1
|
Muraoka S, Baba T, Akazawa T, Katayama KI, Kusumoto H, Yamashita S, Kohjimoto Y, Iwabuchi S, Hashimoto S, Hara I, Inoue N. Tumor-derived lactic acid promotes acetylation of histone H3K27 and differentiation of IL-10-producing regulatory B cells through direct and indirect signaling pathways. Int J Cancer 2025; 156:840-852. [PMID: 39482832 DOI: 10.1002/ijc.35229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024]
Abstract
Tumor cells are known to enhance glycolysis, even under normoxic conditions, via the Warburg effect, producing excess lactic acid in the tumor microenvironment. Lactic acid enhances the IL-23/IL-17 pathway and induces chronic inflammation. The acidic microenvironment formed by lactic acid suppresses immune cell proliferation and activation. In the present study, we clarified that lactic acid had two novel activities for immune cells. First, lactic acid specifically enhanced acetylation at lysine 27 of histone H3 (H3K27ac) in splenic B cells and monocytes/macrophages, and this epigenetically up-regulates the expression of genes. Acetylation and methylation of other residues of histone H3 were rarely induced. Second, lactic acid induced a particularly-marked enhancement of Il10 gene expression in B cells, leading to an increase in IL-10-producing regulatory B (Breg) cells. Furthermore, two pathways should be involved in both the enhancement of H3K27ac and the induction of Breg cells by lactic acid: a direct pathway that enhances the CD40 signal in B cells, and an indirect pathway that affects B cells by activating the exchange protein directly activated by cAMP (EPAC) 1/2 in non-B cells. In tumor-bearing mice, the levels of H3K27ac of tumor-infiltrating B cells were significantly higher than splenic B cells and were suppressed by intraperitoneal injection of the EPAC1/2 inhibitor. In conclusion, tumor-derived lactic acid increases H3K27ac and IL-10-producing Breg cells, causing the suppression of anti-tumor immunity.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Takashi Baba
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Takashi Akazawa
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Kei-Ichi Katayama
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Hiroki Kusumoto
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | | | - Yasuo Kohjimoto
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama, Japan
| | - Isao Hara
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
2
|
Zhang M, Huang K, Yin Q, Wu X, Zhu M, Li M. Spatial heterogeneity of the hepatocellular carcinoma microenvironment determines the efficacy of immunotherapy. Discov Oncol 2025; 16:15. [PMID: 39775241 PMCID: PMC11706828 DOI: 10.1007/s12672-025-01747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge owing to its widespread incidence and high mortality. HCC has a specific immune tolerance function because of its unique physiological structure, which limits the efficacy of chemotherapy, radiotherapy, and molecular targeting. In recent years, new immune approaches, including adoptive cell therapy, tumor vaccines, and oncolytic virus therapy, have shown great potential. As the efficacy of immunotherapy mainly depends on the spatial heterogeneity of the tumor immune microenvironment, it is necessary to elucidate the crosstalk between the composition of the liver cancer immune environment, from which potential therapeutic targets can be selected to provide more appropriate individualized treatment programs. The role of spatial heterogeneity of immune cells in the microenvironment of HCC in the progression and influence of immunotherapy on improving the treatment and prognosis of HCC were comprehensively analyzed, providing new inspiration for the subsequent clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Minni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
- The First Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer, Hainan Medical University, Haikou, 570102, Hainan, People's Republic of China
| | - Kailin Huang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Qiushi Yin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Xueqin Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, 570023, Hainan, People's Republic of China.
- Key Laboratory of Tropical Translational Medicine, Ministry of Education, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
3
|
Wu X, Huang Q, Chen X, Zhang B, Liang J, Zhang B. B cells and tertiary lymphoid structures in tumors: immunity cycle, clinical impact, and therapeutic applications. Theranostics 2025; 15:605-631. [PMID: 39744696 PMCID: PMC11671382 DOI: 10.7150/thno.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
Tumorigenesis involves a multifaceted and heterogeneous interplay characterized by perturbations in individual immune surveillance. Tumor-infiltrating lymphocytes, as orchestrators of adaptive immune responses, constitute the principal component of tumor immunity. Over the past decade, the functions of tumor-specific T cells have been extensively elucidated, whereas current understanding and research regarding intratumoral B cells remain inadequate and underexplored. The delineation of B cell subsets is contingent upon distinct surface proteins and the specific transcription factors that define these subsets have yet to be fully described. Consequently, there is a pressing need for extensive and comprehensive exploration into tumor-infiltrating B cells and their cancer biology. Notably, B cells and other cellular entities assemble within the tumor milieu to establish tertiary lymphoid structures that facilitate localized immune activation and furnish novel insights for tumor research. It is of great significance to develop therapeutic strategies based on B cells, antibodies, and tertiary lymphoid structures. In this review, we address the role of B cells and tertiary lymphoid structures in tumor microenvironment, with the highlight on their spatiotemporal effect, prognostic value and therapeutic applications in tumor immunity.
Collapse
Affiliation(s)
- Xing Wu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Qibo Huang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Xiaoping Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Binhao Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Junnan Liang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Bixiang Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| |
Collapse
|
4
|
Dimopoulou K, Tiniakos D, Arkadopoulos N, Foukas PG. Landscape of B lymphocytes and plasma cells in digestive tract carcinomas. Ann Gastroenterol 2025; 38:1-11. [PMID: 39802286 PMCID: PMC11724378 DOI: 10.20524/aog.2024.0936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/05/2024] [Indexed: 01/16/2025] Open
Abstract
Digestive tract carcinomas are the most commonly occurring cancers worldwide, but their prognosis with traditional treatments remains poor. T lymphocytes are well-recognized as crucial components of effective anti-tumor immunity, and current immunotherapeutic strategies concentrate mainly on T-cell-mediated immunity reinforcement, whereas the role of B lymphocytes and plasma cells (PCs) has been neglected in the past, and it is only recently that these cells have been considered as key players in the tumor microenvironment (TME). In this review, we describe the complex dual role of B lymphocytes and PCs in promoting and inhibiting tumor progression in the TME of digestive tract carcinomas, and we demonstrate their prognostic value. Furthermore, we highlight their controversial function in cancer and nominate them as additional therapeutic targets for the development of new treatment interventions that might alter the dismal prognosis of digestive tract tumors.
Collapse
Affiliation(s)
- Konstantina Dimopoulou
- Department of Gastroenterology, “Hippokration” General Hospital of Athens, Greece (Konstantina Dimopoulou)
| | - Dina Tiniakos
- Department of Pathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Greece (Dina Tiniakos)
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK (Dina Tiniakos)
| | - Nikolaos Arkadopoulos
- 4 Department of Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Greece (Nikolaos Arkadopoulos)
| | - Periklis G. Foukas
- 2 Department of Pathology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Greece (Periklis G. Foukas)
| |
Collapse
|
5
|
Bukhari I, Li M, Li G, Xu J, Zheng P, Chu X. Pinpointing the integration of artificial intelligence in liver cancer immune microenvironment. Front Immunol 2024; 15:1520398. [PMID: 39759506 PMCID: PMC11695355 DOI: 10.3389/fimmu.2024.1520398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Liver cancer remains one of the most formidable challenges in modern medicine, characterized by its high incidence and mortality rate. Emerging evidence underscores the critical roles of the immune microenvironment in tumor initiation, development, prognosis, and therapeutic responsiveness. However, the composition of the immune microenvironment of liver cancer (LC-IME) and its association with clinicopathological significance remain unelucidated. In this review, we present the recent developments related to the use of artificial intelligence (AI) for studying the immune microenvironment of liver cancer, focusing on the deciphering of complex high-throughput data. Additionally, we discussed the current challenges of data harmonization and algorithm interpretability for studying LC-IME.
Collapse
Affiliation(s)
- Ihtisham Bukhari
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengxue Li
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangyuan Li
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jixuan Xu
- Department of Gastrointestinal & Thyroid Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiufeng Chu
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Liu Y, Ji H, Wu LH, Wang XX, Yang Y, Zhang Q, Zhang HM. Stratifying hepatocellular carcinoma based on immunophenotypes for immunotherapy response and prognosis. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200890. [PMID: 39498358 PMCID: PMC11532917 DOI: 10.1016/j.omton.2024.200890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024]
Abstract
Immunotherapy has transformed the management of hepatocellular carcinoma (HCC), but effectiveness varies among patients. This study aimed to identify biomarkers and HCC subtypes responsive to immunotherapy. Patients were classified into Immunity-High (Immunity-H) and Immunity-Low (Immunity-L) subtypes using ssGSEA scores. Prognostic genes were identified through Cox regression, and immune cell infiltration was quantified with TIMER 2.0. Brother of CDO (BOC) expression, analyzed via immunohistochemistry, correlated with immunotherapy responses. Flow cytometry assessed immune cell infiltration relative to BOC levels, while CCK-8 and transwell assays evaluated BOC overexpression's effects on cell proliferation and invasiveness. Clinically, immunity-H patients had better survival outcomes. Three hub genes-BOC, V-Set and Transmembrane Domain Containing 1 (VSTM1), and PRDM12-were identified as significantly associated with prognosis. Among these, BOC and VSTM1 demonstrated positive correlations with immune cell infiltration. Elevated expression of BOC was found to be predictive of favorable responses to immunotherapy and was associated with enhanced infiltration of T cells, dendritic cells, and B cells in the tumor microenvironment. Conversely, BOC overexpression in liver cancer cell lines led to decreased cell proliferation and invasiveness. This study underscores the prognostic significance of HCC subtypes defined by immunogenomic profiles and identifies BOC as a potential biomarker for immunotherapy selection and outcome prediction.
Collapse
Affiliation(s)
- Yunpeng Liu
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Hongchen Ji
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Li-Hong Wu
- Department of Gastroenterology, Xijing 986 Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xiang-Xu Wang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yue Yang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Qiong Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Hong-Mei Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
7
|
Kurebayashi Y, Sugimoto K, Tsujikawa H, Matsuda K, Nomura R, Ueno A, Masugi Y, Yamazaki K, Effendi K, Takeuchi H, Itoi T, Hasegawa Y, Abe Y, Kitago M, Ojima H, Sakamoto M. Spatial Dynamics of T- and B-Cell Responses Predicts Clinical Outcome of Resectable and Unresectable Hepatocellular Carcinoma. Clin Cancer Res 2024; 30:5666-5680. [PMID: 39417698 DOI: 10.1158/1078-0432.ccr-24-0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/16/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Immunotherapies have led to a paradigm shift in the treatment of hepatocellular carcinoma (HCC). Studies have revealed the single-cell catalogs of tumor-infiltrating immune cells and the trajectories of their differentiation. Nevertheless, the spatial distribution of these immune cells with distinct phenotypes in the tumor microenvironment and their clinicopathologic significance in resectable and unresectable HCCs are still largely unclear. EXPERIMENTAL DESIGN We analyzed the spatial dynamics of intratumoral CD4 and CD8 T cells and their association with B and plasma cells using 283 surgically resected HCC samples, 58 unresectable HCC samples before combined immunotherapy [atezolizumab plus bevacizumab (Atezo + Bev)], and autopsy specimens from 50 cases of advanced-stage HCC through multiplex IHC combined with transcriptomic and driver gene mutation analyses. Classification based on the spatial dynamics of T- and B-cell responses (refined immunosubtype) was developed, and its clinicopathologic significance was analyzed. RESULTS We found that stem-like CD4 and CD8 T cells were mainly observed in T-cell aggregates and T-cell zone of tertiary lymphoid structure (TLS). The differentiation of T follicular helper cells was associated with the development of TLS, whereas the differentiation of CXCL13-expressing CD4 TCXCL13 cells with a phenotype resembling T peripheral helper cells was associated with the development of the lymphoplasmacytic microenvironment. The refined immunosubtype could predict clinical outcomes of resectable HCC after surgery and unresectable HCC after Atezo + Bev therapy. The immune microenvironment of metastatic lesions tended to reflect those of primary lesions. CONCLUSIONS We revealed the spatial dynamics of T- and B-cell responses in HCC, which is closely associated with the clinical outcome after surgical resection or Atezo + Bev therapy.
Collapse
Affiliation(s)
- Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Hanako Tsujikawa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Department of Diagnostic Pathology, National Hospital Organization Saitama Hospital, Saitama, Japan
| | - Kosuke Matsuda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Rui Nomura
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Akihisa Ueno
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Department of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Department of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Ken Yamazaki
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Division of Molecular Pathology, Research Institute, Tochigi Cancer Center, Tochigi, Japan
| | - Kathryn Effendi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hirohito Takeuchi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Yasushi Hasegawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Ojima
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Division of Molecular Pathology, Research Institute, Tochigi Cancer Center, Tochigi, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- School of Medicine, International University of Health and Welfare, Narita, Japan
| |
Collapse
|
8
|
Liu Z, Lin X, Zhang D, Guo D, Tang W, Yu X, Zhang F, Zhang S, Xue R, Shen X, Dong L. Increased PRP19 in Hepatocyte Impedes B Cell Function to Promote Hepatocarcinogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407517. [PMID: 39422063 PMCID: PMC11633487 DOI: 10.1002/advs.202407517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Tumor immune microenvironment is strongly associated with the malignancy behavior of hepatocellular carcinoma (HCC). However, the immune function and regulatory mechanisms of B cells in HCC remain unclear. The expression differences between B cell high- and low-infiltration HCC samples are explored to identify the key regulator. Pre-mRNA processing factor 19 (PRP19) expression is increased in B cell low-infiltrated tissues and negatively correlated with the B cell marker, CD20. Inhibition of PRP19 expression promoted B cell infiltration in tumor tissue and impeded HCC growth. Mechanically, the co-immunoprecipitation (Co-IP) assay revealed that PRP19 interacts with DEAD-box helicase 5 (DDX5), leading to ubiquitination and degradation of the DDX5 protein. The attenuated DDX5 impairs CXCL12 mRNA stability to suppress B cell recruitment and plasma cell differentiation via CXCL12/CXCR4 axis. Moreover, the adoptive transfer of CXCR4+ B cells combined with CXCL12 treatment in mice models effectively inhibits HCC development by reshaping the immune response. The expression of PRP19, DDX5, and infiltrating B cells are recognized as clinical prognosis indicators for HCC patients. Overall, this study provides valuable insights into the clinical benefits of HCC immunotherapy by targeting PRP19 and modulating tumor-infiltrating B cell immune function.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Gastroenterology and HepatologyShanghai Institute of Liver DiseaseZhongshan HospitalFudan UniversityShanghai200030China
| | - Xiahui Lin
- Department of Gastroenterology and HepatologyShanghai Institute of Liver DiseaseZhongshan HospitalFudan UniversityShanghai200030China
| | - Danying Zhang
- Department of Gastroenterology and HepatologyShanghai Institute of Liver DiseaseZhongshan HospitalFudan UniversityShanghai200030China
| | - Dezhen Guo
- Department of Liver SurgeryZhongshan HospitalFudan UniversityShanghai200030China
| | - Wenqing Tang
- Department of Gastroenterology and HepatologyShanghai Institute of Liver DiseaseZhongshan HospitalFudan UniversityShanghai200030China
| | - Xiangnan Yu
- Department of Gastroenterology and HepatologyShanghai Institute of Liver DiseaseZhongshan HospitalFudan UniversityShanghai200030China
| | - Feng Zhang
- Department of Gastroenterology and HepatologyShanghai Institute of Liver DiseaseZhongshan HospitalFudan UniversityShanghai200030China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200030China
| | - Ruyi Xue
- Department of Gastroenterology and HepatologyShanghai Institute of Liver DiseaseZhongshan HospitalFudan UniversityShanghai200030China
| | - Xizhong Shen
- Department of Gastroenterology and HepatologyShanghai Institute of Liver DiseaseZhongshan HospitalFudan UniversityShanghai200030China
| | - Ling Dong
- Department of Gastroenterology and HepatologyShanghai Institute of Liver DiseaseZhongshan HospitalFudan UniversityShanghai200030China
| |
Collapse
|
9
|
Ye K, Yan Y, Su R, Dai Q, Qiao K, Cao Y, Xu J, Yan L, Huo Z, Liu W, Hu Y, Zhu Y, Xu L, Mi Y. Oncolytic virus encoding 4-1BBL and IL15 enhances the efficacy of tumor-infiltrating lymphocyte adoptive therapy in HCC. Cancer Gene Ther 2024:10.1038/s41417-024-00853-w. [PMID: 39567771 DOI: 10.1038/s41417-024-00853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Previous studies have found that oncolytic virus (OVs) can improve the efficacy of TIL adoptive therapy in oral cancer, colon cancer, and pancreatic cancer. However, the curative effect in hepatocellular carcinoma (HCC) is still unclear. Therefore, this study aims to explore the therapeutic effect and mechanism of OVs encoding 4-1BBL and IL15 (OV-4-1BBL/IL15) combined with TIL adoptive therapy on HCC. In this study, the role and immunological mechanism of armed OVs combined with TILs were evaluated by flow cytometry and ELISA in patient-derived xenograft and syngeneic mouse tumor models. Co-culturing with TILs can up-regulate the expression of antigen-presenting cell (APC) markers on the surface of OV-infected primary HCC cells, and promote the specific activation ability and tumor-killing ability of TILs. OV-4-1BBL/IL15 combined with TIL adoptive therapy could induce tumor volume reduction and anti-tumor immune memory in patient-derived xenograft and syngeneic mouse tumor models. Furthermore, OV combined with TIL adoptive therapy can endow tumor cells with aAPC characteristics, activate T cells at the same time, and reprogram tumor macrophages into anti-tumor phenotype. OV-4-1BBL/IL15 can stimulate the anti-tumor potential of TIL therapy in HCC, and possess broad clinical application prospects.
Collapse
Affiliation(s)
- Kai Ye
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Yongfeng Yan
- Department of Laboratory, Tianjin Beichen Hospital, Tianjin, China
| | - Rui Su
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China.
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China.
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China.
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China.
| | - Qinghai Dai
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Kunyan Qiao
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Yu Cao
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Jian Xu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Lihua Yan
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Zhixiao Huo
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Wei Liu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Yue Hu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China
| | - Yu Zhu
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China.
| | - Liang Xu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China.
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China.
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China.
- Department of hepatology & oncology, Tianjin Second People's Hospital, Tianjin, China.
| | - Yuqiang Mi
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China.
- Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin, China.
- Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin, China.
| |
Collapse
|
10
|
Yang H, Zhang Z, Li J, Wang K, Zhu W, Zeng Y. The Dual Role of B Cells in the Tumor Microenvironment: Implications for Cancer Immunology and Therapy. Int J Mol Sci 2024; 25:11825. [PMID: 39519376 PMCID: PMC11546796 DOI: 10.3390/ijms252111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous tissue composed of various cell types, including tumor cells, stromal cells, and immune cells, as well as non-cellular elements. Given their pivotal role in humoral immunity, B cells have emerged as promising targets for anti-tumor therapies. The dual nature of B cells, exhibiting both tumor-suppressive and tumor-promoting functions, has garnered significant attention. Understanding the distinct effects of various B cell subsets on different tumors could pave the way for novel targeted tumor therapies. This review provides a comprehensive overview of the heterogeneous B cell subsets and their multifaceted roles in tumorigenesis, as well as the therapeutic potential of targeting B cells in cancer treatment. To develop more effective cancer immunotherapies, it is essential to decipher the heterogeneity of B cells and their roles in shaping the TME.
Collapse
Affiliation(s)
| | | | | | | | | | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang 110036, China; (H.Y.); (Z.Z.); (J.L.); (K.W.); (W.Z.)
| |
Collapse
|
11
|
Wang S, Meng L, Xu N, Chen H, Xiao Z, Lu D, Fan X, Xia L, Chen J, Zheng S, Wei Q, Wei X, Xu X. Hepatocellular carcinoma-specific epigenetic checkpoints bidirectionally regulate the antitumor immunity of CD4 + T cells. Cell Mol Immunol 2024; 21:1296-1308. [PMID: 39300319 PMCID: PMC11528031 DOI: 10.1038/s41423-024-01215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with significant global health implications. The role of CD4+ T cells, particularly conventional CD4+ T cells (Tconvs), in HCC progression remains unexplored. Furthermore, epigenetic factors are crucial in immune regulation, yet their specific role in HCC-infiltrating Tconv cells remains elusive. This study elucidates the role of MATR3, an epigenetic regulator, in modulating Tconv activity and immune evasion within the HCC microenvironment. Reanalysis of the scRNA-seq data revealed that early activation of CD4+ T cells is crucial for establishing an antitumor immune response. In vivo and in vitro experiments revealed that Tconv enhances cDC1-induced CD8+ T-cell activation. Screening identified MATR3 as a critical regulator of Tconv function, which is necessary for antitumour activity but harmful when overexpressed. Excessive MATR3 expression exacerbates Tconv exhaustion and impairs function by recruiting the SWI/SNF complex to relax chromatin in the TOX promoter region, leading to aberrant transcriptional changes. In summary, MATR3 is an HCC-specific epigenetic checkpoint that bidirectionally regulates Tconv antitumour immunity, suggesting new therapeutic strategies targeting epigenetic regulators to enhance antitumour immunity in HCC.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
| | - Lijun Meng
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Nan Xu
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Huan Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaofeng Xiao
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Di Lu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
| | - Xiaohui Fan
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun Chen
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, Zhejiang, China
| | - Qiang Wei
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, 310000, Hangzhou, China.
| |
Collapse
|
12
|
Jin X, Zhang Y, Hu W, Liu C, Cai D, Sun J, Wei Q, Cai Q. Developing a prognostic model for hepatocellular carcinoma based on MED19 and clinical stage and determining MED19 as a therapeutic target. J Cancer Res Clin Oncol 2024; 150:446. [PMID: 39369139 PMCID: PMC11455706 DOI: 10.1007/s00432-024-05978-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUD Mediator complex subunit 19 (MED19), a member of the mediator complex, has been demonstrated to involve in tumorigenesis of hepatocellular carcinoma (HCC). However, the regulation mechanisms of MED19, the immune landscape linking MED19 to HCC and its predictive value of immunotherapy treatment in HCC are so far unknown. METHODS Here, we analyzed data from The Cancer Genome Atlas and other databases to assess the expression of MED19 and its prognosis and therapeutical-targets impact in HCC. RESULTS MED19 expression was upregulated in HCC tissues compared to non-tumorous liver tissues and that its upregulation was positively associated with advanced clinicopathology features. The multivariate analysis showed that MED19 was an independent predictor of outcome in HCC. In vitro experiments revealed that MED19 knockdown suppressed hepG2 cells proliferation, colony forming and invasion and induced apoptosis. Furthermore, MED19 inhibition resulted in G0/G1 phase arrest in hepG2 cells. We screened differentially expressed genes between low and high MED19 expression groups. Enrichment analyses showed that these genes were mainly linked to nuclear division and cell cycle. The pattern of tumor-infiltrating immune was demonstrated to be related with MED19 expression in HCC. TIDE analyses showed that patients in the low-expression group presented significantly better immunotherapy. Moreover, we developed a predicted model for HCC patient's prognosis. Receiver operating characteristic analyses revealed that this model processed a favorable performance in predicting the prognosis of HCC patients. Finally, a nomogram was built for predicting survival probability of individual HCC patient. CONCLUSION These findings suggest that MED19 as a novel biomarker that has significant association with immune landscape and immunotherapy response in HCC. The proposed prediction model composed of MED19 and pathological stage has a better role in determining prognosis and stratifying of HCC.
Collapse
Affiliation(s)
- Xiaojun Jin
- The Affiliated Lihuili Hospital of Ningbo University, Health Science Center, Ningbo University, 57 Xingning Rd., Ningbo, Zhejiang, China
| | - Yun Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, SouthernMedical University, Guangzhou, China
| | - Wei Hu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chang Liu
- Department of Hepatological Surgery, Bethune Third Clinical Medical College, Jilin University, Changchun, China
| | - Danyang Cai
- Department of Radiation Oncology, Taizhou Hospital, Taizhou, Zhejiang, China
| | - Jialin Sun
- School of Statistics, East China Normal University, Shanghai, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qun Cai
- The Affiliated Lihuili Hospital of Ningbo University, Health Science Center, Ningbo University, 57 Xingning Rd., Ningbo, Zhejiang, China.
| |
Collapse
|
13
|
Han H, Zhao Z, He M, Guan G, Cao J, Li T, Han B, Zhang B. Global research trends in the tumor microenvironment of hepatocellular carcinoma: insights based on bibliometric analysis. Front Immunol 2024; 15:1474869. [PMID: 39411719 PMCID: PMC11473330 DOI: 10.3389/fimmu.2024.1474869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Objective This study aimed to use visual mapping and bibliometric analysis to summarize valuable information on the tumor microenvironment (TME)-related research on hepatocellular carcinoma (HCC) in the past 20 years and to identify the research hotspots and trends in this field. Methods We screened all of the relevant literature on the TME of HCC in the Web of Science database from 2003 to 2023 and analysed the research hotspots and trends in this field via VOSviewer and CiteSpace. Results A total of 2,157 English studies were collected. According to the prediction, the number of papers that were published in the past three years will be approximately 1,394, accounting for 64.63%. China published the most papers (n=1,525) and had the highest total number of citations (n=32,253). Frontiers In Immunology published the most articles on the TME of HCC (n=75), whereas, Hepatology was the journal with the highest total number of citations (n=4,104) and average number of citations (n=91). The four clusters containing keywords such as "cancer-associated fibroblasts", "hepatic stellate cells", "immune cells", "immunotherapy", "combination therapy", "landscape", "immune infiltration", and "heterogeneity" are currently hot research topics in this field. The keywords "cell death", "ferroptosis", "biomarkers", and "prognostic features" have emerged relatively recently, and these research directions are becoming increasingly popular. Conclusions We identified four key areas of focus in the study of the TME in HCC: the main components and roles in the TME, immunotherapy, combination therapy, and the microenvironmental landscape. Moreover, the result of our study indicate that effect of ferroptosis on the TME in HCC may become a future research trend.
Collapse
Affiliation(s)
- Hongmin Han
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziyin Zhao
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingyang He
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ge Guan
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junning Cao
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianxiang Li
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhang
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Hu J, Shi Q, Xue C, Wang Q. Berberine Protects against Hepatocellular Carcinoma Progression by Regulating Intrahepatic T Cell Heterogeneity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405182. [PMID: 39135526 PMCID: PMC11497054 DOI: 10.1002/advs.202405182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/25/2024] [Indexed: 10/25/2024]
Abstract
Accumulating evidence suggests that berberine (BBR) exhibits anti-cancer effects in hepatocellular carcinoma (HCC). However, the mechanisms by which BBR regulates the immunological microenvironment in HCC has not been fully elucidated. In this study, a mouse model of orthotopic HCC is established and treated with varying doses of BBR. BBR showed effectiveness in reducing tumor burden in mice with HCC. Cytometry by time-of-flight depicted the alterations in the tumor immune landscape following BBR treatment, revealing the enhancement in the T lymphocytes effector function. In particular, BBR decreased the proportion of TCRbhiPD-1hiCD69+CD27+ effector CD8+ T lymphocytes and increased the proportion of Ly6ChiTCRb+CD69+CD27+CD62L+ central memory CD8+ T lymphocytes. Single-cell RNA sequencing further elucidates the effects of BBR on transcriptional profiles of liver immune cells and confirms the phenotypical heterogeneity of T lymphocytes in HCC immune microenvironment. Additionally, it is found that BBR potentially regulated the antitumor immunity in HCC by modulating the receptor-ligand interaction among immune cells mediated by cytokines. In summary, the findings improve the understanding of BBR's impact on protecting against HCC, emphasizing BBR's role in regulating intrahepatic T cell heterogeneity. BBR has the potential to be a promising therapeutic strategy to hinder the advancement of HCC.
Collapse
Affiliation(s)
- Jiaxiang Hu
- Institute of ImmunologyZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhou311121China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhou310003China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhou310003China
| | - Qingqing Wang
- Institute of ImmunologyZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhou311121China
| |
Collapse
|
15
|
Chen R, Zhou J, Chen B. Imputing abundance of over 2,500 surface proteins from single-cell transcriptomes with context-agnostic zero-shot deep ensembles. Cell Syst 2024; 15:869-884.e6. [PMID: 39243755 PMCID: PMC11423933 DOI: 10.1016/j.cels.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/23/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024]
Abstract
Cell surface proteins serve as primary drug targets and cell identity markers. Techniques such as CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) have enabled the simultaneous quantification of surface protein abundance and transcript expression within individual cells. The published data have been utilized to train machine learning models for predicting surface protein abundance solely from transcript expression. However, the small scale of proteins predicted and the poor generalization ability of these computational approaches across diverse contexts (e.g., different tissues/disease states) impede their widespread adoption. Here, we propose SPIDER (surface protein prediction using deep ensembles from single-cell RNA sequencing), a context-agnostic zero-shot deep ensemble model, which enables large-scale protein abundance prediction and generalizes better to various contexts. Comprehensive benchmarking shows that SPIDER outperforms other state-of-the-art methods. Using the predicted surface abundance of >2,500 proteins from single-cell transcriptomes, we demonstrate the broad applications of SPIDER, including cell type annotation, biomarker/target identification, and cell-cell interaction analysis in hepatocellular carcinoma and colorectal cancer. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Ruoqiao Chen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Jiayu Zhou
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Bin Chen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA.
| |
Collapse
|
16
|
Ye Z, Li W, Ouyang H, Ruan Z, Liu X, Lin X, Chen X. Natural killer (NK) cells-related gene signature reveals the immune environment heterogeneity in hepatocellular carcinoma based on single cell analysis. Discov Oncol 2024; 15:406. [PMID: 39231877 PMCID: PMC11374944 DOI: 10.1007/s12672-024-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
The early diagnosis of liver cancer is crucial for the treatment and depends on the coordinated use of several test procedures. Early diagnosis is crucial for precision therapy in the treatment of the hepatocellular carcinoma (HCC). Therefore, in this study, the NK cell-related gene prediction model was used to provide the basis for precision therapy at the gene level and a novel basis for the treatment of patients with liver cancer. Natural killer (NK) cells have innate abilities to recognize and destroy tumor cells and thus play a crucial function as the "innate counterpart" of cytotoxic T cells. The natural killer (NK) cells is well recognized as a prospective approach for tumor immunotherapy in treating patients with HCC. In this research, we used publicly available databases to collect bioinformatics data of scRNA-seq and RNA-seq from HCC patients. To determine the NK cell-related genes (NKRGs)-based risk profile for HCC, we isolated T and natural killer (NK) cells and subjected them to analysis. Uniform Manifold Approximation and Projection plots were created to show the degree of expression of each marker gene and the distribution of distinct clusters. The connection between the immunotherapy response and the NKRGs-based signature was further analyzed, and the NKRGs-based signature was established. Eventually, a nomogram was developed using the model and clinical features to precisely predict the likelihood of survival. The prognosis of HCC can be accurately predicted using the NKRGs-based prognostic signature, and thorough characterization of the NKRGs signature of HCC may help to interpret the response of HCC to immunotherapy and propose a novel tumor treatment perspective.
Collapse
Affiliation(s)
- Zhirong Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Guangdong Medical University, No. 12, Minyou Road, Xiashan District, Zhanjiang, 524000, Guangdong, China
| | - Wenjun Li
- Department of Anesthesia, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, 528400, China
| | - Hao Ouyang
- Department of Clinical Laboratory, Dongguan Binhaiwan Central Hospital, Dongguan, 523903, Guangdong, China
| | - Zikang Ruan
- Department of Hepatobiliary Surgery, The People's Hospital of Gaozhou, No. 89, Xiguan Road, Gaozhou, Maoming, 525200, Guangdong, China
| | - Xun Liu
- Department of Clinical Laboratory, The People's Hospital of Xingning, Meizhou, 514500, Guangdong, China
| | - Xiaoxia Lin
- Department of Hepatobiliary Surgery, The People's Hospital of Gaozhou, No. 89, Xiguan Road, Gaozhou, Maoming, 525200, Guangdong, China.
| | - Xuanting Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Guangdong Medical University, No. 12, Minyou Road, Xiashan District, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
17
|
Cai S, Gou Y, Chen Y, Hou X, Zhang J, Bi C, Gu P, Yang M, Zhang H, Zhong W, Yuan H. Luteolin exerts anti-tumour immunity in hepatocellular carcinoma by accelerating CD8 + T lymphocyte infiltration. J Cell Mol Med 2024; 28:e18535. [PMID: 39267250 PMCID: PMC11392827 DOI: 10.1111/jcmm.18535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 09/17/2024] Open
Abstract
Luteolin, a commonly used traditional Chinese medicine, has been utilized for several decades in the treatment of hepatocellular carcinoma (HCC). Previous research has demonstrated its anti-tumour efficacy, but its underlying mechanism remains unclear. This study aimed to assess the therapeutic effects of luteolin in H22 tumour-bearing mice. luteolin effectively inhibited the growth of solid tumours in a well-established mouse model of HCC. High-throughput sequencing revealed that luteolin treatment could enhance T-cell activation, cell chemotaxis and cytokine production. In addition, luteolin helped sustain a high ratio of CD8+ T lymphocytes in the spleen, peripheral blood and tumour tissues. The effects of luteolin on the phenotypic and functional changes in tumour-infiltrating CD8+ T lymphocytes were also investigated. Luteolin restored the cytotoxicity of tumour-infiltrating CD8+ T lymphocytes in H22 tumour-bearing mice. The CD8+ T lymphocytes exhibited intensified phenotype activation and increased production of granzyme B, IFN-γ and TNF-α in serum. The combined administration of luteolin and the PD-1 inhibitor enhanced the anti-tumour effects in H22 tumour-bearing mice. Luteolin could exert an anti-tumour immune response by inducing CD8+ T lymphocyte infiltration and enhance the anti-tumour effects of the PD-1 inhibitor on H22 tumour-bearing mice.
Collapse
Affiliation(s)
- Shijiao Cai
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Yidan Gou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanyan Chen
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoran Hou
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Chongwen Bi
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Gu
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Miao Yang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Hanxu Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengjie Yuan
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
18
|
Xie T, Huang A, Yan H, Ju X, Xiang L, Yuan J. Artificial intelligence: illuminating the depths of the tumor microenvironment. J Transl Med 2024; 22:799. [PMID: 39210368 PMCID: PMC11360846 DOI: 10.1186/s12967-024-05609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Artificial intelligence (AI) can acquire characteristics that are not yet known to humans through extensive learning, enabling to handle large amounts of pathology image data. Divided into machine learning and deep learning, AI has the advantage of handling large amounts of data and processing image analysis, consequently it also has a great potential in accurately assessing tumour microenvironment (TME) models. With the complex composition of the TME, in-depth study of TME contributes to new ideas for treatment, assessment of patient response to postoperative therapy and prognostic prediction. This leads to a review of the development of AI's application in TME assessment in this study, provides an overview of AI techniques applied to medicine, delves into the application of AI in analysing the quantitative and spatial location characteristics of various cells (tumour cells, immune and non-immune cells) in the TME, reveals the predictive prognostic value of TME and provides new ideas for tumour therapy, highlights the great potential for clinical applications. In addition, a discussion of its limitations and encouraging future directions for its practical clinical application is presented.
Collapse
Affiliation(s)
- Ting Xie
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Aoling Huang
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Xianli Ju
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Lingyan Xiang
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
19
|
Chi XX, Ye P, Cao NQ, Hwang WL, Cha JH, Hung MC, Hsu KW, Yan XW, Yang WH. PPIH as a poor prognostic factor increases cell proliferation and m6A RNA methylation in hepatocellular carcinoma. Am J Cancer Res 2024; 14:3733-3756. [PMID: 39267679 PMCID: PMC11387852 DOI: 10.62347/nzij5785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
RNA-binding proteins (RBPs) play a crucial role in the biological processes of liver hepatocellular carcinoma (LIHC). Peptidyl-prolyl cis-trans isomerase H (PPIH), an RBP, possesses prolyl isomerase activity and functions as a protein chaperone. The relationship between PPIH and LIHC has not yet been fully elucidated. This study elucidated potential mechanisms through which PPIH affects the prognosis of LIHC. Bioinformatics analysis and in vitro experiments revealed that PPIH expression was higher in LIHC tissues than in normal tissues. PPIH was identified as an independent prognostic factor, with high PPIH expression being associated with worse prognoses. Moreover, PPIH increased the m6A RNA methylation level and promoted cell proliferation by modulating DNA replication and the expression of cell cycle-related genes in LIHC cells. Bioinformatics analysis also revealed that PPIH expression increased immune cell infiltration and the expression of immune checkpoint proteins. Collectively, these findings indicate that PPIH might promote LIHC progression by enhancing the m6A RNA methylation level, increasing cell proliferation, and altering the tumor immune microenvironment. Our study demonstrates that PPIH, as a poor prognostic factor, may lead to LIHC malignancy through multiple pathways. Further in-depth research on this topic is warranted.
Collapse
Affiliation(s)
- Xiao-Xia Chi
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University Guangzhou 510095, Guangdong, China
- Department of Family Medicine, The University of Hong Kong-Shenzhen Hospital Shenzhen 518053, Guangdong, China
| | - Peng Ye
- Infection Medicine Research Institute of Panyu District, The Affiliated Panyu Central Hospital of Guangzhou Medical University Guangzhou 511400, Guangdong, China
| | - Neng-Qi Cao
- Department of General Surgery, Nanjing Lishui People's Hospital Nanjing 211200, Jiangsu, China
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, and Cancer Progression Research Center, National Yang Ming Chiao Tung University Taipei 112304, Taiwan
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University Incheon 22212, The Republic of Korea
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University Taichung 406040, Taiwan
| | - Kai-Wen Hsu
- Institute of Translational Medicine and New Drug Development, China Medical University Taichung 404328, Taiwan
| | - Xiu-Wen Yan
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University Guangzhou 510095, Guangdong, China
| | - Wen-Hao Yang
- Graduate Institute of Cell Biology, and Cancer Biology and Precision Therapeutics Center, China Medical University Taichung 404327, Taiwan
| |
Collapse
|
20
|
Chen R, Zhou J, Chen B. Imputing abundance of over 2500 surface proteins from single-cell transcriptomes with context-agnostic zero-shot deep ensembles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605432. [PMID: 39131290 PMCID: PMC11312525 DOI: 10.1101/2024.07.31.605432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cell surface proteins serve as primary drug targets and cell identity markers. The emergence of techniques like CITE-seq has enabled simultaneous quantification of surface protein abundance and transcript expression for multimodal data analysis within individual cells. The published data have been utilized to train machine learning models for predicting surface protein abundance based solely from transcript expression. However, the small scale of proteins predicted and the poor generalization ability for these computational approaches across diverse contexts, such as different tissues or disease states, impede their widespread adoption. Here we propose SPIDER (surface protein prediction using deep ensembles from single-cell RNA-seq), a context-agnostic zero-shot deep ensemble model, which enables the large-scale prediction of cell surface protein abundance and generalizes better to various contexts. Comprehensive benchmarking shows that SPIDER outperforms other state-of-the-art methods. Using the predicted surface abundance of >2500 proteins from single-cell transcriptomes, we demonstrate the broad applications of SPIDER including cell type annotation, biomarker/target identification, and cell-cell interaction analysis in hepatocellular carcinoma and colorectal cancer.
Collapse
Affiliation(s)
- Ruoqiao Chen
- Department of Pharmacology and Toxicology, Michigan State University, MI, USA
| | - Jiayu Zhou
- Department of Computer Science and Engineering, Michigan State University, MI, USA
| | - Bin Chen
- Department of Pharmacology and Toxicology, Michigan State University, MI, USA
- Department of Computer Science and Engineering, Michigan State University, MI, USA
- Department of Pediatrics and Human Development, Michigan State University, MI, USA
| |
Collapse
|
21
|
Liu L, Chen J, Ye F, Chu F, Rao C, Wang Y, Yan Y, Wu J. Prognostic value of oxidative phosphorylation-related genes in hepatocellular carcinoma. Discov Oncol 2024; 15:258. [PMID: 38960931 PMCID: PMC11222354 DOI: 10.1007/s12672-024-01129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is the most prevalent malignancies worldwide. Recently, oxidative phosphorylation (OXPHOS) has received extensive concern as an emerging target in antitumor therapy. However, the OXPHOS-involved underlying genes and clinical utilization in HCC remain worth exploring. The present research aimed to create an OXPHOS-relevant signature in HCC. PATIENTS AND METHODS In this study, the prognostic signature genes linked with OXPHOS were identified, and prognostic models were built using least absolute shrinkage and selection operator (LASSO) cox regression analysis. Furthermore, the combination study of immune microenvironment and signature genes looked into the involvement of immune cells in signature-based genes in HCC. Following that, chemotherapeutic drug sensitivity and immunotherapy analysis was implemented to predict clinical efficacy in HCC patients. Finally, clinical samples were collected to measure the expression of OXPHOS-related signature genes. RESULTS Following a series of screens, six prognostic signature genes related with OXPHOS were identified: MRPS23, MPV17, MAPK3, IGF2BP2, CDK5, and IDH2, on which a risk model was built. The findings revealed a significant drop in the survival rate of HCC patients as their risk score increased. Meanwhile, independent prognostic study demonstrated that the risk score could accurately identify HCC patients. Immuno-microenvironmental correlation research suggested that the prognostic characteristics could serve as a reference index for both immunotherapy and chemotherapy. Finally, RT-qPCR exhibited a trend in signature gene expression that was consistent with the results. CONCLUSION In this study, a total of six prognostic genes associated with OXPHOS were selected and a prognostic model was constructed, providing an essential reference for the study of OXPHOS in HCC.
Collapse
Affiliation(s)
- Luzheng Liu
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Jiacheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Fei Ye
- Department of Blood Cell Therapy, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Fengran Chu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Chaoluan Rao
- Department of Nursing, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Yanggang Yan
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China.
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
22
|
Qin LJ, Xu H, Li LP, Li SH, Xu SY, Chen K, Yang T, Wang FH, Zuo L, Zeng L, Wang HY. CD20 highCD138 low tumor-infiltrating lymphocytes predominantly related to cytokine‒cytokine receptor interactions are associated with favorable outcomes in neuroblastoma patients. Heliyon 2024; 10:e30901. [PMID: 38774103 PMCID: PMC11107243 DOI: 10.1016/j.heliyon.2024.e30901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
Recent advances have revealed that the role of the immune system is prominent in the antitumor response. In the present study, it is aimed to provide an expression profile of tumor-infiltrating lymphocytes (TILs), including mature B cells, plasma cells, and their clinical relevance in neuroblastoma. The expression of CD20 and CD138 was analyzed in the Cangelosi786 dataset (n = 769) as a training dataset and in our cohort (n = 120) as a validation cohort. CD20 high expression was positively associated with favorable overall survival (OS) and event-free survival (EFS) (OS: P < 0.001; EFS: P < 0.001) in the training dataset, whereas CD138 high expression was associated with poor OS and EFS (OS: P < 0.001; EFS: P < 0.001) in both the training and validation datasets. Accordingly, a combined pattern of CD20 and CD138 expression was developed, whereby neuroblastoma patients with CD20highCD138low expression had a consistently favorable OS and EFS compared with those with CD20lowCD138high expression in both the training and validation cohorts (P < 0.0001 and P < 0.01, respectively). Examination of potential molecular functions revealed that signaling pathways, including cytokine‒cytokine receptor interactions, chemokine, and the NF-kappa B signaling pathways, were involved. Differentially expressed genes, such as BMP7, IL7R, BIRC3, CCR7, CXCR5, CCL21, and CCL19, predominantly play important roles in predicting the survival of neuroblastoma patients. Our study proposes that a new combination of CD20 and CD138 signatures is associated with neuroblastoma patient survival. The related signaling pathways reflect the close associations among the number of TILs, cytokine abundance and patient outcomes and provide therapeutic insights into neuroblastoma.
Collapse
Affiliation(s)
- Liang-Jun Qin
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| | - Hui Xu
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| | - Li-Ping Li
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| | - Shu-Hua Li
- Department of Paediatric Outpatient, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| | - Shuo-Yu Xu
- Bio-totem Pte. Ltd., Foshan, 528231, China
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kai Chen
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| | - Feng-Hua Wang
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| | - Liandong Zuo
- Department of Andrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Liang Zeng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| | - Hai-Yun Wang
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China
| |
Collapse
|
23
|
Galasso L, Cerrito L, Maccauro V, Termite F, Ainora ME, Gasbarrini A, Zocco MA. Hepatocellular Carcinoma and the Multifaceted Relationship with Its Microenvironment: Attacking the Hepatocellular Carcinoma Defensive Fortress. Cancers (Basel) 2024; 16:1837. [PMID: 38791916 PMCID: PMC11119751 DOI: 10.3390/cancers16101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatocellular carcinoma is a malignant tumor that originates from hepatocytes in an inflammatory substrate due to different degrees of liver fibrosis up to cirrhosis. In recent years, there has been growing interest in the role played by the complex interrelationship between hepatocellular carcinoma and its microenvironment, capable of influencing tumourigenesis, neoplastic growth, and its progression or even inhibition. The microenvironment is made up of an intricate network of mesenchymal cells, immune system cells, extracellular matrix, and growth factors, as well as proinflammatory cytokines and translocated bacterial products coming from the intestinal microenvironment via the enterohepatic circulation. The aim of this paper is to review the role of the HCC microenvironment and describe the possible implications in the choice of the most appropriate therapeutic scheme in the prediction of tumor response or resistance to currently applied treatments and in the possible development of future therapeutic perspectives, in order to circumvent resistance and break down the tumor's defensive fort.
Collapse
Affiliation(s)
- Linda Galasso
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
| | - Lucia Cerrito
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Valeria Maccauro
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
| | - Fabrizio Termite
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy (L.C.); (V.M.); (A.G.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
24
|
Ali FEM, Ibrahim IM, Althagafy HS, Hassanein EHM. Role of immunotherapies and stem cell therapy in the management of liver cancer: A comprehensive review. Int Immunopharmacol 2024; 132:112011. [PMID: 38581991 DOI: 10.1016/j.intimp.2024.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Liver cancer (LC) is the sixth most common disease and the third most common cause of cancer-related mortality. The WHO predicts that more than 1 million deaths will occur from LC by 2030. Hepatocellular carcinoma (HCC) is a common form of primary LC. Today, the management of LC involves multiple disciplines, and multimodal therapy is typically selected on an individual basis, considering the intricate interactions between the patient's overall health, the stage of the tumor, and the degree of underlying liver disease. Currently, the treatment of cancers, including LC, has undergone a paradigm shift in the last ten years because of immuno-oncology. To treat HCC, immune therapy approaches have been developed to enhance or cause the body's natural immune response to specifically target tumor cells. In this context, immune checkpoint pathway inhibitors, engineered cytokines, adoptive cell therapy, immune cells modified with chimeric antigen receptors, and therapeutic cancer vaccines have advanced to clinical trials and offered new hope to cancer patients. The outcomes of these treatments are encouraging. Additionally, treatment using stem cells is a new approach for restoring deteriorated tissues because of their strong differentiation potential and capacity to release cytokines that encourage cell division and the formation of blood vessels. Although there is no proof that stem cell therapy works for many types of cancer, preclinical research on stem cells has shown promise in treating HCC. This review provides a recent update regarding the impact of immunotherapy and stem cells in HCC and promising outcomes.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan.
| | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
25
|
Teng Y, Xu J, Wang Y, Wen N, Ye H, Li B. Combining a glycolysis‑related prognostic model based on scRNA‑Seq with experimental verification identifies ZFP41 as a potential prognostic biomarker for HCC. Mol Med Rep 2024; 29:78. [PMID: 38516783 PMCID: PMC10975023 DOI: 10.3892/mmr.2024.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis, and its heterogeneity affects the response to clinical treatments. Glycolysis is highly associated with HCC therapy and prognosis. The present study aimed to identify a novel biomarker for HCC by exploring the heterogeneity of glycolysis in HCC. The intersection of both marker genes of glycolysis‑related cell clusters from single‑cell RNA sequencing analysis and mRNA data of liver HCC from The Cancer Genome Atlas were used to construct a prognostic model through Cox proportional hazard regression and the least absolute shrinkage and selection operator Cox regression. Data from the International Cancer Genome Consortium were used to validate the results of the analysis. Immune status analysis was then conducted. A significant gene in the prognostic model was identified as a potential biomarker and was verified through in vitro experiments. The results revealed that the glycolysis‑related prognostic model divided patients with HCC into high‑ and low‑risk groups. A nomogram combining the model and clinical features exhibited accurate predictive ability, with an area under the curve of 0.763 at 3 years. The high‑risk group exhibited a higher expression of checkpoint genes and lower tumor immune dysfunction and exclusion scores, suggesting that this group may be more likely to benefit from immunotherapy. The tumor tissues had a higher zinc finger protein (ZFP)41 mRNA and protein expression compared with the adjacent tissues. In vitro analyses revealed that ZFP41 played a crucial role in cell viability, proliferation, migration, invasion and glycolysis. On the whole, the present study demonstrates that the glycolysis‑related prognostic gene, ZFP41, is a potential prognostic biomarker and therapeutic target, and may play a crucial role in glycolysis and malignancy in HCC.
Collapse
Affiliation(s)
- Yu Teng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jianrong Xu
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yaoqun Wang
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ningyuan Wen
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hui Ye
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bei Li
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
26
|
Li CC, Liu M, Lee HP, Wu W, Ma L. Heterogeneity in Liver Cancer Immune Microenvironment: Emerging Single-Cell and Spatial Perspectives. Semin Liver Dis 2024; 44:133-146. [PMID: 38788780 DOI: 10.1055/s-0044-1787152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Primary liver cancer is a solid malignancy with a high mortality rate. The success of immunotherapy has shown great promise in improving patient care and highlights a crucial need to understand the complexity of the liver tumor immune microenvironment (TIME). Recent advances in single-cell and spatial omics technologies, coupled with the development of systems biology approaches, are rapidly transforming the landscape of tumor immunology. Here we review the cellular landscape of liver TIME from single-cell and spatial perspectives. We also discuss the cellular interaction networks within the tumor cell community in regulating immune responses. We further highlight the challenges and opportunities with implications for biomarker discovery, patient stratification, and combination immunotherapies.
Collapse
Affiliation(s)
- Caiyi Cherry Li
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Meng Liu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Hsin-Pei Lee
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Wenqi Wu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
27
|
Shen KY, Zhu Y, Xie SZ, Qin LX. Immunosuppressive tumor microenvironment and immunotherapy of hepatocellular carcinoma: current status and prospectives. J Hematol Oncol 2024; 17:25. [PMID: 38679698 PMCID: PMC11057182 DOI: 10.1186/s13045-024-01549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health concern worldwide, with limited therapeutic options and poor prognosis. In recent years, immunotherapies such as immune checkpoint inhibitors (ICIs) have made great progress in the systemic treatment of HCC. The combination treatments based on ICIs have been the major trend in this area. Recently, dual immune checkpoint blockade with durvalumab plus tremelimumab has also emerged as an effective treatment for advanced HCC. However, the majority of HCC patients obtain limited benefits. Understanding the immunological rationale and exploring novel ways to improve the efficacy of immunotherapy has drawn much attention. In this review, we summarize the latest progress in this area, the ongoing clinical trials of immune-based combination therapies, as well as novel immunotherapy strategies such as chimeric antigen receptor T cells, personalized neoantigen vaccines, oncolytic viruses, and bispecific antibodies.
Collapse
Affiliation(s)
- Ke-Yu Shen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Sun-Zhe Xie
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lun-Xiu Qin
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
28
|
Dakal TC, George N, Xu C, Suravajhala P, Kumar A. Predictive and Prognostic Relevance of Tumor-Infiltrating Immune Cells: Tailoring Personalized Treatments against Different Cancer Types. Cancers (Basel) 2024; 16:1626. [PMID: 38730579 PMCID: PMC11082991 DOI: 10.3390/cancers16091626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
TIICs are critical components of the TME and are used to estimate prognostic and treatment responses in many malignancies. TIICs in the tumor microenvironment are assessed and quantified by categorizing immune cells into three subtypes: CD66b+ tumor-associated neutrophils (TANs), FoxP3+ regulatory T cells (Tregs), and CD163+ tumor-associated macrophages (TAMs). In addition, many cancers have tumor-infiltrating M1 and M2 macrophages, neutrophils (Neu), CD4+ T cells (T-helper), CD8+ T cells (T-cytotoxic), eosinophils, and mast cells. A variety of clinical treatments have linked tumor immune cell infiltration (ICI) to immunotherapy receptivity and prognosis. To improve the therapeutic effectiveness of immune-modulating drugs in a wider cancer patient population, immune cells and their interactions in the TME must be better understood. This study examines the clinicopathological effects of TIICs in overcoming tumor-mediated immunosuppression to boost antitumor immune responses and improve cancer prognosis. We successfully analyzed the predictive and prognostic usefulness of TIICs alongside TMB and ICI scores to identify cancer's varied immune landscapes. Traditionally, immune cell infiltration was quantified using flow cytometry, immunohistochemistry, gene set enrichment analysis (GSEA), CIBERSORT, ESTIMATE, and other platforms that use integrated immune gene sets from previously published studies. We have also thoroughly examined traditional limitations and newly created unsupervised clustering and deconvolution techniques (SpatialVizScore and ProTICS). These methods predict patient outcomes and treatment responses better. These models may also identify individuals who may benefit more from adjuvant or neoadjuvant treatment. Overall, we think that the significant contribution of TIICs in cancer will greatly benefit postoperative follow-up, therapy, interventions, and informed choices on customized cancer medicines.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Nancy George
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India;
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of the City of Hope, Monrovia, CA 91010, USA;
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O. 690525, Kerala, India;
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| |
Collapse
|
29
|
Li K, Zhang C, Zhou R, Cheng M, Ling R, Xiong G, Ma J, Zhu Y, Chen S, Chen J, Chen D, Peng L. Single cell analysis unveils B cell-dominated immune subtypes in HNSCC for enhanced prognostic and therapeutic stratification. Int J Oral Sci 2024; 16:29. [PMID: 38622125 PMCID: PMC11018606 DOI: 10.1038/s41368-024-00292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/17/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by high recurrence or distant metastases rate and the prognosis is challenging. There is mounting evidence that tumor-infiltrating B cells (TIL-Bs) have a crucial, synergistic role in tumor control. However, little is known about the role TIL-Bs play in immune microenvironment and the way TIL-Bs affect the outcome of immune checkpoint blockade. Using single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, the study identified distinct gene expression patterns in TIL-Bs. HNSCC samples were categorized into TIL-Bs inhibition and TIL-Bs activation groups using unsupervised clustering. This classification was further validated with TCGA HNSCC data, correlating with patient prognosis, immune cell infiltration, and response to immunotherapy. We found that the B cells activation group exhibited a better prognosis, higher immune cell infiltration, and distinct immune checkpoint levels, including elevated PD-L1. A prognostic model was also developed and validated, highlighting four genes as potential biomarkers for predicting survival outcomes in HNSCC patients. Overall, this study provides a foundational approach for B cells-based tumor classification in HNSCC, offering insights into targeted treatment and immunotherapy strategies.
Collapse
Affiliation(s)
- Kang Li
- State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Caihua Zhang
- State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruoxing Zhou
- State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Maosheng Cheng
- State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Gan Xiong
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jieyi Ma
- State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Zhu
- State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuang Chen
- State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Demeng Chen
- State Key Laboratory of Oncology in South China, Department of Oral and Maxillofacial Surgery; Institute of Precision Medicine; Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Liang Peng
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
30
|
Santagata S, Rea G, Castaldo D, Napolitano M, Capiluongo A, D'Alterio C, Trotta AM, Ieranò C, Portella L, Di Maro S, Tatangelo F, Albino V, Guarino R, Cutolo C, Izzo F, Scala S. Hepatocellular carcinoma (HCC) tumor microenvironment is more suppressive than colorectal cancer liver metastasis (CRLM) tumor microenvironment. Hepatol Int 2024; 18:568-581. [PMID: 37142825 PMCID: PMC11014815 DOI: 10.1007/s12072-023-10537-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/08/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND PURPOSE While HCC is an inflammation-associated cancer, CRLM develops on permissive healthy liver microenvironment. To evaluate the immune aspects of these two different environments, peripheral blood-(PB), peritumoral-(PT) and tumoral tissues-(TT) from HCC and CRLM patients were evaluated. METHODS 40 HCC and 34 CRLM were enrolled and freshly TT, PT and PB were collected at the surgery. PB-, PT- and TT-derived CD4+CD25+ Tregs, M/PMN-MDSC and PB-derived CD4+CD25- T-effector cells (Teffs) were isolated and characterized. Tregs' function was also evaluated in the presence of the CXCR4 inhibitor, peptide-R29, AMD3100 or anti-PD1. RNA was extracted from PB/PT/TT tissues and tested for FOXP3, CXCL12, CXCR4, CCL5, IL-15, CXCL5, Arg-1, N-cad, Vim, CXCL8, TGFβ and VEGF-A expression. RESULTS In HCC/CRLM-PB, higher number of functional Tregs, CD4+CD25hiFOXP3+ was detected, although PB-HCC Tregs exert a more suppressive function as compared to CRLM Tregs. In HCC/CRLM-TT, Tregs were highly represented with activated/ENTPD-1+Tregs prevalent in HCC. As compared to CRLM, HCC overexpressed CXCR4 and N-cadherin/vimentin in a contest rich in arginase and CCL5. Monocytic MDSCs were highly represented in HCC/CRLM, while high polymorphonuclear MDSCs were detected only in HCC. Interestingly, the function of CXCR4-PB-Tregs was impaired in HCC/CRLM by the CXCR4 inhibitor R29. CONCLUSION In HCC and CRLM, peripheral blood, peritumoral and tumoral tissues Tregs are highly represented and functional. Nevertheless, HCC displays a more immunosuppressive TME due to Tregs, MDSCs, intrinsic tumor features (CXCR4, CCL5, arginase) and the contest in which it develops. As CXCR4 is overexpressed in HCC/CRLM tumor/TME cells, CXCR4 inhibitors may be considered for double hit therapy in liver cancer patients.
Collapse
Affiliation(s)
- Sara Santagata
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 80131, Naples, Italy
| | - Giuseppina Rea
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 80131, Naples, Italy
| | - Daniela Castaldo
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 80131, Naples, Italy
| | - Maria Napolitano
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 80131, Naples, Italy
| | - Anna Capiluongo
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 80131, Naples, Italy
| | - Crescenzo D'Alterio
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 80131, Naples, Italy
| | - Anna Maria Trotta
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 80131, Naples, Italy
| | - Caterina Ieranò
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 80131, Naples, Italy
| | - Luigi Portella
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 80131, Naples, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Fabiana Tatangelo
- Pathology, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 80131, Naples, Italy
| | - Vittorio Albino
- Divisions of Hepatobiliary Surgery, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 80131, Naples, Italy
| | - Rita Guarino
- Divisions of Hepatobiliary Surgery, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 80131, Naples, Italy
| | - Carmen Cutolo
- Divisions of Hepatobiliary Surgery, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 80131, Naples, Italy
| | - Francesco Izzo
- Divisions of Hepatobiliary Surgery, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 80131, Naples, Italy
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 80131, Naples, Italy.
| |
Collapse
|
31
|
Ji D, Lu S, Zhang H, Li Z, Wang S, Miao T, Jiang Z, Ao L. Bulk and single-cell transcriptome reveal the immuno-prognostic subtypes and tumour microenvironment heterogeneity in HCC. Liver Int 2024; 44:979-995. [PMID: 38293784 DOI: 10.1111/liv.15828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND & AIMS Accumulating evidences suggest tumour microenvironment (TME) profoundly influence clinical outcome in hepatocellular carcinoma (HCC). Existing immune subtypes are susceptible to batch effects, and integrative analysis of bulk and single-cell transcriptome is helpful to recognize immune subtypes and TME in HCC. METHODS Based on the relative expression ordering (REO) of 1259 immune-related genes, an immuno-prognostic signature was developed and validated in 907 HCC samples from five bulk transcriptomic cohorts, including 72 in-house samples. The machine learning models based on subtype-specific gene pairs with stable REOs were constructed to jointly predict immuno-prognostic subtypes in single-cell RNA-seq data and validated in another single-cell data. Then, cancer characteristics, immune landscape, underlying mechanism and therapeutic benefits between subtypes were analysed. RESULTS An immune-related signature with 29 gene pairs stratified HCC samples individually into two risk subgroups (C1 and C2), which was an independent prognostic factor for overall survival. The machine learning models verified the immune subtypes from five bulk cohorts to two single-cell transcriptomic data. Integrative analysis revealed that C1 had poorer outcomes, higher CNV burden and malignant scores, higher sensitivity to sorafenib, and exhibited an immunosuppressive phenotype with more regulators, e.g., myeloid-derived suppressor cells (MDSCs), Mø_SPP1, while C2 was characterized with better outcomes, higher metabolism, more benefit from immunotherapy, and displayed active immune with more effectors, e.g., tumour infiltrating lymphocyte and dendritic cell. Moreover, both two single-cell data revealed the crosstalk of SPP1-related L-R pairs between cancer and immune cells, especially SPP1-CD44, might lead to immunosuppression in C1. CONCLUSIONS The REO-based immuno-prognostic subtypes were conducive to individualized prognosis prediction and treatment options for HCC. This study paved the way for understanding TME heterogeneity between immuno-prognostic subtypes of HCC.
Collapse
Affiliation(s)
- Daihan Ji
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Shuting Lu
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Huarong Zhang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Zhenli Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Shenglin Wang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Tongjie Miao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Zhiyu Jiang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Lu Ao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| |
Collapse
|
32
|
Tan J, Yu X. A pyroptosis-related lncRNA-based prognostic index for hepatocellular carcinoma by relative expression orderings. Transl Cancer Res 2024; 13:1406-1424. [PMID: 38617506 PMCID: PMC11009817 DOI: 10.21037/tcr-23-1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/29/2024] [Indexed: 04/16/2024]
Abstract
Background Hepatocellular carcinoma (HCC) is an invasive malignant tumor, and pyroptosis makes an important contribution to the pathology and progression of liver cancer. Many prognostic models have been proposed for HCC based on the quantitative expression level of candidate genes, which are unsuitable for clinical application due to their vulnerability against experimental batch effects. The aim of this study was to develop a novel pyroptosis-related long non-coding RNA (lncRNA)-based prognostic index (PLPI) for HCC based on relative expression orderings (REOs). Methods Firstly, the pyroptosis-related lncRNAs were identified through the Wilcoxon rank-sum test and gene co-expression analyses. Then, the novel prognostic model PLPI was constructed by pyroptosis-related lncRNA pairs, which were identified by multiple machine learning algorithms. Gene set enrichment, somatic mutation, and drug sensitivity analyses were conducted to measure the differences between high- and low-risk patients. Multiple immune analyses were used to explore the association between PLPI and the immunological microenvironment. Results In this study, a novel prognostic model PLPI based on 10 pyroptosis-related lncRNA pairs was constructed, which was proven to be an independent prognostic risk factor. The receiver operating characteristic (ROC) curves showed that the model had a good prognostic ability in the training, testing, and external set, respectively [5-year area under the curve (AUC) =0.73, 5-year AUC =0.81, 4-year AUC =0.79]. The results of survival, somatic mutation, and immune analyses showed that the patients in the low-risk group had a better prognosis, lower rates of somatic mutation, and better immune cell infiltration. Personalized chemotherapeutic drugs were also identified for the patients with HCC. Conclusions The novel PLPI not only greatly predicted the prognosis of patients with HCC but could also offer novel ideas and approaches for the therapeutic management of HCC.
Collapse
Affiliation(s)
- Jinhua Tan
- School of Sciences, Shanghai Institute of Technology, Shanghai, China
| | - Xiaoqing Yu
- School of Sciences, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
33
|
Chandnani N, Gupta I, Mandal A, Sarkar K. Participation of B cell in immunotherapy of cancer. Pathol Res Pract 2024; 255:155169. [PMID: 38330617 DOI: 10.1016/j.prp.2024.155169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Even though their effector roles extend beyond conventional humoral immunity, B and plasma cells may exhibit antitumor effects through antibody-dependent cell cytotoxicity (ADCC) and activation of the complement cascade. Depending on whether they are positioned in immature or mature compartments termed tertiary lymphoid structures (TLS), which include T cells, B cells are believed to play numerous functions in modulating the immune system's capacity to destroy cancer cells. These formations represent a process of lymphoid neogenesis that takes place in peripheral tissues in response to prolonged exposure to inflammatory signals. Activated in the germinal centres of tertiary lymphoid structures, B cells may directly present tumor-associated antigens to T cells, make antibodies that enhance antigen presentation to T cells, or kill tumour cells, resulting in a favourable therapeutic effect. Immune complexes may also enhance inflammation, angiogenesis, and immunosuppression via the activation of macrophages and complement, resulting in detrimental effects. The functional variety of B-cell subsets includes professional antigen-presenting cells, regulatory cells, memory populations, and plasma cells that produce antibodies. Importantly, antibodies may independently generate innate immune responses and the cancer immunity cycle. B cells and B-cell-mediated antibody responses constitute the largely underestimated second arm of the adaptive immune system and unquestionably need more consideration in cancer. This article reviews the known roles of B lymphocytes in the tumour microenvironment, their contribution to anticancer activity of immunotherapies, and their significance in overall survival of cancer patients. In addition to producing antibodies, B cells regulate the immune system and serve as effective antigen-presenting cells.
Collapse
Affiliation(s)
- Nikhil Chandnani
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ishika Gupta
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ayush Mandal
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
34
|
Meng J, Tan JYT, Joseph CR, Ye J, Lim JCT, Goh D, Xue Y, Lim X, Koh VCY, Wee F, Tay TKY, Chan JY, Ng CCY, Iqbal J, Lau MC, Lim HE, Toh HC, Teh BT, Dent RA, Tan PH, Yeong JPS. The Prognostic Value of CD39 as a Marker of Tumor-Specific T Cells in Triple-Negative Breast Cancer in Asian Women. J Transl Med 2024; 104:100303. [PMID: 38103870 DOI: 10.1016/j.labinv.2023.100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has a poor prognosis with limited therapeutic options available for affected patients. Efforts are ongoing to identify surrogate markers for tumor-specific CD8+ T cells that can predict the response to immune checkpoint inhibitor (ICI) therapies, such as programmed cell death protein 1 or programmed cell death ligand-1 blockade. We have previously identified tumor-specific CD39+CD8+ T cells in non-small cell lung cancer that might help predict patient responses to programmed cell death protein 1 or programmed cell death ligand-1 blockade. Based on this finding, we conducted a comparative interrogation of TNBC in an Asian cohort to evaluate the potential of CD39 as a surrogate marker of tumor-specific CD8+ T cells. Using ICI-treated TNBC mouse models (n = 24), flow cytometric analyses of peripheral blood mononuclear cells and tumor-infiltrating lymphocytes revealed that >99% of tumor-specific CD8+ T cells also expressed CD39. To investigate the relationship between CD39+CD8+ T-cell density and CD39 expression with disease prognosis, we performed multiplex immunohistochemistry staining on treatment-naive human TNBC tissues (n = 315). We saw that the proportion of CD39+CD8+ T cells in human TNBC tumors correlated with improved overall survival, as did the densities of other CD39+ immune cell infiltrates, such as CD39+CD68+ macrophages. Finally, increased CD39 expression on CD8+ T cells was also found to predict the response to ICI therapy (pembrolizumab) in a separate cohort of 11 TNBC patients. These findings support the potential of CD39+CD8+ T-cell density as a prognostic factor in Asian TNBC patients.
Collapse
Affiliation(s)
- Jia Meng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Jing Ying Tira Tan
- Duke-NUS Medical School, Singapore, Republic of Singapore; National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Craig Ryan Joseph
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Jiangfeng Ye
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Denise Goh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Yuezhen Xue
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Xinru Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Valerie Cui Yun Koh
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Republic of Singapore
| | - Felicia Wee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Timothy Kwang Yong Tay
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Republic of Singapore
| | | | | | - Jabed Iqbal
- Duke-NUS Medical School, Singapore, Republic of Singapore; Department of Anatomical Pathology, Singapore General Hospital, Singapore, Republic of Singapore
| | - Mai Chan Lau
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Hsuen Elaine Lim
- National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Han Chong Toh
- National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Bin Tean Teh
- National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Rebecca Alexandra Dent
- Duke-NUS Medical School, Singapore, Republic of Singapore; National Cancer Centre Singapore, Singapore, Republic of Singapore.
| | - Puay Hoon Tan
- KK Women's and Children's Hospital, Singapore, Republic of Singapore; Luma Women's Imaging Centre/Medical Centre, Singapore, Republic of Singapore.
| | - Joe Poh Sheng Yeong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Duke-NUS Medical School, Singapore, Republic of Singapore; National Cancer Centre Singapore, Singapore, Republic of Singapore; Department of Anatomical Pathology, Singapore General Hospital, Singapore, Republic of Singapore.
| |
Collapse
|
35
|
Wang YY, Shen MM, Gao J. Metadherin promotes stem cell phenotypes and correlated with immune infiltration in hepatocellular carcinoma. World J Gastroenterol 2024; 30:901-918. [PMID: 38516242 PMCID: PMC10950638 DOI: 10.3748/wjg.v30.i8.901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Metadherin (MTDH) is a key oncogene in most cancer types, including hepatocellular carcinoma (HCC). Notably, MTDH does not affect the stemness pheno-type or immune infiltration of HCC. AIM To explore the role of MTDH on stemness and immune infiltration in HCC. METHODS MTDH expression in HCC tissues was detected using TCGA and GEO databases. Immunohistochemistry was used to analyze the tissue samples. MTDH was stably knocked down or overexpressed by lentiviral transfection in the two HCC cell lines. The invasion and migration abilities of HCC cells were evaluated using Matrigel invasion and wound healing assays. Next, we obtained liver cancer stem cells from the spheroids by culturing them in a serum-free medium. Gene expression was determined by western blotting and quantitative reverse transcri-ption PCR. Flow cytometry, immunofluorescence, and tumor sphere formation assays were used to characterize stem-like cells. The effects of MTDH inhibition on tumor growth were evaluated in vivo. The correlation of MTDH with immune cells, immunomodulators, and chemokines was analyzed using ssGSEA and TISIDB databases. RESULTS HCC tissues expressed higher levels of MTDH than normal liver tissues. High MTDH expression was associated with a poor prognosis. HCC cells overexpressing MTDH exhibited stronger invasion and migration abilities, exhibited a stem cell-like phenotype, and formed spheres; however, MTDH inhibition attenuated these effects. MTDH inhibition suppressed HCC progression and CD133 expression in vivo. MTDH was positively correlated with immature dendritic, T helper 2 cells, central memory CD8+ T, memory B, activated dendritic, natural killer (NK) T, NK, activated CD4+ T, and central memory CD4+ T cells. MTDH was negatively correlated with activated CD8+ T cells, eosinophils, activated B cells, monocytes, macrophages, and mast cells. A positive correlation was observed between the MTDH level and CXCL2 expression, whereas a negative correlation was observed between the MTDH level and CX3CL1 and CXCL12 expression. CONCLUSION High levels of MTDH expression in patients with HCC are associated with poor prognosis, promoting tumor stemness, immune infiltration, and HCC progression.
Collapse
Affiliation(s)
- Yi-Ying Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Mei-Mei Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jian Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
36
|
Zhu JQ, Zhu Y, Qi M, Zeng Y, Liu ZJ, Ding C, Zhang T, Li XL, Han DD, He Q. Granzyme B+ B cells detected by single-cell sequencing are associated with prognosis in patients with intrahepatic cholangiocarcinoma following liver transplantation. Cancer Immunol Immunother 2024; 73:58. [PMID: 38386050 PMCID: PMC10884120 DOI: 10.1007/s00262-023-03609-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/05/2023] [Indexed: 02/23/2024]
Abstract
B cells possess anti-tumor functions mediated by granzyme B, in addition to their role in antigen presentation and antibody production. However, the variations in granzyme B+ B cells between tumor and non-tumor tissues have been largely unexplored. Therefore, we integrated 25 samples from the Gene Expression Omnibus database and analyzed the tumor immune microenvironment. The findings uncovered significant inter- and intra-tumoral heterogeneity. Notably, single-cell data showed higher proportions of granzyme B+ B cells in tumor samples compared to control samples, and these levels were positively associated with disease-free survival. The elevated levels of granzyme B+ B cells in tumor samples resulted from tumor cell chemotaxis through the MIF- (CD74 + CXCR4) signaling pathway. Furthermore, the anti-tumor function of granzyme B+ B cells in tumor samples was adversely affected, potentially providing an explanation for tumor progression. These findings regarding granzyme B+ B cells were further validated in an independent clinic cohort of 40 liver transplant recipients with intrahepatic cholangiocarcinoma. Our study unveils an interaction between granzyme B+ B cells and intrahepatic cholangiocarcinoma, opening up potential avenues for the development of novel therapeutic strategies against this disease.
Collapse
Affiliation(s)
- Ji-Qiao Zhu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Ying Zhu
- Department of Clinical Psychology, Mental Hospital of Jianqu Administration Bureau of Jiangsu Province, Nanjing, 210031, Jiangsu, People's Republic of China
| | - Man Qi
- Pathology Department, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Ye Zeng
- Clinical Lab, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Huazhong University of Science & Technology, Wuhan, 430070, Hubei, People's Republic of China
| | - Zhen-Jia Liu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Cheng Ding
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Tao Zhang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Xian-Liang Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Dong-Dong Han
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China.
| |
Collapse
|
37
|
Pu L, Sun Y, Pu C, Zhang X, Wang D, Liu X, Guo P, Wang B, Xue L, Sun P. Machine learning-based disulfidptosis-related lncRNA signature predicts prognosis, immune infiltration and drug sensitivity in hepatocellular carcinoma. Sci Rep 2024; 14:4354. [PMID: 38388539 PMCID: PMC10883983 DOI: 10.1038/s41598-024-54115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Disulfidptosis a new cell death mode, which can cause the death of Hepatocellular Carcinoma (HCC) cells. However, the significance of disulfidptosis-related Long non-coding RNAs (DRLs) in the prognosis and immunotherapy of HCC remains unclear. Based on The Cancer Genome Atlas (TCGA) database, we used Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression model to construct DRL Prognostic Signature (DRLPS)-based risk scores and performed Gene Expression Omnibus outside validation. Survival analysis was performed and a nomogram was constructed. Moreover, we performed functional enrichment annotation, immune infiltration and drug sensitivity analyses. Five DRLs (AL590705.3, AC072054.1, AC069307.1, AC107959.3 and ZNF232-AS1) were identified to construct prognostic signature. DRLPS-based risk scores exhibited better predictive efficacy of survival than conventional clinical features. The nomogram showed high congruence between the predicted survival and observed survival. Gene set were mainly enriched in cell proliferation, differentiation and growth function related pathways. Immune cell infiltration in the low-risk group was significantly higher than that in the high-risk group. Additionally, the high-risk group exhibited higher sensitivity to Afatinib, Fulvestrant, Gefitinib, Osimertinib, Sapitinib, and Taselisib. In conclusion, our study highlighted the potential utility of the constructed DRLPS in the prognosis prediction of HCC patients, which demonstrated promising clinical application value.
Collapse
Affiliation(s)
- Lei Pu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Yan Sun
- Department of Veterinary Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang, 261071, Shandong, People's Republic of China
| | - Cheng Pu
- School of Martial Arts, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiaoyan Zhang
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Dong Wang
- Jiangsu Vocational Institute of Architectural Technology, Xuzhou, 221116, Jiangsu, People's Republic of China
| | - Xingning Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Pin Guo
- Department of Veterinary Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang, 261071, Shandong, People's Republic of China
| | - Bing Wang
- Department of Oncological Surgery, Minhang Branch of Shanghai Cancer Center, Fudan University, Shanghai, 200240, People's Republic of China.
| | - Liang Xue
- Zhejiang Institute of Sports Science, Hangzhou, 310004, Zhejiang, People's Republic of China.
| | - Peng Sun
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
38
|
Rakké YS, Buschow SI, IJzermans JNM, Sprengers D. Engaging stimulatory immune checkpoint interactions in the tumour immune microenvironment of primary liver cancers - how to push the gas after having released the brake. Front Immunol 2024; 15:1357333. [PMID: 38440738 PMCID: PMC10910082 DOI: 10.3389/fimmu.2024.1357333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the first and second most common primary liver cancer (PLC). For decades, systemic therapies consisting of tyrosine kinase inhibitors (TKIs) or chemotherapy have formed the cornerstone of treating advanced-stage HCC and CCA, respectively. More recently, immunotherapy using immune checkpoint inhibition (ICI) has shown anti-tumour reactivity in some patients. The combination regimen of anti-PD-L1 and anti-VEGF antibodies has been approved as new first-line treatment of advanced-stage HCC. Furthermore, gemcibatine plus cisplatin (GEMCIS) with an anti-PD-L1 antibody is awaiting global approval for the treatment of advanced-stage CCA. As effective anti-tumour reactivity using ICI is achieved in a minor subset of both HCC and CCA patients only, alternative immune strategies to sensitise the tumour microenvironment of PLC are waited for. Here we discuss immune checkpoint stimulation (ICS) as additional tool to enhance anti-tumour reactivity. Up-to-date information on the clinical application of ICS in onco-immunology is provided. This review provides a rationale of the application of next-generation ICS either alone or in combination regimen to potentially enhance anti-tumour reactivity in PLC patients.
Collapse
Affiliation(s)
- Yannick S. Rakké
- Department of Surgery, Erasmus MC-Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Sonja I. Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-Cancer Institute-University Medical Center, Rotterdam, Netherlands
| | - Jan N. M. IJzermans
- Department of Surgery, Erasmus MC-Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-Cancer Institute-University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
39
|
Wang X, Yuan Z, Li Z, He X, Zhang Y, Wang X, Su J, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Yi T, Xiao Z. Key oncogenic signaling pathways affecting tumor-infiltrating lymphocytes infiltration in hepatocellular carcinoma: basic principles and recent advances. Front Immunol 2024; 15:1354313. [PMID: 38426090 PMCID: PMC10902128 DOI: 10.3389/fimmu.2024.1354313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) ranks first among primary liver cancers, and its mortality rate exhibits a consistent annual increase. The treatment of HCC has witnessed a significant surge in recent years, with the emergence of targeted immune therapy as an adjunct to early surgical resection. Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) has shown promising results in other types of solid tumors. This article aims to provide a comprehensive overview of the intricate interactions between different types of TILs and their impact on HCC, elucidate strategies for targeting neoantigens through TILs, and address the challenges encountered in TIL therapies along with potential solutions. Furthermore, this article specifically examines the impact of oncogenic signaling pathways activation within the HCC tumor microenvironment on the infiltration dynamics of TILs. Additionally, a concise overview is provided regarding TIL preparation techniques and an update on clinical trials investigating TIL-based immunotherapy in solid tumors.
Collapse
Affiliation(s)
- Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhengbo Li
- Department of Laboratory Medicine, The Longmatan District People’s Hospital, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
40
|
Wang X, Zhang L, Dong B. Molecular mechanisms in MASLD/MASH-related HCC. Hepatology 2024:01515467-990000000-00739. [PMID: 38349726 PMCID: PMC11323288 DOI: 10.1097/hep.0000000000000786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/16/2024] [Indexed: 03/23/2024]
Abstract
Liver cancer is the third leading cause of cancer-related deaths and ranks as the sixth most prevalent cancer type globally. NAFLD or metabolic dysfunction-associated steatotic liver disease, and its more severe manifestation, NASH or metabolic dysfunction-associated steatohepatitis (MASH), pose a significant global health concern, affecting approximately 20%-25% of the population. The increased prevalence of metabolic dysfunction-associated steatotic liver disease and MASH is parallel to the increasing rates of obesity-associated metabolic diseases, including type 2 diabetes, insulin resistance, and fatty liver diseases. MASH can progress to MASH-related HCC (MASH-HCC) in about 2% of cases each year, influenced by various factors such as genetic mutations, carcinogen exposure, immune microenvironment, and microbiome. MASH-HCC exhibits distinct molecular and immune characteristics compared to other causes of HCC and affects both men and women equally. The management of early to intermediate-stage MASH-HCC typically involves surgery and locoregional therapies, while advanced HCC is treated with systemic therapies, including anti-angiogenic therapies and immune checkpoint inhibitors. In this comprehensive review, we consolidate previous research findings while also providing the most current insights into the intricate molecular processes underlying MASH-HCC development. We delve into MASH-HCC-associated genetic variations and somatic mutations, disease progression and research models, multiomics analysis, immunological and microenvironmental impacts, and discuss targeted/combined therapies to overcome immune evasion and the biomarkers to recognize treatment responders. By furthering our comprehension of the molecular mechanisms underlying MASH-HCC, our goal is to catalyze the advancement of more potent treatment strategies, ultimately leading to enhanced patient outcomes.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Liang Zhang
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bingning Dong
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
41
|
Zhu Z, Yu Y, Wang B, Ding M, Tian Y, Jiang R, Sun G, Han R, Kang X, Yan F, Guo Y. Dietary supplementation with pseudostellaria heterophylla polysaccharide enhanced immunity and changed mRNA expression of spleen in chicks. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105094. [PMID: 37951325 DOI: 10.1016/j.dci.2023.105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
In recent years, increasing interest has focused on natural components extracted from plants, among which plant polysaccharides as natural immunomodulators that can promote animal immunity. The present study was performed to investigate the effect of feed supplement Pseudostellaria Heterophylla Polysaccharide (PHP) on serum Immunoglobulins, T lymphocyte subpopulations, Cytokines and Lysozyme (LZM) activity in chicks. In addition, the influence of PHP on splenic gene expression was investigated by transcriptome sequencing. Four hundred 7-day-old Gushi cocks were randomly divided into four groups in a completely randomized design. The chicks were fed with a basal diet supplemented with 0 (CON-A), 100 (PHP-L), 200 (PHP-M) and 400 (PHP-H) mg/kg PHP. Blood and spleen samples were collected from 6 randomly selected chicks in each group at 14, 21, 28, and 35 days of age. The results showed that compared to the CON-A group, the PHP-M group exhibited significant increases in the levels of IgA, IgG, IgM, CD3, and LZM in the serum at 14, 21, 28, and 35 days (P < 0.05), and at 28 d, there was a significant quadratic relationship between the levels of dietary PHP and the levels of IgG, IgM, IFN-γ, IL-2, CD3, and LZM. Furthermore, a total of 470 differentially expressed genes (DEGs) were identified in spleen from PHP-M and CON-A at 28 d. These DEGs were significantly enriched in the Phagosome, Intestinal immune network for IgA production and Cytokine-cytokine receptor interaction pathways. The present investigation highlights the ameliorating effect of dietary PHP on immunological variables and spleen of chicks, the study suggests that PHP supplementation can enhance immunity and positively impact spleen mRNA expression in chicks.
Collapse
Affiliation(s)
- Zhaoyan Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Yange Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Bingxin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Mengxia Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| |
Collapse
|
42
|
Liu R, Yu X, Cao X, Wang X, Liang Y, Qi W, Ye Y, Zao X. Downregulation of ST6GAL2 Correlates to Liver Inflammation and Predicts Adverse Prognosis in Hepatocellular Carcinoma. J Inflamm Res 2024; 17:565-580. [PMID: 38318244 PMCID: PMC10843983 DOI: 10.2147/jir.s437291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose ST6 Beta-Galactoside Alpha-2,6-Sialyltransferase 2 (ST6GAL2), a member of the sialic acid transferase family, is differentially expressed in diverse cancers. However, it remains poorly understood in tumorigenesis and impacts on immune cell infiltration (ICI) in hepatocellular carcinoma (HCC). Patients and Methods Herein, the expression, diagnosis, prognosis, functional enrichment, genetic alterations, immune characteristics, and targeted drugs of ST6GAL2 in HCC were researched by conducting bioinformatics analysis, in vivo, and in vitro experiments. Results ST6GAL2 was remarkably decreased in HCC compared to non-tumor tissues, portending a poor prognosis associated with high DNA methylation levels. Functional enrichment and GSVA analyses revealed that ST6GAL2 might function through the extracellular matrix, PI3K-Akt signaling pathways, and tumor inflammation signature. We found that ST6GAL2 expression was proportional to ICI, immunostimulator, and immune subtypes. ST6GAL2 expression first increased and then decreased during the progression of liver inflammation to HCC. The dysfunctional experiment indicated that ST6GAL2 might exert immunosuppressive effects during HCC progression through regulating ICI. Several broad-spectrum anticancer drugs were obtained by drug sensitivity prediction analysis of ST6GAL2. Conclusion In conclusion, ST6GAL2 was a reliable prognostic biomarker strongly associated with ICI, and could be a potential immunotherapeutic target for HCC.
Collapse
Affiliation(s)
- Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xudong Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xuyun Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Yijun Liang
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Yong’an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| |
Collapse
|
43
|
Yue Y, Tao J, An D, Shi L. A prognostic exosome-related long non-coding RNAs risk model related to the immune microenvironment and therapeutic responses for patients with liver hepatocellular carcinoma. Heliyon 2024; 10:e24462. [PMID: 38293480 PMCID: PMC10826312 DOI: 10.1016/j.heliyon.2024.e24462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Background Liver hepatocellular carcinoma (LIHC) is the third largest cause of cancer mortality. Exosomes are vital regulators in the development of cancer. However, the mechanisms regarding the association of exosome-related long non-coding RNAs (lncRNAs) in LIHC are not clear. Methods LIHC RNA sequences and exosome-associated genes were collected according to The Cancer Genome Atlas (TCGA), Hepatocellular Carcinoma Cell DataBase (HCCDB) and ExoBCD databases, and exosome-related lncRNAs with prognostic differential expression were screened as candidate lncRNAs using Spearman's method and univariate Cox regression analysis. Candidate lncRNAs were then used to construct a prognostic model and mRNA-lncRNA co-expression network. Differentially expressed genes (DEGs) in low- and high-risk groups were identified and enrichment analysis was performed for up- and down-regulated DEGs, respectively. The expression of immune checkpoint-related genes, immune escape potential and microsatellite instability among different risk groups were further analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) and transwell assay were applied for detecting gene expression levels and invasion and migration ability. Results Based on 17 prognostical exosome-associated lncRNAs, four hub lncRNAs (BACE1_AS, DSTNP2, PLGLA, and SNHG3) were selected for constructing a prognostic model, which was demonstrated to be an independent prognostic variable for LIHC. High risk score was indicative of poorer overall survival, lower anti-tumor immune cells, higher genomic instability, higher immune escape potential, and less benefit for immunotherapy. The qRT-PCR test verified the expression level of the lncRNAs in LIHC cells, and the inhibitory effect of BACE1_AS on immune checkpoint genes levels. BACE1_AS silence also depressed the ability of migration and invasion of LIHC cells. Conclusion The Risk model constructed by exosome-associated lncRNAs could well predict immunotherapy response and prognostic outcomes for LIHC patients. We comprehensively reveal the clinical features of prognostical exosome-related lncRNAs and their potential ability to predict immunotherapeutic response of patients with LIHC and their prognosis.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Jie Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Dan An
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Lei Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| |
Collapse
|
44
|
Ni Y, Lu M, Li M, Hu X, Li F, Wang Y, Xue D. Unraveling the underlying pathogenic factors driving nonalcoholic steatohepatitis and hepatocellular carcinoma: an in-depth analysis of prognostically relevant gene signatures in hepatocellular carcinoma. J Transl Med 2024; 22:72. [PMID: 38238845 PMCID: PMC10795264 DOI: 10.1186/s12967-024-04885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is a progressive manifestation of nonalcoholic fatty liver disease (NAFLD) that can lead to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Despite the growing knowledge of NASH and HCC, the association between the two conditions remains to be fully explored. Bioinformatics has emerged as a valuable approach for identifying disease-specific feature genes, enabling advancements in disease prediction, prevention, and personalized treatment strategies. MATERIALS AND METHODS In this study, we utilized CellChat, copy number karyotyping of aneuploid tumors (CopyKAT), consensus Non-negative Matrix factorization (cNMF), Gene set enrichment analysis (GSEA), Gene set variation analysis (GSVA), Monocle, spatial co-localization, single sample gene set enrichment analysis (ssGSEA), Slingshot, and the Scissor algorithm to analyze the cellular and immune landscape of NASH and HCC. Through the Scissor algorithm, we identified three cell types correlating with disease phenotypic features and subsequently developed a novel clinical prediction model using univariate, LASSO, and multifactor Cox regression. RESULTS Our results revealed that macrophages are a significant pathological factor in the development of NASH and HCC and that the macrophage migration inhibitory factor (MIF) signaling pathway plays a crucial role in cellular crosstalk at the molecular level. We deduced three prognostic genes (YBX1, MED8, and KPNA2), demonstrating a strong diagnostic capability in both NASH and HCC. CONCLUSION These findings shed light on the pathological mechanisms shared between NASH and HCC, providing valuable insights for the development of novel clinical strategies.
Collapse
Affiliation(s)
- Yuan Ni
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China
| | - Maoqing Lu
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China
| | - Ming Li
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China
| | - Xixi Hu
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China
| | - Feng Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Yan Wang
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China.
| | - Dong Xue
- College of Integrated Chinese and Western Medicine (College of Life Sciences), Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
45
|
Huang R, Ding J, Xie WF. Liver cancer. SINUSOIDAL CELLS IN LIVER DISEASES 2024:349-366. [DOI: 10.1016/b978-0-323-95262-0.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
46
|
Lang-Meli J, Neumann-Haefelin C, Thimme R. Targeting virus-specific CD8+ T cells for treatment of chronic viral hepatitis: from bench to bedside. Expert Opin Biol Ther 2024; 24:77-89. [PMID: 38290716 DOI: 10.1080/14712598.2024.2313112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION More than 350 million people worldwide live with chronic viral hepatitis and are thus at risk for severe complications like liver cirrhosis and hepatocellular carcinoma (HCC). To meet the goals of the World Health Organization (WHO) global hepatitis strategy, there is an urgent need for new immunotherapeutic approaches. These are particularly required for chronic hepatitis B virus infection and - B/D coinfection. AREAS COVERED This review summarizes data on mechanisms of CD8+ T cells failure in chronic hepatitis B, D, C and E virus infection. The relative contribution of the different concepts (viral escape, CD8+ T cell exhaustion, defective priming) will be discussed. On this basis, examples for future therapeutic approaches targeting virus-specific CD8+ T cells for the individual hepatitis viruses will be discussed. EXPERT OPINION Immunotherapeutic approaches targeting virus-specific CD8+ T cells have the potential to change clinical practice, especially in chronic hepatitis B virus infection. Further clinical development, however, requires a more detailed understanding of T cell immunology in chronic viral hepatitis. Some important conceptual questions remain to be addressed, e.g. regarding heterogeneity of exhausted virus-specific CD8+ T cells.
Collapse
Affiliation(s)
- Julia Lang-Meli
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
- IMM-PACT Programm, Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
47
|
Wang S, Chen S, Li H, Ben S, Zhao T, Zheng R, Wang M, Gu D, Liu L. Causal genetic regulation of DNA replication on immune microenvironment in colorectal tumorigenesis: Evidenced by an integrated approach of trans-omics and GWAS. J Biomed Res 2023; 38:37-50. [PMID: 38111199 PMCID: PMC10818172 DOI: 10.7555/jbr.37.20230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 12/20/2023] Open
Abstract
The interplay between DNA replication stress and immune microenvironment alterations is known to play a crucial role in colorectal tumorigenesis, but a comprehensive understanding of their association with and relevant biomarkers involved in colorectal tumorigenesis is lacking. To address this gap, we conducted a study aiming to investigate this association and identify relevant biomarkers. We analyzed transcriptomic and proteomic profiles of 904 colorectal tumor tissues and 342 normal tissues to examine pathway enrichment, biological activity, and the immune microenvironment. Additionally, we evaluated genetic effects of single variants and genes on colorectal cancer susceptibility using data from genome-wide association studies (GWASs) involving both East Asian (7062 cases and 195745 controls) and European (24476 cases and 23073 controls) populations. We employed mediation analysis to infer the causal pathway, and applied multiplex immunofluorescence to visualize colocalized biomarkers in colorectal tumors and immune cells. Our findings revealed that both DNA replication activity and the flap structure-specific endonuclease 1 ( FEN1) gene were significantly enriched in colorectal tumor tissues, compared with normal tissues. Moreover, a genetic variant rs4246215 G>T in FEN1 was associated with a decreased risk of colorectal cancer (odds ratio = 0.94, 95% confidence interval: 0.90-0.97, P meta = 4.70 × 10 -9). Importantly, we identified basophils and eosinophils that both exhibited a significantly decreased infiltration in colorectal tumors, and were regulated by rs4246215 through causal pathways involving both FEN1 and DNA replication. In conclusion, this trans-omics incorporating GWAS data provides insights into a plausible pathway connecting DNA replication and immunity, expanding biological knowledge of colorectal tumorigenesis and therapeutic targets.
Collapse
Affiliation(s)
- Sumeng Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huiqin Li
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tingyu Zhao
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Lingxiang Liu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
48
|
Giannone F, Slovic N, Pessaux P, Schuster C, Baumert TF, Lupberger J. Inflammation-related prognostic markers in resected hepatocellular carcinoma. Front Oncol 2023; 13:1267870. [PMID: 38144522 PMCID: PMC10746354 DOI: 10.3389/fonc.2023.1267870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Hepatocellular carcinoma is usually detected late and therapeutic options are unsatisfactory. Despite marked progress in patient care, HCC remains among the deadliest cancers world-wide. While surgical resection remains a key option for early-stage HCC, the 5-year survival rates after surgical resection are limited. One reason for limited outcomes is the lack of reliable prognostic biomarkers to predict HCC recurrence. HCC prognosis has been shown to correlate with different systemic and pathological markers which are associated with patient survival and HCC recurrence. Liver inflammatory processes offer a large variety of systemic and pathological markers which may be exploited to improve the reliability of prognosis and decision making of liver surgeons and hepatologists. The following review aims to dissect the potential tools, targets and prognostic meaning of inflammatory markers in patients with resectable HCC. We analyze changes in circulant cellular populations and assess inflammatory biomarkers as a surrogate of impaired outcomes and provide an overview on predictive gene expression signatures including inflammatory transcriptional patterns, which are representative of poor survival in these patients.
Collapse
Affiliation(s)
- Fabio Giannone
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques Unité Mixte de Recherche (UMR)_S1110, Strasbourg, France
- Unité de Chirurgie Hépato-Biliaire et Pancréatique, Service de Chirurgie Viscérale and Digestive, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire (IHU), Strasbourg, France
| | - Nevena Slovic
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques Unité Mixte de Recherche (UMR)_S1110, Strasbourg, France
| | - Patrick Pessaux
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques Unité Mixte de Recherche (UMR)_S1110, Strasbourg, France
- Unité de Chirurgie Hépato-Biliaire et Pancréatique, Service de Chirurgie Viscérale and Digestive, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire (IHU), Strasbourg, France
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques Unité Mixte de Recherche (UMR)_S1110, Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques Unité Mixte de Recherche (UMR)_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire (IHU), Strasbourg, France
- Service d’hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Joachim Lupberger
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques Unité Mixte de Recherche (UMR)_S1110, Strasbourg, France
| |
Collapse
|
49
|
Cuesta ÁM, Palao N, Bragado P, Gutierrez-Uzquiza A, Herrera B, Sánchez A, Porras A. New and Old Key Players in Liver Cancer. Int J Mol Sci 2023; 24:17152. [PMID: 38138981 PMCID: PMC10742790 DOI: 10.3390/ijms242417152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Liver cancer represents a major health problem worldwide with growing incidence and high mortality, hepatocellular carcinoma (HCC) being the most frequent. Hepatocytes are likely the cellular origin of most HCCs through the accumulation of genetic alterations, although hepatic progenitor cells (HPCs) might also be candidates in specific cases, as discussed here. HCC usually develops in a context of chronic inflammation, fibrosis, and cirrhosis, although the role of fibrosis is controversial. The interplay between hepatocytes, immune cells and hepatic stellate cells is a key issue. This review summarizes critical aspects of the liver tumor microenvironment paying special attention to platelets as new key players, which exert both pro- and anti-tumor effects, determined by specific contexts and a tight regulation of platelet signaling. Additionally, the relevance of specific signaling pathways, mainly HGF/MET, EGFR and TGF-β is discussed. HGF and TGF-β are produced by different liver cells and platelets and regulate not only tumor cell fate but also HPCs, inflammation and fibrosis, these being key players in these processes. The role of C3G/RAPGEF1, required for the proper function of HGF/MET signaling in HCC and HPCs, is highlighted, due to its ability to promote HCC growth and, regulate HPC fate and platelet-mediated actions on liver cancer.
Collapse
Affiliation(s)
- Ángel M. Cuesta
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Nerea Palao
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Paloma Bragado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alvaro Gutierrez-Uzquiza
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Blanca Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD-ISCIII), 28040 Madrid, Spain
| | - Aránzazu Sánchez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD-ISCIII), 28040 Madrid, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
50
|
Zhao R, Li J, Chen B, Zhao J, Hu L, Huang K, Chen Q, Yao J, Lin G, Bao L, Lu M, Wang Y, Chen G, Wu F. The enrichment of the gut microbiota Lachnoclostridium is associated with the presence of intratumoral tertiary lymphoid structures in hepatocellular carcinoma. Front Immunol 2023; 14:1289753. [PMID: 38116013 PMCID: PMC10728494 DOI: 10.3389/fimmu.2023.1289753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Backgrounds and aims Immunotherapies have formed an entirely new treatment paradigm for hepatocellular carcinoma (HCC). Tertiary lymphoid structure (TLS) has been associated with good response to immunotherapy in most solid tumors. Nonetheless, the role of TLS in human HCC remains controversial, and recent studies suggest that their functional heterogeneity may relate to different locations within the tumor. Exploring factors that influence the formation of TLS in HCC may provide more useful insights. However, factors affecting the presence of TLSs are still unclear. The human gut microbiota can regulate the host immune system and is associated with the efficacy of immunotherapy but, in HCC, whether the gut microbiota is related to the presence of TLS still lacks sufficient evidence. Methods We performed pathological examinations of tumor and para-tumor tissue sections. Based on the location of TLS in tissues, all patients were divided into intratumoral TLS (It-TLS) group and desertic TLS (De-TLS) group. According to the grouping results, we statistically analyzed the clinical, biological, and pathological features; preoperative gut microbiota data; and postoperative pathological features of patients. Results In a retrospective study cohort of 60 cases from a single center, differential microbiota analysis showed that compared with the De-TLS group, the abundance of Lachnoclostridium, Hungatella, Blautia, Fusobacterium, and Clostridium was increased in the It-TLS group. Among them, the enrichment of Lachnoclostridium was the most significant and was unrelated to the clinical, biological, and pathological features of the patients. It can be seen that the difference in abundance levels of microbiota is related to the presence of TLS. Conclusion Our findings prove the enrichment of Lachnoclostridium-dominated gut microbiota is associated with the presence of It-TLS in HCC patients.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiacheng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jungang Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leyin Hu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiwen Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangqiao Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ganglian Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lishimeng Bao
- The Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Mengmeng Lu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|