1
|
Kim I, Park T, Noh JY, Kim W. Emerging role of Hippo pathway in the regulation of hematopoiesis. BMB Rep 2023; 56:417-425. [PMID: 37574808 PMCID: PMC10471462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/27/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
In various organisms, the Hippo signaling pathway has been identified as a master regulator of organ size determination and tissue homeostasis. The Hippo signaling coordinates embryonic development, tissue regeneration and differentiation, through regulating cell proliferation and survival. The YAP and TAZ (YAP/TAZ) act as core transducers of the Hippo pathway, and they are tightly and exquisitely regulated in response to various intrinsic and extrinsic stimuli. Abnormal regulation or genetic variation of the Hippo pathway causes a wide range of human diseases, including cancer. Recent studies have revealed that Hippo signaling plays a pivotal role in the immune system and cancer immunity. Due to pathophysiological importance, the emerging role of Hippo signaling in blood cell differentiation, known as hematopoiesis, is receiving much attention. A number of elegant studies using a genetically engineered mouse (GEM) model have shed light on the mechanistic and physiological insights into the Hippo pathway in the regulation of hematopoiesis. Here, we briefly review the function of Hippo signaling in the regulation of hematopoiesis and immune cell differentiation. [BMB Reports 2023; 56(8): 417-425].
Collapse
Affiliation(s)
- Inyoung Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Korea
| | - Wantae Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
2
|
Minezaki T, Usui Y, Asakage M, Takanashi M, Shimizu H, Nezu N, Narimatsu A, Tsubota K, Umazume K, Yamakawa N, Kuroda M, Goto H. High-Throughput MicroRNA Profiling of Vitreoretinal Lymphoma: Vitreous and Serum MicroRNA Profiles Distinct from Uveitis. J Clin Med 2020; 9:jcm9061844. [PMID: 32545709 PMCID: PMC7356511 DOI: 10.3390/jcm9061844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose: Vitreoretinal lymphoma (VRL) is a non-Hodgkin lymphoma of the diffuse large B cell type (DLBCL), which is an aggressive cancer causing central nervous system related mortality. The pathogenesis of VRL is largely unknown. The role of microRNAs (miRNAs) has recently acquired remarkable importance in the pathogenesis of many diseases including cancers. Furthermore, miRNAs have shown promise as diagnostic and prognostic markers of cancers. In this study, we aimed to identify differentially expressed miRNAs and pathways in the vitreous and serum of patients with VRL and to investigate the pathogenesis of the disease. Materials and Methods: Vitreous and serum samples were obtained from 14 patients with VRL and from controls comprising 40 patients with uveitis, 12 with macular hole, 14 with epiretinal membrane, 12 healthy individuals. The expression levels of 2565 miRNAs in serum and vitreous samples were analyzed. Results: Expression of the miRNAs correlated significantly with the extracellular matrix (ECM) ‒receptor interaction pathway in VRL. Analyses showed that miR-326 was a key driver of B-cell proliferation, and miR-6513-3p could discriminate VRL from uveitis. MiR-1236-3p correlated with vitreous interleukin (IL)-10 concentrations. Machine learning analysis identified miR-361-3p expression as a discriminator between VRL and uveitis. Conclusions: Our findings demonstrate that aberrant microRNA expression in VRL may affect the expression of genes in a variety of cancer-related pathways. The altered serum miRNAs may discriminate VRL from uveitis, and serum miR-6513-3p has the potential to serve as an auxiliary tool for the diagnosis of VRL.
Collapse
Affiliation(s)
- Teruumi Minezaki
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Yoshihiko Usui
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
- Correspondence:
| | - Masaki Asakage
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Masakatsu Takanashi
- Department of Molecular Pathology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (M.T.); (M.K.)
| | - Hiroyuki Shimizu
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Naoya Nezu
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Akitomo Narimatsu
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Kinya Tsubota
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Kazuhiko Umazume
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Naoyuki Yamakawa
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (M.T.); (M.K.)
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| |
Collapse
|