1
|
Alarcon-Zapata P, Perez AJ, Toledo-Oñate K, Contreras H, Ormazabal V, Nova-Lamperti E, Aguayo CA, Salomon C, Zuniga FA. Metabolomics profiling and chemoresistance mechanisms in ovarian cancer cell lines: Implications for targeting glutathione pathway. Life Sci 2023; 333:122166. [PMID: 37827232 DOI: 10.1016/j.lfs.2023.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Ovarian cancer presents a significant challenge due to its high rate of chemoresistance, which complicates the effectiveness of drug-response therapy. This study provides a comprehensive metabolomic analysis of ovarian cancer cell lines OVCAR-3 and SK-OV-3, characterizing their distinct metabolic landscapes. Metabolomics coupled with chemometric analysis enabled us to discriminate between the metabolic profiles of these two cell lines. The OVCAR-3 cells, which are sensitive to doxorubicin (DOX), exhibited a preference for biosynthetic pathways associated with cell proliferation. Conversely, DOX-resistant SK-OV-3 cells favored fatty acid oxidation for energy maintenance. Notably, a marked difference in glutathione (GSH) metabolism was observed between these cell lines. Our investigations further revealed that GSH depletion led to a profound change in drug sensitivity, inducing a shift from a cytostatic to a cytotoxic response. The results derived from this comprehensive metabolomic analysis offer potential targets for novel therapeutic strategies to overcome drug resistance. Our study suggests that targeting the GSH pathway could potentially enhance chemotherapy's efficacy in treating ovarian cancer.
Collapse
Affiliation(s)
- Pedro Alarcon-Zapata
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Chile; Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Concepción, Chile
| | - Andy J Perez
- Department of Instrumental Analysis, Faculty of Pharmacy, University of Concepcion, Chile
| | - Karin Toledo-Oñate
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Chile
| | - Hector Contreras
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Chile
| | - Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Estefania Nova-Lamperti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Chile
| | - Claudio A Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Chile
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane QLD 4029, Australia
| | - Felipe A Zuniga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Chile.
| |
Collapse
|
2
|
Li J, Wang Z, Liu W, Tan L, Yu Y, Liu D, Wei Z, Zhang S. Identification of metabolic biomarkers for diagnosis of epithelial ovarian cancer using internal extraction electrospray ionization mass spectrometry (iEESI-MS). Cancer Biomark 2023:CBM220250. [PMID: 37248885 DOI: 10.3233/cbm-220250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancies. The poor prognosis of EOC is mainly due to its asymptomatic early stage, lack of effective screening methods, and a late diagnosis in the advanced stages of the disease. OBJECTIVE This study investigated metabolomic abnormalities in epithelial ovarian cancers. METHODS Our study developed a novel strategy to rapidly identify the metabolic biomarkers in the plasma of the EOC patients using Internal Extraction Electrospray Ionization Mass Spectrometry (IEESI-MS) and Liquid Chromatography-mass Spectrometry (HPLC-MS), which could distinguish the differential metabolites in between plasma samples collected from 98 patients with epithelial ovarian cancer, including 78 cases with original (P), and 20 cases with self-configuration (ZP), as well as 60 healthy subjects, including 30 cases in the original sample (H), 30 cases in self-configuration (ZH), and 6 cases in a blind sample (B). RESULTS Our study detected 880 metabolites based on criteria variable importance in projection (VIP) > 1, among which 26 metabolites were selected for further identification. They are mainly metabolism-related lipids, amino acids, nucleic acids, and others. The metabolic pathways associated with the differential metabolites were explored by the KEGG analysis, a comprehensive database that integrates genome, chemistry, and system function information. The abnormal metabolites of EOC patients identified by IEESI-MS and HPLC-MS included Lysophosphatidylcholine (16:0) [Lyso PC (16:0)], L-Phenylalanine, L-Leucine, Phenylpyruvic acid, L-Tryptophan, and L-Histidine. CONCLUSIONS Identifying the abnormal metabolites of EOC patients through metabolomics analyses could provide a new strategy to identify valuable potential biomarkers for the screening and early diagnosis of EOC.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhenpeng Wang
- Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenjie Liu
- Weiming Environmental Molecular Diagnostics (Changshu) Co.Ltd. Changshun, Jilin, China
- College of New Energy and Environment, Key Lab of Groundwater Resource and Environment Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Linsheng Tan
- Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yunhe Yu
- Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dongzhen Liu
- Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhentong Wei
- Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Songling Zhang
- Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Pei C, Wang Y, Ding Y, Li R, Shu W, Zeng Y, Yin X, Wan J. Designed Concave Octahedron Heterostructures Decode Distinct Metabolic Patterns of Epithelial Ovarian Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209083. [PMID: 36764026 DOI: 10.1002/adma.202209083] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/25/2023] [Indexed: 05/05/2023]
Abstract
Epithelial ovarian cancer (EOC) is a polyfactorial process associated with alterations in metabolic pathways. A high-performance screening tool for EOC is in high demand to improve prognostic outcome but is still missing. Here, a concave octahedron Mn2 O3 /(Co,Mn)(Co,Mn)2 O4 (MO/CMO) composite with a heterojunction, rough surface, hollow interior, and sharp corners is developed to record metabolic patterns of ovarian tumors by laser desorption/ionization mass spectrometry (LDI-MS). The MO/CMO composites with multiple physical effects induce enhanced light absorption, preferred charge transfer, increased photothermal conversion, and selective trapping of small molecules. The MO/CMO shows ≈2-5-fold signal enhancement compared to mono- or dual-enhancement counterparts, and ≈10-48-fold compared to the commercialized products. Subsequently, serum metabolic fingerprints of ovarian tumors are revealed by MO/CMO-assisted LDI-MS, achieving high reproducibility of direct serum detection without treatment. Furthermore, machine learning of the metabolic fingerprints distinguishes malignant ovarian tumors from benign controls with the area under the curve value of 0.987. Finally, seven metabolites associated with the progression of ovarian tumors are screened as potential biomarkers. The approach guides the future depiction of the state-of-the-art matrix for intensive MS detection and accelerates the growth of nanomaterials-based platforms toward precision diagnosis scenarios.
Collapse
Affiliation(s)
- Congcong Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - You Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
| | - Yajie Ding
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yu Zeng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xia Yin
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
4
|
Replication and mediation of the association between the metabolome and clinical markers of metabolic health in an adolescent cohort study. Sci Rep 2023; 13:3296. [PMID: 36841863 PMCID: PMC9968318 DOI: 10.1038/s41598-023-30231-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Metabolomics-derived metabolites (henceforth metabolites) may mediate the relationship between modifiable risk factors and clinical biomarkers of metabolic health (henceforth clinical biomarkers). We set out to study the associations of metabolites with clinical biomarkers and a potential mediation effect in a population of young adults. First, we conducted a systematic literature review searching for metabolites associated with 11 clinical biomarkers (inflammation markers, glucose, blood pressure or blood lipids). Second, we replicated the identified associations in a study population of n = 218 (88 males and 130 females, average age of 18 years) participants of the DONALD Study. Sex-stratified linear regression models adjusted for age and BMI and corrected for multiple testing were calculated. Third, we investigated our previously reported metabolites associated with anthropometric and dietary factors mediators in sex-stratified causal mediation analysis. For all steps, both urine and blood metabolites were considered. We found 41 metabolites in the literature associated with clinical biomarkers meeting our inclusion criteria. We were able to replicate an inverse association of betaine with CRP in women, between body mass index and C-reactive protein (CRP) and between body fat and leptin. There was no evidence of mediation by lifestyle-related metabolites after correction for multiple testing. We were only able to partially replicate previous findings in our age group and did not find evidence of mediation. The complex interactions between lifestyle factors, the metabolome, and clinical biomarkers warrant further investigation.
Collapse
|
5
|
Sah S, Yun SR, Gaul DA, Botros A, Park EY, Kim O, Kim J, Fernández FM. Targeted Microchip Capillary Electrophoresis-Orbitrap Mass Spectrometry Metabolomics to Monitor Ovarian Cancer Progression. Metabolites 2022; 12:metabo12060532. [PMID: 35736465 PMCID: PMC9230880 DOI: 10.3390/metabo12060532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
The lack of effective screening strategies for high-grade serous carcinoma (HGSC), a subtype of ovarian cancer (OC) responsible for 70–80% of OC related deaths, emphasizes the need for new diagnostic markers and a better understanding of disease pathogenesis. Capillary electrophoresis (CE) coupled with high-resolution mass spectrometry (HRMS) offers high selectivity and sensitivity for ionic compounds, thereby enhancing biomarker discovery. Recent advances in CE-MS include small, chip-based CE systems coupled with nanoelectrospray ionization (nanoESI) to provide rapid, high-resolution analysis of biological specimens. Here, we describe the development of a targeted microchip (µ) CE-HRMS method, with an acquisition time of only 3 min and sample injection volume of 4nL, to analyze 40 target metabolites in serum samples from a triple-mutant (TKO) mouse model of HGSC. Extracted ion electropherograms showed sharp, baseline resolved peak shapes, even for structural isomers such as leucine and isoleucine. All calibration curves of the analytes maintained good linearity with an average R2 of 0.994, while detection limits were in the nM range. Thirty metabolites were detected in mouse serum with recoveries ranging from 78 to 120%, indicating minimal ionization suppression and good accuracy. We applied the µCE-HRMS method to biweekly-collected serum samples from TKO and TKO control mice. A time-resolved analysis revealed characteristic temporal trends for amino acids, nucleosides, and amino acid derivatives. These metabolic alterations are indicative of altered nucleotide biosynthesis and amino acid metabolism in HGSC development and progression. A comparison of the µCE-HRMS dataset with non-targeted ultra-high performance liquid chromatography (UHPLC)–MS results showed identical temporal trends for the five metabolites detected with both platforms, indicating the µCE-HRMS method performed satisfactorily in terms of capturing metabolic reprogramming due to HGSC progression while reducing the total data collection time three-fold.
Collapse
Affiliation(s)
- Samyukta Sah
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.); (D.A.G.)
| | - Sylvia R. Yun
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.Y.); (A.B.); (E.Y.P.); (O.K.)
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.); (D.A.G.)
| | - Andro Botros
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.Y.); (A.B.); (E.Y.P.); (O.K.)
| | - Eun Young Park
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.Y.); (A.B.); (E.Y.P.); (O.K.)
| | - Olga Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.Y.); (A.B.); (E.Y.P.); (O.K.)
| | - Jaeyeon Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.Y.); (A.B.); (E.Y.P.); (O.K.)
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Correspondence: (J.K.); (F.M.F.); Tel.: +1-317-278-9740 (ext. 274-4648) (J.K.); +1-404-385-4432 (ext. 894-7452) (F.M.F.)
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (S.S.); (D.A.G.)
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence: (J.K.); (F.M.F.); Tel.: +1-317-278-9740 (ext. 274-4648) (J.K.); +1-404-385-4432 (ext. 894-7452) (F.M.F.)
| |
Collapse
|
6
|
Huang Y, Xu M, Jing C, Wu X, Chen X, Zhang W. Extracellular vesicle-derived miR-320a targets ZC3H12B to inhibit tumorigenesis, invasion, and angiogenesis in ovarian cancer. Discov Oncol 2021; 12:51. [PMID: 35201481 PMCID: PMC8777536 DOI: 10.1007/s12672-021-00437-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in intercellular communication. miRNAs derived from EVs emerge as promising diagnostic indicators and therapeutic targets in a variety of malignancies. Tremendous studies have revealed the function of miRNAs derived from EVs in tumorigenesis, metastasis and other aspects. The mechanism of action of EV-derived miRNAs, however, in ovarian cancer remains largely unknown. In this study, EVs were enriched from the ovarian cancer cell lines. EVs as a whole could promote cell proliferation, invasion and new vasculature formation. However, the down-regulated EV-derived miR-320a was demonstrated to potentially suppress tumorigenesis, metastasis and angiogenesis. Moreover, EV-derived miR-320a has been proved to directly regulate a previously unknown target, ZC3H12B. An unreported role of ZC3H12B in promoting ovarian cancer cell proliferation has been elucidated and miR-320a could mediate the expression of ZC3H12B, thereby inhibiting the downstream response. As for the practical clinic values, lower expression of EV-derived miR-320a correlates with shorter survival period, indicating that EV-derived miR-320a may also serve as a prognostic biomarker in ovarian cancer. This research provides new insight into the molecular mechanism of EV-derived miR-320a in ovarian cancer and may provide new therapeutic and prognostic strategies for ovarian cancer treatment.
Collapse
Affiliation(s)
- Yan Huang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong‑an Road, Shanghai, 200032, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chuyu Jing
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong‑an Road, Shanghai, 200032, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong‑an Road, Shanghai, 200032, China
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong‑an Road, Shanghai, 200032, China.
| | - Wei Zhang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong‑an Road, Shanghai, 200032, China.
| |
Collapse
|
7
|
Wide-Targeted Metabolome Analysis Identifies Potential Biomarkers for Prognosis Prediction of Epithelial Ovarian Cancer. Toxins (Basel) 2021; 13:toxins13070461. [PMID: 34209281 PMCID: PMC8309959 DOI: 10.3390/toxins13070461] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a fatal gynecologic cancer, and its poor prognosis is mainly due to delayed diagnosis. Therefore, biomarker identification and prognosis prediction are crucial in EOC. Altered cell metabolism is a characteristic feature of cancers, and metabolomics reflects an individual’s current phenotype. In particular, plasma metabolome analyses can be useful for biomarker identification. In this study, we analyzed 624 metabolites, including uremic toxins (UTx) in plasma derived from 80 patients with EOC using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Compared with the healthy control, we detected 77 significantly increased metabolites and 114 significantly decreased metabolites in EOC patients. Especially, decreased concentrations of lysophosphatidylcholines and phosphatidylcholines and increased concentrations of triglycerides were observed, indicating a metabolic profile characteristic of EOC patients. After calculating the parameters of each metabolic index, we found that higher ratios of kynurenine to tryptophan correlates with worse prognosis in EOC patients. Kynurenine, one of the UTx, can affect the prognosis of EOC. Our results demonstrated that plasma metabolome analysis is useful not only for the diagnosis of EOC, but also for predicting prognosis with the variation of UTx and evaluating response to chemotherapy.
Collapse
|
8
|
Horala A, Plewa S, Derezinski P, Klupczynska A, Matysiak J, Nowak-Markwitz E, Kokot ZJ. Serum Free Amino Acid Profiling in Differential Diagnosis of Ovarian Tumors-A Comparative Study with Review of the Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042167. [PMID: 33672144 PMCID: PMC7926859 DOI: 10.3390/ijerph18042167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Proper preoperative ovarian cancer (OC) diagnosis remains challenging. Serum free amino acid (SFAA) profiles were investigated to identify potential novel biomarkers of OC and assess their performance in ovarian tumor differential diagnosis. Serum samples were divided based on the histopathological result: epithelial OC (n = 38), borderline ovarian tumors (n = 6), and benign ovarian tumors (BOTs) (n = 62). SFAA profiles were evaluated using aTRAQ methodology based on high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Levels of eleven amino acids significantly differed between OC+borderline and BOTs. The highest area under the receiver operating characteristic curve (AUC of ROC) (0.787) was obtained for histidine. Cystine and histidine were identified as best single markers for early stage OC/BOT and type I OC. For advanced stage OC, seven amino acids differed significantly between the groups and citrulline obtained the best AUC of 0.807. Between type II OC and BOTs, eight amino acids differed significantly and the highest AUC of 0.798 was achieved by histidine and citrulline (AUC of 0.778). Histidine was identified as a potential new biomarker in differential diagnosis of ovarian tumors. Adding histidine to a multimarker panel together with CA125 and HE4 improved the differential diagnosis between OC and BOTs.
Collapse
Affiliation(s)
- Agnieszka Horala
- Gynecologic Oncology Department, Poznan University of Medical Sciences, Polna 33 Street, 60-535 Poznan, Poland;
- Correspondence:
| | - Szymon Plewa
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznan, Poland; (S.P.); (P.D.); (A.K.); (J.M.)
| | - Pawel Derezinski
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznan, Poland; (S.P.); (P.D.); (A.K.); (J.M.)
| | - Agnieszka Klupczynska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznan, Poland; (S.P.); (P.D.); (A.K.); (J.M.)
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznan, Poland; (S.P.); (P.D.); (A.K.); (J.M.)
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, Polna 33 Street, 60-535 Poznan, Poland;
| | - Zenon J. Kokot
- Faculty of Health Sciences, Calisia University, 13 Kaszubska Street, 62-800 Kalisz, Poland;
| |
Collapse
|