1
|
Han T, Wu Z, Zhang Z, Liang J, Xia C, Yan H. Comprehensive analysis of hypoxia-related genes for prognosis value, immune status, and therapy in osteosarcoma patients. Front Pharmacol 2023; 13:1088732. [PMID: 36686667 PMCID: PMC9853159 DOI: 10.3389/fphar.2022.1088732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Osteosarcoma is a common malignant bone tumor in children and adolescents. The overall survival of osteosarcoma patients is remarkably poor. Herein, we sought to establish a reliable risk prognostic model to predict the prognosis of osteosarcoma patients. Patients ' RNA expression and corresponding clinical data were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus databases. A consensus clustering was conducted to uncover novel molecular subgroups based on 200 hypoxia-linked genes. A hypoxia-risk models were established by Cox regression analysis coupled with LASSO regression. Functional enrichment analysis, including Gene Ontology annotation and KEGG pathway analysis, were conducted to determine the associated mechanisms. Moreover, we explored relationships between the risk scores and age, gender, tumor microenvironment, and drug sensitivity by correlation analysis. We identified two molecular subgroups with significantly different survival rates and developed a risk model based on 12 genes. Survival analysis indicated that the high-risk osteosarcoma patients likely have a poor prognosis. The area under the curve (AUC) value showed the validity of our risk scoring model, and the nomogram indicates the model's reliability. High-risk patients had lower Tfh cell infiltration and a lower stromal score. We determined the abnormal expression of three prognostic genes in osteosarcoma cells. Sunitinib can promote osteosarcoma cell apoptosis with down-regulation of KCNJ3 expression. In summary, the constructed hypoxia-related risk score model can assist clinicians during clinical practice for osteosarcoma prognosis management. Immune and drug sensitivity analysis can provide essential insights into subsequent mechanisms. KCNJ3 may be a valuable prognostic marker for osteosarcoma development.
Collapse
Affiliation(s)
- Tao Han
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Zhouwei Wu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Zhe Zhang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Jinghao Liang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Chuanpeng Xia
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
| | - Hede Yan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China,*Correspondence: Hede Yan,
| |
Collapse
|
2
|
Koopaie M, Jomehpoor M, Manifar S, Mousavi R, Kolahdooz S. Evaluation of Salivary KCNJ3 mRNA Levels in Breast Cancer: A Case–control Study and in silico Analysis. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2208100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background:
Breast cancer (BC) is considered the most malignant and central cancer-related death among women worldwide. There is an essential need to discover new methods for developing noninvasive and low-cost diagnoses. The present study examines the expression of KCNJ3 which acts as a biomarker for detecting BC in the saliva of BC patients compared to controls.
Methods:
The mRNA expression level of KCNJ3 has been evaluated. Forty-three unstimulated whole saliva samples from BC patients and forty-three salivary samples from healthy controls were collected. The mRNA level was measured using quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, the protein-protein interaction network in which KCNJ3 is involved was obtained. In silico analysis was applied to predict the possible molecular mechanisms of KCNJ3 in BC development.
Results:
Differentially expressed KCNJ3 was statistically significant between BC patients and controls (p<0.001). The sensitivity and specificity of KCNJ3 mRNA in BC detection were 76.74% and 94.95%, respectively. Receiver operating characteristic (ROC) curve analysis of KCNJ3 mRNA revealed that Area under the curve (AUC) was 0.923 (95% Confidence Interval (CI): 0.866-0.979). AUCs of ROC curve analysis were 0.743 (95% CI: 0.536-0.951), 0.685 (95% CI: 0.445-0.925), and 0.583(95% CI: 0.343-0.823) for differentiation stage I from stage III, stage I to stage II and finally stage II from stage III, respectively. Furthermore, the GABAergic synapse signaling pathway was suggested as a potential pathway involved in BC development.
Conclusion:
Salivary levels of KCNJ3 could be considered a potential diagnostic biomarker with high sensitivity and specificity for BC detection.
Collapse
|
3
|
Pelzmann B, Hatab A, Scheruebel S, Langthaler S, Rienmueller T, Sokolowski A, Gorischek A, Platzer D, Zorn-Pauly K, Jahn SW, Bauernhofer T, Schreibmayer W. Consequences of somatic mutations of GIRK1 detected in primary malign tumors on expression and function of G-protein activated, inwardly rectifying, K+ channels. Front Oncol 2022; 12:998907. [DOI: 10.3389/fonc.2022.998907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
A search in the GDC Data Portal revealed 304 documented somatic mutations of the KCNJ3 gene in primary tumors (out of 10.202 cases). Most affected tumor types were carcinomas from uterus, skin and lung, while breast cancer exerted the lowest number of somatic mutations. We focused our research on 15 missense mutations within the region between TM1 and TM2, comprising the pore helix and ion selectivity signature. Expression was measured by confocal laser scan microscopy of eGFP tagged GIRK1 subunits, expressed with and without GIRK4 in oocytes of Xenopus laevis. GIRK ion currents were activated via coexpressed m2Rs and measured by the Two Electrode Voltage Clamp technique. Magnitude of the total GIRK current, as well as the fraction of current inducible by the agonist, were measured. Ion selectivity was gauged by assessment of the PNa+/PK+ ratio, calculated by the GIRK current reversal potential in extracellular media at different Na+ and K+ concentrations. None of the tested mutations was able to form functional GIRK1 homooligomeric ion channels. One of the mutations, G145A, which locates directly to the ion selectivity signature, exerted an increased PNa+/PK+ ratio. Generally, the missense mutations studied can be categorized into three groups: (i) normal/reduced expression accompanied by reduced/absent function (S132Y, F136L, E139K, G145A, R149Q, R149P, G178D, S185Y, Q186R), (ii) normal/increased expression as well as increased function (E140M, A142T, M184I) and (iii) miniscule expression but increased function relative to expression levels (I151N, G158S). We conclude, that gain of function mutations, identical or similar to categories (ii) and (iii), may potentially be involved in genesis and progression of malignancies in tissues that exert a high rate of occurrence of somatic mutations of KCNJ3.
Collapse
|
4
|
Schratter G, Scheruebel S, Langthaler S, Ester K, Pelzmann B, Ghaffari-Tabrizi-Wizsy N, Rezania S, Gorischek A, Platzer D, Zorn-Pauly K, Ahammer H, Prokesch A, Stanzer S, Devaney TTJ, Schmidt K, Jahn SW, Prassl R, Bauernhofer T, Schreibmayer W. GIRK1 triggers multiple cancer-related pathways in the benign mammary epithelial cell line MCF10A. Sci Rep 2019; 9:19277. [PMID: 31848385 PMCID: PMC6917815 DOI: 10.1038/s41598-019-55683-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/21/2019] [Indexed: 11/20/2022] Open
Abstract
Excessive expression of subunit 1 of GIRK1 in ER+ breast tumors is associated with reduced survival times and increased lymph node metastasis in patients. To investigate possible tumor-initiating properties, benign MCF10A and malign MCF7 mammary epithelial cells were engineered to overexpress GIRK1 neoplasia associated vital parameters and resting potentials were measured and compared to controls. The presence of GIRK1 resulted in resting potentials negative to the controls. Upon GIRK1 overexpression, several cellular pathways were regulated towards pro-tumorigenic action as revealed by comparison of transcriptomes of MCF10AGIRK1 with the control (MCF10AeGFP). According to transcriptome analysis, cellular migration was promoted while wound healing and extracellular matrix interactions were impaired. Vital parameters in MCF7 cells were affected akin the benign MCF10A lines, but to a lesser extent. Thus, GIRK1 regulated cellular pathways in mammary epithelial cells are likely to contribute to the development and progression of breast cancer.
Collapse
Affiliation(s)
- Gebhard Schratter
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - Susanne Scheruebel
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - Sonja Langthaler
- Institute for Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Graz, Austria
| | - Katja Ester
- Laboratory of Experimental Therapy, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Brigitte Pelzmann
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | | | - Simin Rezania
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - Astrid Gorischek
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - Dieter Platzer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - Klaus Zorn-Pauly
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - Helmut Ahammer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, 8010, Graz, Austria
| | - Stefanie Stanzer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Trevor T J Devaney
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - Kurt Schmidt
- Institute of Pharmaceutical Sciences, Karl Franzens University of Graz, Graz, Austria
| | - Stephan W Jahn
- Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Ruth Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - Thomas Bauernhofer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - Wolfgang Schreibmayer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria.
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
5
|
Kammerer S, Sokolowski A, Hackl H, Platzer D, Jahn SW, El-Heliebi A, Schwarzenbacher D, Stiegelbauer V, Pichler M, Rezania S, Fiegl H, Peintinger F, Regitnig P, Hoefler G, Schreibmayer W, Bauernhofer T. KCNJ3 is a new independent prognostic marker for estrogen receptor positive breast cancer patients. Oncotarget 2018; 7:84705-84717. [PMID: 27835900 PMCID: PMC5356693 DOI: 10.18632/oncotarget.13224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/26/2016] [Indexed: 01/20/2023] Open
Abstract
Numerous studies showed abnormal expression of ion channels in different cancer types. Amongst these, the potassium channel gene KCNJ3 (encoding for GIRK1 proteins) has been reported to be upregulated in tumors of patients with breast cancer and to correlate with positive lymph node status. We aimed to study KCNJ3 levels in different breast cancer subtypes using gene expression data from the TCGA, to validate our findings using RNA in situ hybridization in a validation cohort (GEO ID GSE17705), and to study the prognostic value of KCNJ3 using survival analysis. In a total of > 1000 breast cancer patients of two independent data sets we showed a) that KCNJ3 expression is upregulated in tumor tissue compared to corresponding normal tissue (p < 0.001), b) that KCNJ3 expression is associated with estrogen receptor (ER) positive tumors (p < 0.001), but that KCNJ3 expression is variable within this group, and c) that ER positive patients with high KCNJ3 levels have worse overall (p < 0.05) and disease free survival probabilities (p < 0.01), whereby KCNJ3 is an independent prognostic factor (p <0.05). In conclusion, our data suggest that patients with ER positive breast cancer might be stratified into high risk and low risk groups based on the KCNJ3 levels in the tumor.
Collapse
Affiliation(s)
- Sarah Kammerer
- Molecular Physiology Group, Institute of Biophysics, Medical University of Graz, Austria.,Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Austria
| | - Armin Sokolowski
- Molecular Physiology Group, Institute of Biophysics, Medical University of Graz, Austria.,Present address: Division of Prosthodontics, Restorative Dentistry, Periodontology and Implantology, Medical University of Graz, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Austria
| | - Dieter Platzer
- Molecular Physiology Group, Institute of Biophysics, Medical University of Graz, Austria
| | | | - Amin El-Heliebi
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria
| | | | - Verena Stiegelbauer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simin Rezania
- Molecular Physiology Group, Institute of Biophysics, Medical University of Graz, Austria.,Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Austria
| | - Heidelinde Fiegl
- Department of Gynecology and Obstetrics, Medical University of Innsbruck, Austria
| | | | - Peter Regitnig
- Institute of Pathology, Medical University of Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Austria
| | - Wolfgang Schreibmayer
- Molecular Physiology Group, Institute of Biophysics, Medical University of Graz, Austria.,Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Austria
| | - Thomas Bauernhofer
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Austria.,Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
| |
Collapse
|