H. pylori mixed infection and its implications in the mode of transmission of this bacterium are still controversial. In this study, we explored the usefulness of housekeeping gene amplicon sequencing in the detection of H. pylori microevolution and multiple infections. DNA was extracted from five gastric biopsies from four patients infected with distinct histopathological diagnoses. PCR amplification of six H. pylori-specific housekeeping genes was then assessed on each sample. Optimal results were obtained for the cgt and luxS genes, which were selected for amplicon sequencing. A total of 11,833 cgt and 403 luxS amplicon sequences were obtained, 2042 and 112 of which were unique sequences, respectively. All cgt and luxS sequences were clustered at 97% to 9 and 13 operational taxonomic units (OTUs), respectively. For each sample from a different patient, a single OTU comprised the majority of sequences in both genes, but more than one OTU was detected in all samples. These results suggest that multiple infections with a predominant strain together with other minority strains are the main way by which H. pylori colonizes the human stomach.
Collapse
|
19
|
Clines N, Beckman E. Development of a high throughput human stool specimen processing method for a molecular Helicobacter pylori clarithromycin resistance assay. PLoS One 2019; 14:e0224356. [PMID: 31841502 PMCID: PMC6913962 DOI: 10.1371/journal.pone.0224356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
It has become critical to detect Helicobacter pylori (H. pylori) infection due to the link to gastric cancer with some strains. These strains are also increasing in resistance to antibiotics with clarithromycin leading the way as the first line treatment. Resistance to clarithromycin has been shown to correlate with the A2142G, A2142C, and A2143G mutations on the rrl gene. In the last few decades, non-invasive specimens, such as stool, have been a reliable alternate to gastric biopsy for immunoassay tests. More recently, it has been proven feasible for stool to be used in molecular based tests. Many of the core laboratories in the United States need a high throughput sample preparation to run this test. Here, a high throughput assay is compared to a previously published manual sample prep H. pylori molecular based assay. Using the Magna Pure 96 (Roche), at least 96 stool species and 96 biopsy specimens can be tested in an 8-hour shift of a clinical lab. The high throughput sample prep had a positive percent agreement (PPA) of 87% compared to the manual sample prep using the same testing configuration. The genotype predictions from the high throughput assay matched genotype predictions from the manual sample prep with the same stool sample 92% of the time. A concordance rate of 89% was observed with genotype predictions from the high throughput assay of the same patient stool and biopsy. In stool samples from the high throughput assay, there was 100% concordance between the quantitative polymerase chain reaction (qPCR)-derived genomic prediction and DNA sequencing data. The high throughput workflow can get more patients tested faster in addition to detection of mutations associated with clarithromycin resistance.
Collapse
Affiliation(s)
- Natalie Clines
- Meridian Bioscience, Inc., Cincinnati, Ohio, United States of America
- * E-mail:
| | - Erin Beckman
- Meridian Bioscience, Inc., Cincinnati, Ohio, United States of America
| |
Collapse
|
20
|
Pohl D, Keller PM, Bordier V, Wagner K. Review of current diagnostic methods and advances in Helicobacter pylori diagnostics in the era of next generation sequencing. World J Gastroenterol 2019; 25:4629-4660. [PMID: 31528091 PMCID: PMC6718044 DOI: 10.3748/wjg.v25.i32.4629] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is highly prevalent in the human population and may lead to severe gastrointestinal pathology including gastric and duodenal ulcers, mucosa associated tissue lymphoma and gastric adenocarcinoma. In recent years, an alarming increase in antimicrobial resistance and subsequently failing empiric H. pylori eradication therapies have been noted worldwide, also in many European countries. Therefore, rapid and accurate determination of H. pylori’s antibiotic susceptibility prior to the administration of eradication regimens becomes ever more important. Traditionally, detection of H. pylori and its antimicrobial resistance is done by culture and phenotypic drug susceptibility testing that are cumbersome with a long turn-around-time. Recent advances in diagnostics provide new tools, like real-time polymerase chain reaction (PCR) and line probe assays, to diagnose H. pylori infection and antimicrobial resistance to certain antibiotics, directly from clinical specimens. Moreover, high-throughput whole genome sequencing technologies allow the rapid analysis of the pathogen’s genome, thereby allowing identification of resistance mutations and associated antibiotic resistance. In the first part of this review, we will give an overview on currently available diagnostic methods for detection of H. pylori and its drug resistance and their implementation in H. pylori management. The second part of the review focusses on the use of next generation sequencing technology in H. pylori research. To this end, we conducted a literature search for original research articles in English using the terms “Helicobacter”, “transcriptomic”, “transcriptome”, “next generation sequencing” and “whole genome sequencing”. This review is aimed to bridge the gap between current diagnostic practice (histology, rapid urease test, H. pylori culture, PCR and line probe assays) and new sequencing technologies and their potential implementation in diagnostic laboratory settings in order to complement the currently recommended H. pylori management guidelines and subsequently improve public health.
Collapse
Affiliation(s)
- Daniel Pohl
- Division of Gastroenterology, University Hospital of Zurich, Zurich 8006, Switzerland
| | - Peter M Keller
- Institute for Infectious Diseases, University of Bern, Bern 3010, Switzerland
| | - Valentine Bordier
- Division of Gastroenterology, University Hospital of Zurich, Zurich 8006, Switzerland
| | - Karoline Wagner
- Institute of Medical Microbiology, University of Zurich, Zurich 8006, Switzerland
| |
Collapse
|
21
|
Inference from the analysis of genetic structure of Helicobacter pylori strains isolates from two paediatric patients with recurrent infection. BMC Microbiol 2019; 19:184. [PMID: 31395006 PMCID: PMC6686460 DOI: 10.1186/s12866-019-1554-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 07/26/2019] [Indexed: 01/06/2023] Open
Abstract
Background Helicobacter pylori recurrence after successful eradication is an important problem. Children are particularly vulnerable to reinfection, by intrafamilial transmission which facilitates the acquisition or recombination of new genetic information by this bacterium. We investigated the evolutionary dynamics of 80 H. pylori strains isolated from two paediatric patients with recurrent infection (recrudescence and reinfection). Results We characterized the virulence genes vacA (s1, m1, s2, and m2), cagA, cagE, and babA2 and performed multilocus sequence typing (MLST) on 7 housekeeping genes (atpA, efp, ureI, ppa, mutY, trpC, and yphC) to infer the evolutionary dynamics of the H. pylori strains through phylogenetic and genealogic inference analyses, genetic diversity analysis and the exploration of recombination events during recurrent infections. The virulence genotype vacAs1m1/cagA+/cagE+/babA2 was present at a high frequency, as were the EPIYA motifs EPIYA-A, −B and -C. Furthermore, the housekeeping genes of the H. pylori strains exhibited high genetic variation, comprising 26 new alleles and 17 new Sequence Type (ST). In addition, the hpEurope (76.5%) and hspWAfrica (23.5%) populations predominated among the paediatric strains. All strains, regardless of their ancestral affiliation, harboured western EPIYA motifs. Conclusions This study provides evidence of the evolutionary dynamics of the H. pylori strains in two paediatric patients during recrudescence and reinfection events. In particular, our study shows that the strains changed during these events, as evidenced by the presence of different STs that emerged before and after treatment; these changes may be due to the accumulation of mutations and recombination events during the diversification process and recolonization of the patients by different genotypes. Electronic supplementary material The online version of this article (10.1186/s12866-019-1554-z) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Evolutionary mechanism leading to the multi-cagA genotype in Helicobacter pylori. Sci Rep 2019; 9:11203. [PMID: 31371778 PMCID: PMC6672019 DOI: 10.1038/s41598-019-47240-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/19/2019] [Indexed: 12/24/2022] Open
Abstract
Infection with CagA+ Helicobacter pylori strains is linked to an increased risk for gastric diseases, including gastric cancer. Recent evidence indicates that dynamic expansion and contraction of cagA copy number may serve as a novel mechanism to enhance disease development. Herein, comparative genomic analysis divided hpEurope into two groups: hpEurope/type-A and type-B. Only hpEurope/type-B displayed the multi-cagA genotype. Further analysis showed that cagPAI appears to have been independently introduced into two different H. pylori types, termed pre-type-A and pre-type-B, which consequently evolved to cagPAI type-A and type-B, respectively; importantly, all multi-cagA genotype strains displayed cagPAI type-B. Two direct cagA-flanking repeats of a genetic element termed CHA-ud were essential for the multi-cagA genotype in strain PMSS1 (hpEurope/type-B and cagPAI type-B). Furthermore, introduction of this genetic element into strain G27 (hpEurope/type-A and cagPAI type-A) was sufficient to generate the multi-cagA genotype. The critical steps in the evolution of the multi-cagA genotype involved creation of CHA-ud at cagA upstream in cagPAI type-B strains followed by its duplication to cagA downstream. En masse, elucidation of the mechanism by which H. pylori evolved to carry multiple copies of cagA helps to provide a better understanding of how this ancient pathogen interacts with its host.
Collapse
|
23
|
Ozer EA, Nnah E, Didelot X, Whitaker RJ, Hauser AR. The Population Structure of Pseudomonas aeruginosa Is Characterized by Genetic Isolation of exoU+ and exoS+ Lineages. Genome Biol Evol 2019; 11:1780-1796. [PMID: 31173069 PMCID: PMC6690169 DOI: 10.1093/gbe/evz119] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
The diversification of microbial populations may be driven by many factors including adaptation to distinct ecological niches and barriers to recombination. We examined the population structure of the bacterial pathogen Pseudomonas aeruginosa by analyzing whole-genome sequences of 739 isolates from diverse sources. We confirmed that the population structure of P. aeruginosa consists of two major groups (referred to as Groups A and B) and at least two minor groups (Groups C1 and C2). Evidence for frequent intragroup but limited intergroup recombination in the core genome was observed, consistent with sexual isolation of the groups. Likewise, accessory genome analysis demonstrated more gene flow within Groups A and B than between these groups, and a few accessory genomic elements were nearly specific to one or the other group. In particular, the exoS gene was highly overrepresented in Group A compared with Group B isolates (99.4% vs. 1.1%) and the exoU gene was highly overrepresented in Group B compared with Group A isolates (95.2% vs. 1.8%). The exoS and exoU genes encode effector proteins secreted by the P. aeruginosa type III secretion system. Together these results suggest that the major P. aeruginosa groups defined in part by the exoS and exoU genes are divergent from each other, and that these groups are genetically isolated and may be ecologically distinct. Although both groups were globally distributed and caused human infections, certain groups predominated in some clinical contexts.
Collapse
Affiliation(s)
- Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine
| | - Ekpeno Nnah
- Lurie Children’s Hospital, Chicago, Illinois
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Rachel J Whitaker
- Department of Microbiology and the Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign
| | - Alan R Hauser
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine
| |
Collapse
|
24
|
Inferring bacterial recombination rates from large-scale sequencing datasets. Nat Methods 2019; 16:199-204. [PMID: 30664775 DOI: 10.1038/s41592-018-0293-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 11/30/2018] [Indexed: 01/10/2023]
Abstract
We present a robust, computationally efficient method ( https://github.com/kussell-lab/mcorr ) for inferring the parameters of homologous recombination in bacteria, which can be applied in diverse datasets, from whole-genome sequencing to metagenomic shotgun sequencing data. Using correlation profiles of synonymous substitutions, we determine recombination rates and diversity levels of the shared gene pool that has contributed to a given sample. We validated the recombination parameters using data from laboratory experiments. We determined the recombination parameters for a wide range of bacterial species, and inferred the distribution of shared gene pools for global Helicobacter pylori isolates. Using metagenomics data of the infant gut microbiome, we measured the recombination parameters of multidrug-resistant Escherichia coli ST131. Lastly, we analyzed ancient samples of bacterial DNA from the Copper Age 'Iceman' mummy and from 14th century victims of the Black Death, obtaining measurements of bacterial recombination rates and gene pool diversity of earlier eras.
Collapse
|
25
|
Chattopadhyay S, Chi PB, Minin VN, Berg DE, Sokurenko EV. Recombination-independent rapid convergent evolution of the gastric pathogen Helicobacter pylori. BMC Genomics 2018; 19:835. [PMID: 30463511 PMCID: PMC6249973 DOI: 10.1186/s12864-018-5231-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Helicobacter pylori is a human stomach pathogen, naturally-competent for DNA uptake, and prone to homologous recombination. Extensive homoplasy (i.e., phylogenetically-unlinked identical variations) observed in H. pylori genes is considered a hallmark of such recombination. However, H. pylori also exhibits a high mutation rate. The relative adaptive role of homologous recombination and mutation in species diversity is a highly-debated issue in biology. Recombination results in homoplasy. While convergent mutation can also account for homoplasy, its contribution is thought to be minor. We demonstrate here that, contrary to dogma, convergent mutation is a key contributor to Helicobacter pylori homoplasy, potentially driven by adaptive evolution of proteins. RESULTS Our present genome-wide analysis shows that homoplastic nonsynonymous (amino acid replacement) changes are not typically accompanied by homoplastic synonymous (silent) variations. Moreover, the majority of the codon positions with homoplastic nonsynonymous changes also contain different (i.e. non-homoplastic) nonsynonymous changes arising from mutation only. This indicates that, to a considerable extent, nonsynonymous homoplasy is due to convergent mutations. High mutation rate or limited availability of evolvable sites cannot explain this excessive convergence, as suggested by our simulation studies. Rather, the genes with convergent mutations are overrepresented in distinct functional categories, suggesting possible selective responses to conditions such as distinct micro-niches in single hosts, and to differences in host genotype, physiology, habitat and diet. CONCLUSIONS We propose that mutational convergence is a key player in H. pylori's adaptation and extraordinary persistence in human hosts. High frequency of mutational convergence could be due to saturation of evolvable sites capable of responding to selection pressures, while the number of mutable residues is far from saturation. We anticipate a similar scenario of mutational vs. recombinational genome dynamics or plasticity for other naturally competent microbes where strong positive selection could favor frequent convergent mutations in adaptive protein evolution.
Collapse
Affiliation(s)
| | - Peter B Chi
- Department of Mathematics and Statistics, Villanova University, Villanova, PA, USA
| | - Vladimir N Minin
- Department of Statistics, University of California, Irvine, California, USA
| | - Douglas E Berg
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Evgeni V Sokurenko
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
26
|
Gutiérrez-Escobar AJ, Méndez-Callejas G, Acevedo O, Bravo MM. Rapid evolution of the Helicobacter pylori AlpA adhesin in a high gastric cancer risk region from Colombia. PeerJ 2018; 6:e4846. [PMID: 29844987 PMCID: PMC5971833 DOI: 10.7717/peerj.4846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/06/2018] [Indexed: 12/13/2022] Open
Abstract
To be able to survive, Helicobacter pylori must adhere to the gastric epithelial cells of its human host. For this purpose, the bacterium employs an array of adhesins, for example, AlpA. The adhesin AlpA has been proposed as a major adhesin because of its critical role in human stomach colonization. Therefore, understanding how AlpA evolved could be important for the development of new diagnostic strategies. However, the genetic variation and microevolutionary patterns of alpA have not been described in Colombia. The study aim was to describe the variation patterns and microevolutionary process of alpA in Colombian clinical isolates of H. pylori. The existing polymorphisms, which are deviations from the neutral model of molecular evolution, and the genetic differentiation of the alpA gene from Colombian clinical isolates of H. pylori were determined. The analysis shows that gene conversion and purifying selection have shaped the evolution of three different variants of alpA in Colombia.
Collapse
Affiliation(s)
- Andrés Julián Gutiérrez-Escobar
- Grupo de Investigaciones Biomédicas y Genética Humana Aplicada-GIBGA, Programa de medicina, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A., Bogotá, Colombia.,Doctorado en Ciencias Biológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Gina Méndez-Callejas
- Grupo de Investigaciones Biomédicas y Genética Humana Aplicada-GIBGA, Programa de medicina, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A., Bogotá, Colombia
| | - Orlando Acevedo
- Grupo de Biofísica y Bioquímica Estructural, Facultad de Ciencias, Pontifica Universidad Javeriana, Bogotá, Colombia
| | - Maria Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología de Colombia, Bogotá, Colombia
| |
Collapse
|
27
|
Beckett AC, Loh JT, Chopra A, Leary S, Lin AS, McDonnell WJ, Dixon BREA, Noto JM, Israel DA, Peek RM, Mallal S, Algood HMS, Cover TL. Helicobacter pylori genetic diversification in the Mongolian gerbil model. PeerJ 2018; 6:e4803. [PMID: 29796347 PMCID: PMC5961626 DOI: 10.7717/peerj.4803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori requires genetic agility to infect new hosts and establish long-term colonization of changing gastric environments. In this study, we analyzed H. pylori genetic adaptation in the Mongolian gerbil model. This model is of particular interest because H. pylori-infected gerbils develop a high level of gastric inflammation and often develop gastric adenocarcinoma or gastric ulceration. We analyzed the whole genome sequences of H. pylori strains cultured from experimentally infected gerbils, in comparison to the genome sequence of the input strain. The mean annualized single nucleotide polymorphism (SNP) rate per site was 1.5e−5, which is similar to the rates detected previously in H. pylori-infected humans. Many of the mutations occurred within or upstream of genes associated with iron-related functions (fur, tonB1, fecA2, fecA3, and frpB3) or encoding outer membrane proteins (alpA, oipA, fecA2, fecA3, frpB3 and cagY). Most of the SNPs within coding regions (86%) were non-synonymous mutations. Several deletion or insertion mutations led to disruption of open reading frames, suggesting that the corresponding gene products are not required or are deleterious during chronic H. pylori colonization of the gerbil stomach. Five variants (three SNPs and two deletions) were detected in isolates from multiple animals, which suggests that these mutations conferred a selective advantage. One of the mutations (FurR88H) detected in isolates from multiple animals was previously shown to confer increased resistance to oxidative stress, and we now show that this SNP also confers a survival advantage when H. pylori is co-cultured with neutrophils. Collectively, these analyses allow the identification of mutations that are positively selected during H. pylori colonization of the gerbil model.
Collapse
Affiliation(s)
- Amber C Beckett
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - John T Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Wyatt J McDonnell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Beverly R E A Dixon
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Jennifer M Noto
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Dawn A Israel
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Richard M Peek
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Simon Mallal
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Holly M Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Tennessee Valley Healthcare System, Veterans Affairs, Nashville, TN, United States of America
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America.,Tennessee Valley Healthcare System, Veterans Affairs, Nashville, TN, United States of America
| |
Collapse
|
28
|
Schürch A, Arredondo-Alonso S, Willems R, Goering R. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene–based approaches. Clin Microbiol Infect 2018; 24:350-354. [DOI: 10.1016/j.cmi.2017.12.016] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/21/2017] [Accepted: 12/22/2017] [Indexed: 11/30/2022]
|
29
|
Chen J, Ye L, Jin L, Xu X, Xu P, Wang X, Li H. Application of next-generation sequencing to characterize novel mutations in clarithromycin-susceptible Helicobacter pylori strains with A2143G of 23S rRNA gene. Ann Clin Microbiol Antimicrob 2018; 17:10. [PMID: 29562911 PMCID: PMC5863438 DOI: 10.1186/s12941-018-0259-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/08/2018] [Indexed: 12/22/2022] Open
Abstract
Background Clarithromycin (CLR) resistance has become a predominant factor for treatment failure of Helicobacter pylori eradication. Although the molecular mechanism of CLR resistance has been clearly understood in H. pylori, it is lack of evidence of other genes involved in drug resistance. Furthermore, the molecular mechanism of phenotype susceptible to CLR while genotype of 23S rRNA is mutant with A2143G is unclear. Here, we characterized the mutations of CLR-resistant and -susceptible H. pylori strains to explore bacterial resistance. Methods In the present study, the whole genomes of twelve clinical isolated H. pylori strains were sequenced, including two CLR-susceptible strains with mutation of A2143G. Single nucleotide variants (SNVs) were extracted and analyzed from multidrug efflux transporter genes. Results We did not find mutations associated with known CLR-resistant sites except for controversial T2182C outside of A2143G in the 23S rRNA gene. Although total SNVs of multidrug efflux transporter gene and the SNVs of HP0605 were significant differences (P ≤ 0.05) between phenotype resistant and susceptible strains. There is no significant difference in SNVs of RND or MFS (HP1181) family. However, the number of mutations in the RND family was significantly higher in the mutant strain (A2143G) than in the wild type. In addition, three special variations from two membrane proteins of mtrC and hefD were identified in both CLR-susceptible strains with A2143G. Conclusions Next-generation sequencing is a practical strategy for analyzing genomic variation associated with antibiotic resistance in H. pylori. The variations of membrane proteins of the RND family may be able to participate in the regulation of clinical isolated H. pylori susceptibility profiles.
Collapse
Affiliation(s)
- Jiaoe Chen
- Department of Gastroenterology, Sanmen People's Hospital, No. 117, Renmin Road, Sanmen, 317100, Zhejiang, People's Republic of China
| | - Liping Ye
- Department of Gastroenterology, Zhejiang Taizhou Hospital, Taizhou, 31700, People's Republic of China
| | - Liangmin Jin
- Department of Gastroenterology, Sanmen People's Hospital, No. 117, Renmin Road, Sanmen, 317100, Zhejiang, People's Republic of China
| | - Xuehua Xu
- Department of Gastroenterology, Sanmen People's Hospital, No. 117, Renmin Road, Sanmen, 317100, Zhejiang, People's Republic of China
| | - Peisong Xu
- Department of Research Service, Zhiyuan Inspection Medical Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Xianjun Wang
- Clinical Laboratory, Hangzhou First People's Hospital, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Hongzhang Li
- Department of Gastroenterology, Sanmen People's Hospital, No. 117, Renmin Road, Sanmen, 317100, Zhejiang, People's Republic of China.
| |
Collapse
|
30
|
Hauck S, Maiden MCJ. Clonally Evolving Pathogenic Bacteria. MOLECULAR MECHANISMS OF MICROBIAL EVOLUTION 2018. [DOI: 10.1007/978-3-319-69078-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Oikawa R, Watanabe Y, Miyamoto S, Sato Y, Ono S, Mabe K, Yamamoto H, Kato M, Itoh F. Enrichment of Helicobacter pylori mutant strains after eradication therapy analyzed by gastric wash-based quantitative pyrosequencing. Tumour Biol 2017; 39:1010428317734865. [PMID: 28990461 DOI: 10.1177/1010428317734865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The eradication of Helicobacter pylori reduces the risk of gastric cancer. A clear understanding of the factors underlying mixed infection with multiple clarithromycin-susceptible and clarithromycin-resistant H. pylori strains is necessary to design more effective therapies against H. pylori. We aimed to assess how the abundance and prevalence of H. pylori strains vary after clarithromycin-based eradication therapy. Using gastric wash samples, which represent the entire stomach, we sequentially analyzed the abundance and prevalence of H. pylori DNA by 23S ribosomal RNA pyrosequencing before and 1, 2, and 3 years after eradication therapy. Low levels of H. pylori DNA were still detectable at the first-year follow-up in all samples with negative post-treatment urea breath test results. The abundance of H. pylori DNA decreased significantly until the 2-year follow-up, but it switched to an increase at the 3-year follow-up. Importantly, the ratio of the prevalence of mutant strains to the prevalence of wild-type strains had already increased at the first-year follow-up and continued to increase, suggesting the selection and growth of clarithromycin-resistant strains during the follow-up periods. Being sensitive and representative, our assay will be useful in effectively addressing gastric cancer development by enhancing the long-term success of intervention strategies and consecutive surveillance for H. pylori eradication.
Collapse
Affiliation(s)
- Ritsuko Oikawa
- 1 Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshiyuki Watanabe
- 1 Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan.,2 Department of Internal Medicine, Kawasaki Rinko General Hospital, Kawasaki, Japan
| | - Shuichi Miyamoto
- 3 Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshinori Sato
- 1 Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Shoko Ono
- 4 Division of Endoscopy, Hokkaido University Hospital, Sapporo, Japan
| | - Katsuhiro Mabe
- 5 Department of Gastroenterology, National Hospital Organization Hakodate Hospital, Hakodate, Japan
| | - Hiroyuki Yamamoto
- 1 Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Mototsugu Kato
- 5 Department of Gastroenterology, National Hospital Organization Hakodate Hospital, Hakodate, Japan
| | - Fumio Itoh
- 1 Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
32
|
Gutiérrez-Escobar AJ, Trujillo E, Acevedo O, Bravo MM. Phylogenomics of Colombian Helicobacter pylori isolates. Gut Pathog 2017; 9:52. [PMID: 28912838 PMCID: PMC5594506 DOI: 10.1186/s13099-017-0201-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/03/2017] [Indexed: 12/27/2022] Open
Abstract
Background During the Spanish colonisation of South America, African slaves and Europeans arrived in the continent with their corresponding load of pathogens, including Helicobacter pylori. Colombian strains have been clustered with the hpEurope population and with the hspWestAfrica subpopulation in multilocus sequence typing (MLST) studies. However, ancestry studies have revealed the presence of population components specific to H. pylori in Colombia. The aim of this study was to perform a thorough phylogenomic analysis to describe the evolution of the Colombian urban H. pylori isolates. Results A total of 115 genomes of H. pylori were sequenced with Illumina technology from H. pylori isolates obtained in Colombia in a region of high risk for gastric cancer. The genomes were assembled, annotated and underwent phylogenomic analysis with 36 reference strains. Additionally, population differentiation analyses were performed for two bacterial genes. The phylogenetic tree revealed clustering of the Colombian strains with hspWestAfrica and hpEurope, along with three clades formed exclusively by Colombian strains, suggesting the presence of independent evolutionary lines for Colombia. Additionally, the nucleotide diversity of horB and vacA genes from Colombian isolates was lower than in the reference strains and showed a significant genetic differentiation supporting the hypothesis of independent clades with recent evolution. Conclusions The presence of specific lineages suggest the existence of an hspColombia subtype that emerged from a small and relatively isolated ancestral population that accompanied crossbreeding of human population in Colombia. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0201-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrés Julián Gutiérrez-Escobar
- Grupo de Investigaciones Biomédicas y Genética Humana Aplicada, Programa de Medicina, Universidad de Ciencias Aplicadas y Ambientales, Calle 222 55-37, Bogotá, Colombia.,Programa de Doctorado en Ciencias Biológicas, Universidad Javeriana, Carrera 7 40-62, Bogotá, Colombia
| | - Esperanza Trujillo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Calle 1 9-85, Bogotá, Colombia
| | - Orlando Acevedo
- Grupo de Biofísica y Bioquímica Estructural, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 40-62, Bogotá, Colombia
| | - María Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Calle 1 9-85, Bogotá, Colombia
| |
Collapse
|
33
|
Thorell K, Yahara K, Berthenet E, Lawson DJ, Mikhail J, Kato I, Mendez A, Rizzato C, Bravo MM, Suzuki R, Yamaoka Y, Torres J, Sheppard SK, Falush D. Rapid evolution of distinct Helicobacter pylori subpopulations in the Americas. PLoS Genet 2017; 13:e1006546. [PMID: 28231283 PMCID: PMC5322909 DOI: 10.1371/journal.pgen.1006546] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022] Open
Abstract
For the last 500 years, the Americas have been a melting pot both for genetically diverse humans and for the pathogenic and commensal organisms associated with them. One such organism is the stomach-dwelling bacterium Helicobacter pylori, which is highly prevalent in Latin America where it is a major current public health challenge because of its strong association with gastric cancer. By analyzing the genome sequence of H. pylori isolated in North, Central and South America, we found evidence for admixture between H. pylori of European and African origin throughout the Americas, without substantial input from pre-Columbian (hspAmerind) bacteria. In the US, strains of African and European origin have remained genetically distinct, while in Colombia and Nicaragua, bottlenecks and rampant genetic exchange amongst isolates have led to the formation of national gene pools. We found three outer membrane proteins with atypical levels of Asian ancestry in American strains, as well as alleles that were nearly fixed specifically in South American isolates, suggesting a role for the ethnic makeup of hosts in the colonization of incoming strains. Our results show that new H. pylori subpopulations can rapidly arise, spread and adapt during times of demographic flux, and suggest that differences in transmission ecology between high and low prevalence areas may substantially affect the composition of bacterial populations. Helicobacter pylori is one of the best studied examples of an intimate association between bacteria and humans, due to its ability to colonize the stomach for decades and to transmit from generation to generation. A number of studies have sought to link diversity in H. pylori to human migrations but there are some discordant signals such as an “out of Africa” dispersal within the last few thousand years that has left a much stronger signal in bacterial genomes than in human ones. In order to understand how such discrepancies arise, we have investigated the evolution of H. pylori during the recent colonization of the Americas. We find that bacterial populations evolve quickly and can spread rapidly to people of different ethnicities. Distinct new bacterial subpopulations have formed in Colombia from a European source and in Nicaragua and the US from African sources. Genetic exchange between bacterial populations is rampant within Central and South America but is uncommon within North America, which may reflect differences in prevalence. Our results also suggest that adaptation of bacteria to particular human ethnic groups may be confined to a handful of genes involved in interaction with the immune system.
Collapse
Affiliation(s)
- Kaisa Thorell
- Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Koji Yahara
- Dept. of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Elvire Berthenet
- Medical Microbiology and Infectious Disease group, Swansea University, Swansea, Wales, United Kingdom
| | - Daniel J. Lawson
- Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Jane Mikhail
- Medical Microbiology and Infectious Disease group, Swansea University, Swansea, Wales, United Kingdom
| | - Ikuko Kato
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Alfonso Mendez
- Instituto Politecnico Nacional, ENCB, Mexico City, Mexico
| | - Cosmeri Rizzato
- Dipartimento di Ricerca Traslazionale e Nuove Tecnologie in Medicina e Chirurgia, Universitá di Pisa, Pisa, Italy
| | - María Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogota, Colombia
| | - Rumiko Suzuki
- Dept. of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Yoshio Yamaoka
- Dept. of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico City, Mexico
| | - Samuel K. Sheppard
- Milner Center for Evolution, Dept. of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Daniel Falush
- Milner Center for Evolution, Dept. of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Dynamic Expansion and Contraction of cagA Copy Number in Helicobacter pylori Impact Development of Gastric Disease. mBio 2017; 8:mBio.01779-16. [PMID: 28223454 PMCID: PMC5358911 DOI: 10.1128/mbio.01779-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infection with Helicobacter pylori is a major risk factor for development of gastric disease, including gastric cancer. Patients infected with H. pylori strains that express CagA are at even greater risk of gastric carcinoma. Given the importance of CagA, this report describes a new molecular mechanism by which the cagA copy number dynamically expands and contracts in H. pylori. Analysis of strain PMSS1 revealed a heterogeneous population in terms of numbers of cagA copies; strains carried from zero to four copies of cagA that were arranged as direct repeats within the chromosome. Each of the multiple copies of cagA was expressed and encoded functional CagA; strains with more cagA repeats exhibited higher levels of CagA expression and increased levels of delivery and phosphorylation of CagA within host cells. This concomitantly resulted in more virulent phenotypes as measured by cell elongation and interleukin-8 (IL-8) induction. Sequence analysis of the repeat region revealed three cagA homologous areas (CHAs) within the cagA repeats. Of these, CHA-ud flanked each of the cagA copies and is likely important for the dynamic variation of cagA copy numbers. Analysis of a large panel of clinical isolates showed that 7.5% of H. pylori strains isolated in the United States harbored multiple cagA repeats, while none of the tested Korean isolates carried more than one copy of cagA. Finally, H. pylori strains carrying multiple cagA copies were differentially associated with gastric disease. Thus, the dynamic expansion and contraction of cagA copy numbers may serve as a novel mechanism by which H. pylori modulates gastric disease development. Severity of H. pylori-associated disease is directly associated with carriage of the CagA toxin. Though the sequences of the CagA protein can differ across strains, previous analyses showed that virtually all H. pylori strains carry one or no copies of cagA. This study showed that H. pylori can carry multiple tandem copies of cagA that can change dynamically. Isolates harboring more cagA copies produced more CagA, thus enhancing toxicity to host cells. Analysis of 314 H. pylori clinical strains isolated from patients in South Korea and the United States showed that 7.5% of clinical strains in the United States carried multiple cagA copies whereas none of the South Korean strains did. This study demonstrated a novel molecular mechanism by which H. pylori dynamically modulates cagA copy number, which affects CagA expression and activity and may impact downstream development of gastric disease.
Collapse
|
35
|
Kidman SE, Bryant JM. You are where you live. Nat Rev Microbiol 2017; 15:68. [PMID: 28090080 DOI: 10.1038/nrmicro.2016.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This month's Genome Watch discusses how whole-genome sequencing of bacteria from several body sites has provided insights into the spatial diversity of bacteria within patients.
Collapse
Affiliation(s)
- Samuel E Kidman
- Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Josephine M Bryant
- Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
36
|
Raymond J, Thiberge JM, Dauga C. Diagnosis of Helicobacter pylori recurrence: relapse or reinfection? Usefulness of molecular tools. Scand J Gastroenterol 2016; 51:672-8. [PMID: 26784882 DOI: 10.3109/00365521.2015.1132338] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Infection due to Helicobacter pylori causes many gastrointestinal diseases including peptic ulcers and gastric carcinoma. Their treatment and prevention depends on the successful eradication of H. pylori. However, even after a well-conducted treatment, H. pylori persists in about 10-30% of patients. Recurrent infections can correspond to relapse or to re-infection and require appropriate medical care. In this study, we explore retrospectively three clinical cases using molecular methods, and propose new guidelines for the diagnosis of recurrence. MATERIAL AND METHODS Ten colonies of H. pylori were selected from the primary culture of biopsy samples taken from the antrum and fundus for each patient. The genotype of each isolated colony was determined by analyzing the polymorphism of two housekeeping genes, hspA and glmM. The genome-wide composition of H. pylori strains was studied using in house macro-arrays designed. RESULTS Relapses were demonstrated by the stability of genotypes and the slight genetic variability of strains on macro-arrays. Two patients suffered from relapses, one and three years after H. pylori treatment. For the third patient, both the polymorphism of glmM and hspA genotypes and the diversity of CDSs identified on macro-arrays suggested that several episodes of re-infection occurred, 1-8 years after eradication. CONCLUSION For the three clinical cases, molecular methods allowed identifying the causes of recurrent infections. We suggest to study genotype to distinguish between relapse and re-infection in order to adapt the treatment and the follow-up of patients to the nature of recurrence.
Collapse
Affiliation(s)
- Josette Raymond
- a Department of Bacteriology , University of Paris-Descartes, Cochin Hospital , Paris , France
| | - Jean Michel Thiberge
- b Unit of Research and Expertise - Environment and Infectious Risk, Institut Pasteur , Paris , France
| | - Catherine Dauga
- c International Group of Data Analysis , Paris , France ;,d Department Genome and Genetics , Institut Pasteur , Paris , France
| |
Collapse
|
37
|
Abstract
The development of high-throughput whole genome sequencing (WGS) technologies is changing the face of microbiology, facilitating the comparison of large numbers of genomes from different lineages of a same organism. Our aim was to review the main advances on Helicobacter pylori "omics" and to understand how this is improving our knowledge of the biology, diversity and pathogenesis of H. pylori. Since the first H. pylori isolate was sequenced in 1997, 510 genomes have been deposited in the NCBI archive, providing a basis for improved understanding of the epidemiology and evolution of this important pathogen. This review focuses on works published between April 2015 and March 2016. Helicobacter "omics" is already making an impact and is a growing research field. Ultimately these advances will be translated into a routine clinical laboratory setting in order to improve public health.
Collapse
Affiliation(s)
- Elvire Berthenet
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK
| | - Sam Sheppard
- Departments of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Filipa F Vale
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Instituto de Medicina Molecular, Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
38
|
Bubendorfer S, Krebes J, Yang I, Hage E, Schulz TF, Bahlawane C, Didelot X, Suerbaum S. Genome-wide analysis of chromosomal import patterns after natural transformation of Helicobacter pylori. Nat Commun 2016; 7:11995. [PMID: 27329939 PMCID: PMC4917963 DOI: 10.1038/ncomms11995] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Recombination plays a dominant role in the evolution of the bacterial pathogen Helicobacter pylori, but its dynamics remain incompletely understood. Here we use an in vitro transformation system combined with genome sequencing to study chromosomal integration patterns after natural transformation. A single transformation cycle results in up to 21 imports, and repeated transformations generate a maximum of 92 imports (8% sequence replacement). Import lengths show a bimodal distribution with averages of 28 and 1,645 bp. Reanalysis of paired H. pylori genomes from chronically infected people demonstrates the same bimodal import pattern in vivo. Restriction endonucleases (REases) of the recipient bacteria fail to inhibit integration of homeologous DNA, independently of methylation. In contrast, REases limit the import of heterologous DNA. We conclude that restriction-modification systems inhibit the genomic integration of novel sequences, while they pose no barrier to homeologous recombination, which reconciles the observed stability of the H. pylori gene content and its highly recombinational population structure. Uptake and integration of exogenous DNA into the bacterial genome play an important role in the evolution of the pathogen Helicobacter pylori. Here, the authors describe a bimodal pattern of chromosomal integration and show how restriction-modification systems limit the import of heterologous DNA.
Collapse
Affiliation(s)
- Sebastian Bubendorfer
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Juliane Krebes
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Ines Yang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Elias Hage
- DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,Institute of Virology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Thomas F Schulz
- DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,Institute of Virology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Christelle Bahlawane
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, Norfolk Place, London W2 1PG, UK
| | - Sebastian Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
39
|
Shapiro BJ. How clonal are bacteria over time? Curr Opin Microbiol 2016; 31:116-123. [PMID: 27057964 DOI: 10.1016/j.mib.2016.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 11/15/2022]
Abstract
Bacteria and archaea reproduce clonally (vertical descent), but exchange genes by recombination (horizontal transfer). Recombination allows adaptive mutations or genes to spread rapidly within (or even between) species, and reduces the burden of deleterious mutations. Clonality-defined here as the balance between vertical and horizontal inheritance-is therefore a key microbial trait, determining how quickly a population can adapt and the size of its gene pool. Here, I discuss whether clonality varies over time and if it can be considered a stable trait of a given population. I show that, in some cases, clonality is clearly not static. For example, non-clonal (highly recombining) populations can give rise to clonal expansions, often of pathogens. However, an analysis of time-course metagenomic data from a lake suggests that a bacterial population's past clonality (as measured by its genetic diversity) is a good predictor of its future clonality. Clonality therefore appears to be relatively-but not completely-stable over evolutionary time.
Collapse
Affiliation(s)
- B Jesse Shapiro
- Département de sciences biologiques, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
40
|
Yahara K, Didelot X, Jolley KA, Kobayashi I, Maiden MCJ, Sheppard SK, Falush D. The Landscape of Realized Homologous Recombination in Pathogenic Bacteria. Mol Biol Evol 2016; 33:456-71. [PMID: 26516092 PMCID: PMC4866539 DOI: 10.1093/molbev/msv237] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recombination enhances the adaptive potential of organisms by allowing genetic variants to be tested on multiple genomic backgrounds. Its distribution in the genome can provide insight into the evolutionary forces that underlie traits, such as the emergence of pathogenicity. Here, we examined landscapes of realized homologous recombination of 500 genomes from ten bacterial species and found all species have "hot" regions with elevated rates relative to the genome average. We examined the size, gene content, and chromosomal features associated with these regions and the correlations between closely related species. The recombination landscape is variable and evolves rapidly. For example in Salmonella, only short regions of around 1 kb in length are hot whereas in the closely related species Escherichia coli, some hot regions exceed 100 kb, spanning many genes. Only Streptococcus pyogenes shows evidence for the positive correlation between GC content and recombination that has been reported for several eukaryotes. Genes with function related to the cell surface/membrane are often found in recombination hot regions but E. coli is the only species where genes annotated as "virulence associated" are consistently hotter. There is also evidence that some genes with "housekeeping" functions tend to be overrepresented in cold regions. For example, ribosomal proteins showed low recombination in all of the species. Among specific genes, transferrin-binding proteins are recombination hot in all three of the species in which they were found, and are subject to interspecies recombination.
Collapse
Affiliation(s)
- Koji Yahara
- Biostatistics Center, Kurume University, Kurume, Fukuoka, Japan College of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Keith A Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | | | - Samuel K Sheppard
- College of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Daniel Falush
- College of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
41
|
Abstract
Whole-genome sequencing has opened the way for investigating the dynamics and genomic evolution of bacterial pathogens during the colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in an infected host--in particular, the evolution of drug resistance and host adaptation in patients who are chronically infected with opportunistic pathogens--has revealed remarkable patterns of convergent evolution, suggestive of an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections and to suggest the best option for treatment.
Collapse
|
42
|
Furuta Y, Konno M, Osaki T, Yonezawa H, Ishige T, Imai M, Shiwa Y, Shibata-Hatta M, Kanesaki Y, Yoshikawa H, Kamiya S, Kobayashi I. Microevolution of Virulence-Related Genes in Helicobacter pylori Familial Infection. PLoS One 2015; 10:e0127197. [PMID: 25978460 PMCID: PMC4433339 DOI: 10.1371/journal.pone.0127197] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/13/2015] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori, a bacterial pathogen that can infect human stomach causing gastritis, ulcers and cancer, is known to have a high degree of genome/epigenome diversity as the result of mutation and recombination. The bacteria often infect in childhood and persist for the life of the host. One of the reasons of the rapid evolution of H. pylori is that it changes its genome drastically for adaptation to a new host. To investigate microevolution and adaptation of the H. pylori genome, we undertook whole genome sequencing of the same or very similar sequence type in multi-locus sequence typing (MLST) with seven genes in members of the same family consisting of parents and children in Japan. Detection of nucleotide substitutions revealed likely transmission pathways involving children. Nonsynonymous (amino acid changing) mutations were found in virulence-related genes (cag genes, vacA, hcpDX, tnfα, ggt, htrA and the collagenase gene), outer membrane protein (OMP) genes and other cell surface-related protein genes, signal transduction genes and restriction-modification genes. We reconstructed various pathways by which H. pylori can adapt to a new human host, and our results raised the possibility that the mutational changes in virulence-related genes have a role in adaptation to a child host. Changes in restriction-modification genes might remodel the methylome and transcriptome to help adaptation. This study has provided insights into H. pylori transmission and virulence and has implications for basic research as well as clinical practice.
Collapse
Affiliation(s)
- Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Mutsuko Konno
- Department of Pediatrics, Sapporo Kosei General Hospital, Sapporo-shi, Hokkaido, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka-shi, Tokyo, Japan
| | - Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka-shi, Tokyo, Japan
| | - Taichiro Ishige
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Misaki Imai
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yuh Shiwa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Mari Shibata-Hatta
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yu Kanesaki
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka-shi, Tokyo, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
43
|
You Y, He L, Zhang M, Zhang J. Comparative genomics of a Helicobacter pylori isolate from a Chinese Yunnan Naxi ethnic aborigine suggests high genetic divergence and phage insertion. PLoS One 2015; 10:e0120659. [PMID: 25799515 PMCID: PMC4370579 DOI: 10.1371/journal.pone.0120659] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a common pathogen correlated with several severe digestive diseases. It has been reported that isolates associated with different geographic areas, different diseases and different individuals might have variable genomic features. Here, we describe draft genomic sequences of H. pylori strains YN4-84 and YN1-91 isolated from patients with gastritis from the Naxi and Han populations of Yunnan, China, respectively. The draft sequences were compared to 45 other publically available genomes, and a total of 1059 core genes were identified. Genes involved in restriction modification systems, type four secretion system three (TFS3) and type four secretion system four (TFS4), were identified as highly divergent. Both YN4-84 and YN1-91 harbor intact cag pathogenicity island (cagPAI) and have EPIYA-A/B/D type at the carboxyl terminal of cagA. The vacA gene type is s1m2i1. Another major finding was a 32.5-kb prophage integrated in the YN4-84 genome. The prophage shares most of its genes (30/33) with Helicobacter pylori prophage KHP30. Moreover, a 1,886 bp transposable sequence (IS605) was found in the prophage. Our results imply that the Naxi ethnic minority isolate YN4-84 and Han isolate YN1-91 belong to the hspEAsia subgroup and have diverse genome structure. The genome has been extensively modified in several regions involved in horizontal DNA transfer. The important roles played by phages in the ecology and microevolution of H. pylori were further emphasized. The current data will provide valuable information regarding the H. pylori genome based on historic human migrations and population structure.
Collapse
Affiliation(s)
- Yuanhai You
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Lihua He
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Maojun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Jianzhong Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|