1
|
Yuan S, Zhong F, Wan T, Qin Z, Chen L, Xing D, Zhang W, Yu W, Huang L, Song J, Yu W, Lü Y. CHIT1 regulates the neuroinflammation and phagocytosis of microglia and suppresses Aβ plaque deposition in Alzheimer's disease. J Pathol 2025; 265:330-341. [PMID: 39829408 DOI: 10.1002/path.6387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/01/2024] [Accepted: 08/28/2024] [Indexed: 01/22/2025]
Abstract
Chitinase 1 (CHIT1), as a chitin-specific hydrolase, significantly influences the progression of Alzheimer's disease (AD) through microglia-associated inflammation and amyloid beta (Aβ) plaque accumulation. However, the precise mechanism of CHIT1 action in AD remains uncertain. The effects of CHIT1 on cerebral blood flow (CBF), hippocampal volume, and cognitive function were investigated in APP/PS1 mice. Protein alterations resulting from CHIT1 overexpression were analyzed using four-dimensional (4D) label-free quantitative (LFQ) protein spectrometry. Additionally, the influence of CHIT1 on microglial electrophysiology was assessed using patch clamp measurements, and its effects on neuroinflammation, phagocytosis, microglia migration, and neuronal apoptosis under AD-like conditions were examined using the cell lines N9, BV-2, and HT-22. CHIT1 ameliorated hippocampal atrophy, hypoperfusion, and cognitive function deficits in the APP/PS1 mouse. CHIT1 regulates microglial function and neuronal protection through its interactions in AD. Increased levels of CHIT1/IDH1 contributed to an anti-inflammatory phenotype in microglia via the Ca2+-activated K+ channel, enhanced microglial phagocytosis, and promoted Aβ clearance. Conversely, knocking down IDH1 reduced the secretion of anti-inflammatory agents and increased the production of inflammatory factors, as well as diminishing the expression of phagocytic factors and inhibiting Aβ endocytosis. Moreover, CHIT1 reduced neuronal apoptosis by diminishing the expression of apoptotic factors. However, IDH1 knockdown abrogated the protective effect of CHIT1 on neurons. CHIT1 exerts a protective role in AD pathogenesis through its interaction with IDH1. The CHIT1/IDH1 pathway promotes Aβ clearance via a shift in microglia toward an anti-inflammatory state and prevents neuronal apoptosis and dysfunction caused by Aβ toxicity. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Shiyun Yuan
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Fuxin Zhong
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Tianchi Wan
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Zhangjin Qin
- Institutes of Neuroscience, Chongqing Medical University, Chongqing, PR China
| | - Lihua Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Dianxia Xing
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Wenbo Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Wuhan Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Lihong Huang
- Institutes of Neuroscience, Chongqing Medical University, Chongqing, PR China
| | - Jiaqi Song
- Institutes of Neuroscience, Chongqing Medical University, Chongqing, PR China
| | - Weihua Yu
- Institutes of Neuroscience, Chongqing Medical University, Chongqing, PR China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
2
|
Tzoumpa S, Nuñez J, Postigo-Mac Dowall M, Lopez-Ilasaca M, Bejar C. Multiple enchondromas and hobnail hemangiomas revealing a rare type of Maffucci syndrome. Int J Dermatol 2024; 63:1447-1449. [PMID: 38647156 DOI: 10.1111/ijd.17203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Sofia Tzoumpa
- Department of Dermatology, Avicenne University Hospital, AP-HP, Sorbonne-Paris-Nord University, Bobigny, France
| | - Jeanette Nuñez
- Department of Dermatology, Goyeneche Hospital, Arequipa, Peru
| | | | - Marco Lopez-Ilasaca
- Center for Molecular Diagnostics, Lima, Peru
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudia Bejar
- Department of Dermatology, Avicenne University Hospital, AP-HP, Sorbonne-Paris-Nord University, Bobigny, France
- Department of Dermatology, Goyeneche Hospital, Arequipa, Peru
| |
Collapse
|
3
|
Mirek J, Bal W, Olbryt M. Melanoma genomics - will we go beyond BRAF in clinics? J Cancer Res Clin Oncol 2024; 150:433. [PMID: 39340537 PMCID: PMC11438618 DOI: 10.1007/s00432-024-05957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
In the era of next-generation sequencing, the genetic background of cancer, including melanoma, appears to be thoroughly established. However, evaluating the oncogene BRAF mutation in codon V600 is still the only companion diagnostic genomic test commonly implemented in clinics for molecularly targeted treatment of advanced melanoma. Are we wasting the collected genomic data? Will we implement our current genomic knowledge of melanoma in clinics soon? This question is rather urgent because new therapeutic targets and biomarkers are needed to implement more personalized, patient-tailored therapy in clinics. Here, we provide an update on the molecular background of melanoma, including a description of four already established molecular subtypes: BRAF+, NRAS+, NF1+, and triple WT, as well as relatively new NGS-derived melanoma genes such as PREX2, ERBB4, PPP6C, FBXW7, PIK3CA, and IDH1. We also present a comparison of genomic profiles obtained in recent years with a focus on the most common melanoma genes. Finally, we propose our melanoma gene panel consisting of 22 genes that, in our opinion, are "must-have" genes in both melanoma-specific genomic tests and pan-cancer tests established to improve the treatment of melanoma further.
Collapse
Affiliation(s)
- Justyna Mirek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Wiesław Bal
- Chemotherapy Day Unit, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland.
| |
Collapse
|
4
|
Corvino S, Somma T, Certo F, Bonomo G, Grasso E, Esposito F, Berardinelli J, Barbagallo G. Ollier Disease, Acute Myeloid Leukemia, and Brain Glioma: IDH as the Common Denominator. Cancers (Basel) 2024; 16:3125. [PMID: 39335096 PMCID: PMC11430233 DOI: 10.3390/cancers16183125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Ollier disease (OD), acute myeloid leukemia (AML), and brain glioma (BG) are three apparently completely different neoplasms in terms of histopathology, clinic, natural history, and management, but they can affect the same patient. This study aimed to identify the common molecular pathways involved in the pathogenesis of all three diseases and discuss their current and potential role as therapeutic targets. A detailed and comprehensive systematic literature review according to PRISMA guidelines on OD patients harboring BG and/or AML was made. In addition, the unique case of a patient affected by all three considered diseases has been added to our case series. Demographic, pathological, treatment, and outcome data were analyzed and discussed, mainly focusing on the molecular findings. Twenty-eight studies reported thirty-three patients affected by OD and BG, and only one study reported one patient with OD and AML, while only our patient harbored all three pathologies. The IDH R132H mutation was the only genetic alteration shared by all three pathologies and was simultaneously detected in enchondromas and brain glioma in 100% (3/3) of OD patients with BG and also in the neoplastic blood cells of the single patient hosting all three diseases. The IDH1-R132H gene mutation is the etiopathogenetic common denominator among three apparently different tumors coexisting in the same patient. The adoption of mutant-specific IDH1 inhibitor molecules could represent a potential panacea for these conditions in the era of targeted therapies. Further studies with larger clinical series are needed to confirm our results and hypothesis.
Collapse
Affiliation(s)
- Sergio Corvino
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, School of Medicine, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Teresa Somma
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, School of Medicine, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Francesco Certo
- Department of Neurosciences, Division of Neurosurgery, Policlinico "G. Rodolico-S. Marco", University Hospital, 95123 Catania, Italy
| | - Giulio Bonomo
- Department of Neurosciences, Division of Neurosurgery, Policlinico "G. Rodolico-S. Marco", University Hospital, 95123 Catania, Italy
| | - Erica Grasso
- Department of Neurosciences, Division of Neurosurgery, Policlinico "G. Rodolico-S. Marco", University Hospital, 95123 Catania, Italy
| | - Felice Esposito
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, School of Medicine, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Jacopo Berardinelli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, School of Medicine, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Giuseppe Barbagallo
- Department of Neurosciences, Division of Neurosurgery, Policlinico "G. Rodolico-S. Marco", University Hospital, 95123 Catania, Italy
| |
Collapse
|
5
|
Wang S, Cheng H, Huang Y, Li M, Gao D, Chen H, Su R, Guo K. HSP90a promotes the resistance to oxaliplatin in HCC through regulating IDH1-induced cell competition. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119680. [PMID: 38280407 DOI: 10.1016/j.bbamcr.2024.119680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Though burgeoning research manifests that cell competition, an essential selection and quality control mechanism for maintaining tissue or organ growth and homeostasis in multicellular organisms, is closely related to tumorigenesis and development, the mechanism of cell competition associated with tumor drug resistance remains elusive. In the study, we uncovered that oxaliplatin-resistant hepatocellular carcinoma (HCC) cells exhibit a pronounced competitive advantage against their sensitive counterparts, which is related to lipid takeover of resistant cells from sensitive cells. Of note, such lipid takeover is dependent on the existence of isocitrate dehydrogenase 1 (IDH1) in resistant HCC cells. Mechanistically, IDH1 activity is regulated by heat shock protein 90 alpha (HSP90α) through binding with each other, which orchestrates the expressions of lipid metabolic enzymes and lipid accumulation in resistant HCC cells. Our results suggest that HCC cell competition-driven chemoresistance can be regulated by HSP90α/IDH1-mediated lipid metabolism, which may serve as a promising target for overcoming drug resistance in HCC.
Collapse
Affiliation(s)
- Sikai Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Hongxia Cheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200434, China
| | - Yilan Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Miaomiao Li
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Huaping Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi 530021, China
| | - Ruxiong Su
- Puning People's Hospital, Southern Medical University, Guangdong 515300, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Wang X, Meng L, Zhang J, Zhao Z, Zou L, Jia Z, Han X, Zhao L, Song M, Zong J, Wang S, Qu X, Lu M. Identification of ferroptosis-related molecular clusters and genes for diabetic osteoporosis based on the machine learning. Front Endocrinol (Lausanne) 2023; 14:1189513. [PMID: 37645416 PMCID: PMC10461391 DOI: 10.3389/fendo.2023.1189513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023] Open
Abstract
Background Diabetic osteoporosis exhibits heterogeneity at the molecular level. Ferroptosis, a controlled form of cell death brought on by a buildup of lipid peroxidation, contributes to the onset and development of several illnesses. The aim was to explore the molecular subtypes associated with ferroptosis in diabetic osteoporosis at the molecular level and to further elucidate the potential molecular mechanisms. Methods Integrating the CTD, GeneCards, FerrDb databases, and the microarray data of GSE35958, we identified ferroptosis-related genes (FRGs) associated with diabetic osteoporosis. We applied unsupervised cluster analysis to divide the 42 osteoporosis samples from the GSE56814 microarray data into different subclusters based on FRGs. Subsequently, FRGs associated with two ferroptosis subclusters were obtained by combining database genes, module-related genes of WGCNA, and differentially expressed genes (DEGs). Eventually, the key genes from FRGs associated with diabetic osteoporosis were identified using the least absolute shrinkage and selection operator (LASSO), Boruta, support vector machine recursive feature elimination (SVM - RFE), and extreme gradient boosting (XGBoost) machine learning algorithms. Based on ROC curves of external datasets (GSE56815), the model's efficiency was examined. Results We identified 15 differentially expressed FRGs associated with diabetic osteoporosis. In osteoporosis, two distinct molecular clusters related to ferroptosis were found. The expression results and GSVA analysis indicated that 15 FRGs exhibited significantly different biological functions and pathway activities in the two ferroptosis subclusters. Therefore, we further identified 17 FRGs associated with diabetic osteoporosis between the two subclusters. The results of the comprehensive analysis of 17 FRGs demonstrated that these genes were heterogeneous and had a specific interaction between the two subclusters. Ultimately, the prediction model had a strong foundation and excellent AUC values (0.84 for LASSO, 0.84 for SVM - RFE, 0.82 for Boruta, and 0.81 for XGBoost). IDH1 is a common gene to all four algorithms thus being identified as a key gene with a high AUC value (AUC = 0.698). Conclusions As a ferroptosis regulator, IDH1 is able to distinguish between distinct molecular subtypes of diabetic osteoporosis, which may offer fresh perspectives on the pathogenesis of the disease's clinical symptoms and prognostic heterogeneity.
Collapse
Affiliation(s)
- Xingkai Wang
- Department of Trauma and Tissue Repair Surgery, Dalian Municipal Central Hospital, Dalian, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lei Meng
- Department of Surgery, The First Affiliated Hospital of Nanhua Medical University, Hengyang, China
| | - Juewei Zhang
- Health Inspection and Quarantine, College of Medical Laboratory, Dalian Medical University, Dalian, China
| | - Zitong Zhao
- International Department, Beijing No.80 High School, Beijing, China
| | - Linxuan Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhuqiang Jia
- Department of Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Surgery, Naqu People's Hospital, Tibet, China
| | - Xin Han
- Department of Surgery, Naqu People's Hospital, Tibet, China
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lin Zhao
- Department of Quality Management, Dalian Municipal Central Hospital, Dalian, China
| | - Mingzhi Song
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junwei Zong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shouyu Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xueling Qu
- Changjianglu Pelvic Floor Repair Center, Dalian Women and Children’s Medical Group, Dalian, China
| | - Ming Lu
- Department of Trauma and Tissue Repair Surgery, Dalian Municipal Central Hospital, Dalian, China
| |
Collapse
|
7
|
Zhang J, Hua R, Ma L, Liu C, Zhang Y, Lü X, Wang T, Wan N. Ovarian juvenile granulosa cell tumors with Ollier's disease in children with IDH1 gene somatic mutation. Front Endocrinol (Lausanne) 2023; 14:1093273. [PMID: 37324278 PMCID: PMC10265673 DOI: 10.3389/fendo.2023.1093273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/21/2023] [Indexed: 06/17/2023] Open
Abstract
Objective The aim of this study was to explore the symptoms, treatment, and pathogenesis of ovarian juvenile granulosa cell tumors with Ollier's disease in children. Methods From October 2019 to October 2020, clinical data were retrospectively analyzed for one case of ovarian juvenile granulosa cell tumors with Ollier's disease. Whole-exome sequencing and Sanger sequencing were used to detect gene mutation in ovarian tumor and chondroma tissue. NADP-dependent isocitrate dehydrogenase-1 (IDH1) and S6 ribosomal protein expression levels in cells transfected with wild-type or mutant plasmid were analyzed by Western blot. Results The 4-year-old female showed multiple skeletal deformities, bilateral breast development with chromatosis, and vulvar discharge. Sex hormone assay suggested that estradiol and prolactin were elevated, and the x-ray of limbs suggested enchondroma. Pelvic ultrasound and abdominal CT revealed a right ovarian solid mass. Pathologic examination of the right ovarian solid mass showed a juvenile granulosa cell type. A c.394C>T (p. Arg132Cys) mutation of the IDH1 gene was detected in both the ovarian juvenile granulosa cell tumors and enchondroma. Transfection of HeLa cells with either WT or Mut plasmid caused 4.46- or 3.77-fold overexpression of IDH1 gene compared to non-transfected control cells, respectively. R132C mutation inhibited the phosphorylation of S6 ribosomal protein, which is central to the mTOR pathway. Postoperatively, estradiol and prolactin levels fell to values normal for her age and bilateral breast gradual retraction. Conclusion The incidence of ovarian juvenile granulosa cell tumors with Ollier's disease in children may be caused by generalized mesodermal dysplasia; IDH1 gene mutation may play a facilitated role in this process. Surgical operation is the main treatment. We suggest that patients with ovarian juvenile granulosa cell tumors and Ollier's disease should undergo regular investigation.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| | - Renwu Hua
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen, Shenzhen, China
| | - Lishuang Ma
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Chao Liu
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Yanxia Zhang
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Xuemin Lü
- Department of Pediatric Orthopedics, Beijing Jishuitan Hospital, Beijing, China
| | - Tianren Wang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen, Shenzhen, China
| | - Naijun Wan
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
8
|
Chen S, Jiang J, Shen A, Miao Y, Cao Y, Zhang Y, Cong P, Gao P. Rewired Metabolism of Amino Acids and Its Roles in Glioma Pathology. Metabolites 2022; 12:918. [PMID: 36295820 PMCID: PMC9611130 DOI: 10.3390/metabo12100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Amino acids (AAs) are indispensable building blocks of diverse bio-macromolecules as well as functional regulators for various metabolic processes. The fact that cancer cells live with a voracious appetite for specific AAs has been widely recognized. Glioma is one of the most lethal malignancies occurring in the central nervous system. The reprogrammed metabolism of AAs benefits glioma proliferation, signal transduction, epigenetic modification, and stress tolerance. Metabolic alteration of specific AAs also contributes to glioma immune escape and chemoresistance. For clinical consideration, fluctuations in the concentrations of AAs observed in specific body fluids provides opportunities to develop new diagnosis and prognosis markers. This review aimed at providing an extra dimension to understanding glioma pathology with respect to the rewired AA metabolism. A deep insight into the relevant fields will help to pave a new way for new therapeutic target identification and valuable biomarker development.
Collapse
Affiliation(s)
- Sirui Chen
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ao Shen
- HE University, Shenyang 110163, China
| | - Ying Miao
- E&M College, Shenyang Aerospace University, Shenyang 110136, China
| | - Yunfeng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Ying Zhang
- Internal Medicine Department, Dalian Public Health Clinical Center, Dalian 116033, China
| | - Peiyu Cong
- Neurosurgery Department, Affiliated Dalian Municipal Central Hospital of Dalian Medical University, Dalian 116022, China
| | - Peng Gao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
9
|
Li B, Wang C, Lu P, Ji Y, Wang X, Liu C, Lu X, Xu X, Wang X. IDH1 Promotes Foam Cell Formation by Aggravating Macrophage Ferroptosis. BIOLOGY 2022; 11:biology11101392. [PMID: 36290297 PMCID: PMC9598283 DOI: 10.3390/biology11101392] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary In our study, the involvement of IDH1 in atherosclerotic foam cells was explored. Inhibiting macrophage ferroptosis and foam cell formation by knocking down IDH1 is a promising study direction for better understanding the occurrence and progression of atherosclerosis, as well as the treatment targets for atherosclerosis. Abstract A distinctive feature of ferroptosis is intracellular iron accumulation and the impairment of antioxidant capacity, resulting in a lethal accumulation of lipid peroxides leading to cell death. This study was conducted to determine whether inhibiting isocitrate dehydrogenase 1 (IDH1) may help to prevent foam cell formation by reducing oxidized low-density lipoprotein (ox-LDL)-induced ferroptosis in macrophages and activating nuclear factor erythroid 2-related factor 2 (NRF2). Gene expression profiling (GSE70126 and GSE70619) revealed 21 significantly different genes, and subsequent bioinformatics research revealed that ferroptosis and IDH1 play essential roles in foam cell production. We also confirmed that ox-LDL elevates macrophage ferroptosis and IDH1 protein levels considerably as compared with controls. Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, reduced ox-LDL-induced elevated Fe2+ levels, lipid peroxidation (LPO) buildup, lactate dehydrogenase (LDH) buildup, glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4), ferritin heavy polypeptide 1 (FTH1), and solute carrier family 7 member 11 (SLC7A11) protein downregulation. More crucially, inhibiting IDH1 reduced Fe2+ overload, lipid peroxidation, LDH, and glutathione depletion, and elevated GPX4, FTH1, and SLC7A11 protein expression, resulting in a reduction in ox-LDL-induced macrophage ferroptosis. IDH1 inhibition suppressed ox-LDL-induced macrophage damage and apoptosis while raising NRF2 protein levels. We have demonstrated that inhibiting IDH1 reduces ox-LDL-induced ferroptosis and foam cell formation in macrophages, implying that IDH1 may be an important molecule regulating foam cell formation and may be a promising molecular target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ben Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Chufan Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Peng Lu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Yumeng Ji
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Xufeng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Chaoyang Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Xiaohu Lu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Xiaohan Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili, Jiangsu Joint Institute of Health, Yining 835000, China
- Correspondence: (X.X.); (X.W.)
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210000, China
- Correspondence: (X.X.); (X.W.)
| |
Collapse
|
10
|
Guéant JL, Feillet F. Inherited metabolic disorders beyond the new generation sequencing era: the need for in-depth cellular and molecular phenotyping. Hum Genet 2022; 141:1235-1237. [PMID: 35754062 DOI: 10.1007/s00439-022-02467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jean-Louis Guéant
- INSERM, UMR_S1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine, Avenue de la Forêt de Haye, Vandoeuvre-Lès-Nancy, 54500, Nancy, France. .,Reference Centre of Inborn Metabolism Diseases and Department of Molecular Medicine, University Hospital Center, 54500, Nancy, France.
| | - François Feillet
- INSERM, UMR_S1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine, Avenue de la Forêt de Haye, Vandoeuvre-Lès-Nancy, 54500, Nancy, France.,Reference Centre of Inborn Metabolism Diseases and Department of Molecular Medicine, University Hospital Center, 54500, Nancy, France
| |
Collapse
|
11
|
Morgan KM, Danish S, Xiong Z. Diffuse astrocytoma with mosaic IDH1-R132H-mutant immuno-phenotype and low subclonal allele frequency. Intractable Rare Dis Res 2022; 11:43-45. [PMID: 35261853 PMCID: PMC8898389 DOI: 10.5582/irdr.2022.01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/05/2022] Open
Abstract
Molecular alterations found in gliomas are now considered entity-defining features. The World Health Organization (WHO) classification system currently classifies the vast majority of gliomas utilizing an integrated genotype-phenotype approach. We present a case of diffuse astrocytoma with a mosaic isocitrate dehydrogenase (IDH)1-R132H-mutant immunophenotype and low subclonal allele frequency. A 35-year-old patient with a history of IDH1-R132H mutated diffuse astrocytoma in 20014 presented to the hospital again in 2019. MRI examination showed a non-enhancing abnormal signal in the periphery of her previous surgical cavity. Histopathological examination revealed that the tumor was hypercellular and without high grade histopathological features. The neoplastic cells were immunohistologically positive for GFAP, Olig2, and ATRX. However, only some scattered tumor cells were positive for IDH1-R132H. Cytogenetic studies revealed a lack of chromosomal 1p/19q co-deletion. Further next-generation sequencing (NGS) demonstrated a low-level IDH1-R132H mutation and allele frequency. Based on these findings, the diagnosis of diffuse astrocytoma with mosaic IDH1- R132H-mutant immunophenotype and low subclonal allele frequency (WHO grade II) was generated. This case indicates that gliomas may have heterogeneous molecular profile and the intra-tumoral molecular heterogeneity highlights the need to further characterize the molecular profile for glioma classification and clinical management.
Collapse
Affiliation(s)
- Katherine M. Morgan
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Shabbar Danish
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Zhenggang Xiong
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Address correspondence to:Zhenggang Xiong, Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, LMB, Suite 110, 234 Goodman Street, Cincinnati, OH 45219, USA. E-mail:
| |
Collapse
|
12
|
Gestrich CK, Couce ME, Cohen ML. Adult Diffuse Astrocytic and Oligodendroglial Tumors. Neurosurgery 2021; 89:737-749. [PMID: 33611566 DOI: 10.1093/neuros/nyab042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/25/2020] [Indexed: 11/12/2022] Open
Abstract
Infiltrating gliomas comprise the most common group of primary intraparenchymal brain tumors and present a level of complexity which requires careful integration of histopathology and molecular diagnostics for optimal therapy. To this end, the fourth edition of the World Health Organization (WHO) Classification of Tumors of the Central Nervous System (CNS) has been followed by a series of publications by cIMPACT-NOW (the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy) incorporating molecular signatures to propose updated diagnostic categories in anticipation of the upcoming fifth edition of CNS tumor classification. Integration of histopathology, immunophenotyping, and molecular findings is profoundly changing the practice of diagnostic surgical neuropathology and enabling a more personalized approach to treating patients with gliomas.
Collapse
Affiliation(s)
- Catherine K Gestrich
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Marta E Couce
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark L Cohen
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|