1
|
Mruthunjaya AKV, Torriero AAJ. Electrochemical Monitoring in Anticoagulation Therapy. Molecules 2024; 29:1453. [PMID: 38611733 PMCID: PMC11012951 DOI: 10.3390/molecules29071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The process of blood coagulation, wherein circulating blood transforms into a clot in response to an internal or external injury, is a critical physiological mechanism. Monitoring this coagulation process is vital to ensure that blood clotting neither occurs too rapidly nor too slowly. Anticoagulants, a category of medications designed to prevent and treat blood clots, require meticulous monitoring to optimise dosage, enhance clinical outcomes, and minimise adverse effects. This review article delves into the various stages of blood coagulation, explores commonly used anticoagulants and their targets within the coagulation enzyme system, and emphasises the electrochemical methods employed in anticoagulant testing. Electrochemical sensors for anticoagulant monitoring are categorised into two types. The first type focuses on assays measuring thrombin activity via electrochemical techniques. The second type involves modified electrode surfaces that either directly measure the redox behaviours of anticoagulants or monitor the responses of standard redox probes in the presence of these drugs. This review comprehensively lists different electrode compositions and their detection and quantification limits. Additionally, it discusses the potential of employing a universal calibration plot to replace individual drug-specific calibrations. The presented insights are anticipated to significantly contribute to the sensor community's efforts in this field.
Collapse
Affiliation(s)
| | - Angel A. J. Torriero
- School of Life and Environmental Sciences, Deakin University, Burwood 3125, Australia
| |
Collapse
|
2
|
Borriello M, Tarabella G, D’Angelo P, Liboà A, Barra M, Vurro D, Lombari P, Coppola A, Mazzella E, Perna AF, Ingrosso D. Lab on a Chip Device for Diagnostic Evaluation and Management in Chronic Renal Disease: A Change Promoting Approach in the Patients' Follow Up. BIOSENSORS 2023; 13:373. [PMID: 36979584 PMCID: PMC10046018 DOI: 10.3390/bios13030373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Lab-on-a-chip (LOC) systems are miniaturized devices aimed to perform one or several analyses, normally carried out in a laboratory setting, on a single chip. LOC systems have a wide application range, including diagnosis and clinical biochemistry. In a clinical setting, LOC systems can be associated with the Point-of-Care Testing (POCT) definition. POCT circumvents several steps in central laboratory testing, including specimen transportation and processing, resulting in a faster turnaround time. Provider access to rapid test results allows for prompt medical decision making, which can lead to improved patient outcomes, operational efficiencies, patient satisfaction, and even cost savings. These features are particularly attractive for healthcare settings dealing with complicated patients, such as those affected by chronic kidney disease (CKD). CKD is a pathological condition characterized by progressive and irreversible structural or functional kidney impairment lasting for more than three months. The disease displays an unavoidable tendency to progress to End Stage Renal Disease (ESRD), thus requiring renal replacement therapy, usually dialysis, and transplant. Cardiovascular disease (CVD) is the major cause of death in CKD, with a cardiovascular risk ten times higher in these patients than the rate observed in healthy subjects. The gradual decline of the kidney leads to the accumulation of uremic solutes, with negative effect on organs, especially on the cardiovascular system. The possibility to monitor CKD patients by using non-invasive and low-cost approaches could give advantages both to the patient outcome and sanitary costs. Despite their numerous advantages, POCT application in CKD management is not very common, even if a number of devices aimed at monitoring the CKD have been demonstrated worldwide at the lab scale by basic studies (low Technology Readiness Level, TRL). The reasons are related to both technological and clinical aspects. In this review, the main technologies for the design of LOCs are reported, as well as the available POCT devices for CKD monitoring, with a special focus on the most recent reliable applications in this field. Moreover, the current challenges in design and applications of LOCs in the clinical setting are briefly discussed.
Collapse
Affiliation(s)
- Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| | | | | | - Aris Liboà
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (G.T.)
| | - Mario Barra
- CNR-SPIN, c/o Dipartimento di Fisica “Ettore Pancini”, P.le Tecchio, 80, 80125 Naples, Italy
| | - Davide Vurro
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (G.T.)
| | - Patrizia Lombari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| | - Annapaola Coppola
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| | - Elvira Mazzella
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, via Via Pansini, Bldg 17, 80131 Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, via Via Pansini, Bldg 17, 80131 Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|
3
|
Bodington R, Kassianides X, Bhandari S. Point-of-care testing technologies for the home in chronic kidney disease: a narrative review. Clin Kidney J 2021; 14:2316-2331. [PMID: 34751234 PMCID: PMC8083235 DOI: 10.1093/ckj/sfab080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Point-of-care testing (POCT) performed by the patient at home, paired with eHealth technologies, offers a wealth of opportunities to develop individualized, empowering clinical pathways. The non-dialysis-dependent chronic kidney disease (CKD) patient who is at risk of or may already be suffering from a number of the associated complications of CKD represents an ideal patient group for the development of such initiatives. The current coronavirus disease 2019 pandemic and drive towards shielding vulnerable individuals have further highlighted the need for home testing pathways. In this narrative review we outline the evidence supporting remote patient management and the various technologies in use in the POCT setting. We then review the devices currently available for use in the home by patients in five key areas of renal medicine: anaemia, biochemical, blood pressure (BP), anticoagulation and diabetes monitoring. Currently there are few devices and little evidence to support the use of home POCT in CKD. While home testing in BP, anticoagulation and diabetes monitoring is relatively well developed, the fields of anaemia and biochemical POCT are still in their infancy. However, patients' attitudes towards eHealth and home POCT are consistently positive and physicians also find this care highly acceptable. The regulatory and translational challenges involved in the development of new home-based care pathways are significant. Pragmatic and adaptable trials of a hybrid effectiveness-implementation design, as well as continued technological POCT device advancement, are required to deliver these innovative new pathways that our patients desire and deserve.
Collapse
Affiliation(s)
- Richard Bodington
- Sheffield Kidney Institute, Northern General Hospital, Sheffield, UK
| | | | - Sunil Bhandari
- Department of Renal Research, Hull Royal Infirmary, Hull, UK
| |
Collapse
|
4
|
Jigar Panchal H, Kent NJ, Knox AJS, Harris LF. Microfluidics in Haemostasis: A Review. Molecules 2020; 25:E833. [PMID: 32075008 PMCID: PMC7070452 DOI: 10.3390/molecules25040833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/17/2022] Open
Abstract
Haemostatic disorders are both complex and costly in relation to both their treatment and subsequent management. As leading causes of mortality worldwide, there is an ever-increasing drive to improve the diagnosis and prevention of haemostatic disorders. The field of microfluidic and Lab on a Chip (LOC) technologies is rapidly advancing and the important role of miniaturised diagnostics is becoming more evident in the healthcare system, with particular importance in near patient testing (NPT) and point of care (POC) settings. Microfluidic technologies present innovative solutions to diagnostic and clinical challenges which have the knock-on effect of improving health care and quality of life. In this review, both advanced microfluidic devices (R&D) and commercially available devices for the diagnosis and monitoring of haemostasis-related disorders and antithrombotic therapies, respectively, are discussed. Innovative design specifications, fabrication techniques, and modes of detection in addition to the materials used in developing micro-channels are reviewed in the context of application to the field of haemostasis.
Collapse
Affiliation(s)
- Heta Jigar Panchal
- School of Biological and Health Sciences, Technological University Dublin (TU Dublin) - City Campus, Kevin Street, Dublin D08 NF82, Ireland; (H.J.P.); (A.J.S.K.)
| | - Nigel J Kent
- engCORE, Faculty of Engineering, Institute of Technology Carlow, Kilkenny Road, Carlow R93 V960, Ireland;
| | - Andrew J S Knox
- School of Biological and Health Sciences, Technological University Dublin (TU Dublin) - City Campus, Kevin Street, Dublin D08 NF82, Ireland; (H.J.P.); (A.J.S.K.)
| | - Leanne F Harris
- School of Biological and Health Sciences, Technological University Dublin (TU Dublin) - City Campus, Kevin Street, Dublin D08 NF82, Ireland; (H.J.P.); (A.J.S.K.)
| |
Collapse
|