1
|
Álvarez-González E, Sierra LM. Tricarboxylic Acid Cycle Relationships with Non-Metabolic Processes: A Short Story with DNA Repair and Its Consequences on Cancer Therapy Resistance. Int J Mol Sci 2024; 25:9054. [PMID: 39201738 PMCID: PMC11355010 DOI: 10.3390/ijms25169054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Metabolic changes involving the tricarboxylic acid (TCA) cycle have been linked to different non-metabolic cell processes. Among them, apart from cancer and immunity, emerges the DNA damage response (DDR) and specifically DNA damage repair. The oncometabolites succinate, fumarate and 2-hydroxyglutarate (2HG) increase reactive oxygen species levels and create pseudohypoxia conditions that induce DNA damage and/or inhibit DNA repair. Additionally, by influencing DDR modulation, they establish direct relationships with DNA repair on at least four different pathways. The AlkB pathway deals with the removal of N-alkylation DNA and RNA damage that is inhibited by fumarate and 2HG. The MGMT pathway acts in the removal of O-alkylation DNA damage, and it is inhibited by the silencing of the MGMT gene promoter by 2HG and succinate. The other two pathways deal with the repair of double-strand breaks (DSBs) but with opposite effects: the FH pathway, which uses fumarate to help with the repair of this damage, and the chromatin remodeling pathway, in which oncometabolites inhibit its repair by impairing the homologous recombination repair (HRR) system. Since oncometabolites inhibit DNA repair, their removal from tumor cells will not always generate a positive response in cancer therapy. In fact, their presence contributes to longer survival and/or sensitization against tumor therapy in some cancer patients.
Collapse
Affiliation(s)
- Enol Álvarez-González
- Departamento de Biología Funcional, Área de Genética, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avda. HUCA s/n, 33011 Oviedo, Spain
| | - Luisa María Sierra
- Departamento de Biología Funcional, Área de Genética, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avda. HUCA s/n, 33011 Oviedo, Spain
| |
Collapse
|
2
|
Kamboj M, Gupta G, Pasricha S, Mehta A, Rawal S, Singh A, Sharma A, Durga G, Bansal D, Diwan H. Fumarate hydratase-deficient renal cell carcinoma: an oncology care institutional experience. APMIS 2024; 132:544-552. [PMID: 38775301 DOI: 10.1111/apm.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/26/2024] [Indexed: 07/11/2024]
Abstract
Renal cell carcinoma (RCC) accounts for 2% of all cancer cases worldwide, and majority are sporadic. The latest World Health Organization (WHO) classification of renal cell tumors (fifth edition, 2022) has molecularly defined renal tumor entities, which includes fumarate hydratase (FH)-deficient RCC. FH-deficient RCC is an aggressive carcinoma caused by pathogenic alterations in FH gene, seen in 15% of patients with hereditary leiomyomatosis and renal cell cancer syndrome (HLRCC) syndrome. These tumors occur more frequently at a younger age and present at an advanced stage, carrying a dismal prognosis. We report a series of 10 cases of FH-deficient RCC. The mean age was 49.8 years, and all cases presented in advanced stages (III and IV). Morphologically, the cases had varied architectural patterns with characteristic eosinophilic macronucleoli and perinucleolar halo. On immunohistochemistry (IHC), all showed diffuse nucleo-cytoplasmic expression of S-(2-succino)-cysteine (2-SC), with loss of FH in seven cases. FH-deficient RCCs are aggressive neoplasms and can be diagnosed using specific IHC markers (FH and 2-SC). These patients should undergo germline testing for FH gene mutation, genetic counseling, and surveillance of family members.
Collapse
Affiliation(s)
- Meenakshi Kamboj
- Department of Histopathology and Cytopathology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, India
| | - Gurudutt Gupta
- Department of Histopathology and Cytopathology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, India
| | - Sunil Pasricha
- Department of Histopathology and Cytopathology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, India
| | - Anurag Mehta
- Laboratory Services & Molecular Diagnostics, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, India
| | - Sudhir Rawal
- Department of GenitoUro-Oncology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, India
| | - Amitabh Singh
- Department of GenitoUro-Oncology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, India
| | - Anila Sharma
- Department of Histopathology and Cytopathology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, India
| | - Garima Durga
- Department of Histopathology and Cytopathology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, India
| | - Divya Bansal
- Department of Histopathology and Cytopathology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, India
| | - Himanshi Diwan
- Department of Histopathology and Cytopathology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, India
| |
Collapse
|
3
|
Bai X, Xiang D, Huang M, Chen Y. Case report: successful response to bevacizumab combined with erlotinib for a novel FH gene mutation hereditary leiomyoma and renal cell carcinoma. Front Pharmacol 2024; 15:1373020. [PMID: 38974045 PMCID: PMC11224512 DOI: 10.3389/fphar.2024.1373020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
FH-deficient Renal Cell Carcinoma (FH-deficient RCC) are inherited tumors caused by mutations in the fumarate hydratase (FH) gene, which plays a role in the tricarboxylic acid cycle. These mutations often result in aggressive forms of renal cell carcinoma (RCC) and other tumors. Here, we present a case of FH-deficient RCC in a 43-year-old woman with a history of uterine fibroids. She exhibited a new heterozygous mutation in exon six of the FH gene (c.799_803del, c.781_796del). The patient had multiple bone metastases and small subcutaneous nodules in various areas such as the shoulders, back, and buttocks. Biopsy of a subcutaneous nodule on the right side revealed positive expression of 2-succinate-cysteine (2SC), and FH staining indicated FH expression deletion. The patient underwent treatment with a combination of erlotinib and bevacizumab, which resulted in significant efficacy with moderate side effects. This treatment combination may be recommended as a standard regimen. This case underscores the importance of genetic testing in patients with advanced renal cancer to enhance diagnostic accuracy. Furthermore, it provides insights into potential treatment approaches for FH-deficient RCC.
Collapse
Affiliation(s)
- Xiaoming Bai
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dan Xiang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mengxi Huang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yitian Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Bužinskienė D, Grinciūtė D, Šilkūnas M, Šidlovska E. Case report: Uterine leiomyoma with fumarate hydratase deficiency. Front Med (Lausanne) 2024; 11:1391978. [PMID: 38784227 PMCID: PMC11112093 DOI: 10.3389/fmed.2024.1391978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Hereditary leiomyomatosis and renal cell cancer syndrome is a rare autosomal dominant disease caused by mutations in the fumarate hydratase gene. The syndrome is characterized by skin leiomyomatosis, uterine leiomyomatosis, and renal cell carcinoma. Herein, we report a case of fumarate hydratase deficient leiomyoma. The patient was a young female presenting with large uterine leiomyoma and multiple kidney angiomyolipomas. The report presents the chosen treatment and the challenges of differential diagnosis.
Collapse
Affiliation(s)
- Diana Bužinskienė
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Clinic of Obstetrics and Gynecology, Institute of Clinical Medicine, Faculty of Medicine Vilnius University, Vilnius, Lithuania
| | | | - Mindaugas Šilkūnas
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Clinic of Obstetrics and Gynecology, Institute of Clinical Medicine, Faculty of Medicine Vilnius University, Vilnius, Lithuania
| | - Evelina Šidlovska
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| |
Collapse
|
5
|
Kamboj M, Chadha P, Sharma A, Bansal D, Gupta G, Mehta A. FH deficient uterine leiomyomas-a case series. Heliyon 2024; 10:e24449. [PMID: 38293425 PMCID: PMC10826412 DOI: 10.1016/j.heliyon.2024.e24449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Introduction Fumarate hydratase (FH) deficient uterine leiomyomas account for only 0.4 % of all uterine leiomyomas. They are characterized by some distinct histological features and may be associated with Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome. Methods Herein we present a series of five cases of FH deficient uterine leiomyomas in patients with a mean age of 30 years. All five patients underwent myomectomy. Three of these cases had an outside histopathologic diagnosis ranging from Smooth muscle tumor of uncertain malignant potential (STUMP) to Leiomyosarcoma while two cases were operated at our centre. All five cases were reported as suggestive of FH deficient leiomyomas and were advised germline testing along with genetic counselling. Results Immunohistochemically four of the cases showed moderate to strong positivity for 2-SC with a complete loss or reduced expression of FH while one case showed absence of 2-SC staining. Discussion Mutations in FH lead to reduced enzyme activity and accumulation of fumarate leading to a complete loss or aberrant reduced expression seen on immunohistochemistry, which confirms the diagnosis. It is important to differentiate it from a leiomyosarcoma or other malignant spindle cell tumors as these tumors follow a benign course. Their association with HLRCC also needs to be established for a suitable follow up since HLRCC-associated RCCs are often aggressive. Conclusion Management of such leiomyomas is myomectomy or hysterectomy with advice of genetic testing to rule out HLRCC. Histomorphology and immunohistochemistry are imperative for a correct and timely diagnosis.
Collapse
Affiliation(s)
- Meenakshi Kamboj
- Department of Laboratory and Transfusion Services, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India, 110015
| | - Prerna Chadha
- Department of Laboratory and Transfusion Services, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India, 110015
| | - Anila Sharma
- Department of Laboratory and Transfusion Services, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India, 110015
| | - Divya Bansal
- Department of Laboratory and Transfusion Services, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India, 110015
| | - Gurudutt Gupta
- Department of Laboratory and Transfusion Services, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India, 110015
| | - Anurag Mehta
- Department of Laboratory and Transfusion Services, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India, 110015
| |
Collapse
|
6
|
Gouiza I, Hechmi M, Zioudi A, Dallali H, Kheriji N, Charif M, Le Mao M, Galai S, Kraoua L, Ben Youssef-Turki I, Kraoua I, Lenaers G, Kefi R. Expanding the genetic spectrum of mitochondrial diseases in Tunisia: novel variants revealed by whole-exome sequencing. Front Genet 2024; 14:1259826. [PMID: 38283147 PMCID: PMC10811255 DOI: 10.3389/fgene.2023.1259826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: Inherited mitochondrial diseases are the most common group of metabolic disorders caused by a defect in oxidative phosphorylation. They are characterized by a wide clinical and genetic spectrum and can manifest at any age. In this study, we established novel phenotype-genotype correlations between the clinical and molecular features of a cohort of Tunisian patients with mitochondrial diseases. Materials and methods: Whole-exome sequencing was performed on five Tunisian patients with suspected mitochondrial diseases. Then, a combination of filtering and bioinformatics prediction tools was utilized to assess the pathogenicity of genetic variations. Sanger sequencing was subsequently performed to confirm the presence of potential deleterious variants in the patients and verify their segregation within families. Structural modeling was conducted to study the effect of novel variants on the protein structure. Results: We identified two novel homozygous variants in NDUFAF5 (c.827G>C; p.Arg276Pro) and FASTKD2 (c.496_497del; p.Leu166GlufsTer2) associated with a severe clinical form of Leigh and Leigh-like syndromes, respectively. Our results further disclosed two variants unreported in North Africa, in GFM2 (c.569G>A; p.Arg190Gln) and FOXRED1 (c.1261G>A; p.Val421Met) genes, and we described the first case of fumaric aciduria in a Tunisian patient harboring the c.1358T>C; p.Leu453Pro FH variant. Conclusion: Our study expands the mutational and phenotypic spectrum of mitochondrial diseases in Tunisia and highlights the importance of next-generation sequencing to decipher the pathomolecular mechanisms responsible for these disorders in an admixed population.
Collapse
Affiliation(s)
- Ismail Gouiza
- University of Angers, MitoLab Team, Unité MitoVasc, UMR CNRS (Unité mixte de recherche Centre national de la recherche scientifique) 6015 INSERM (Institut national de la santé et de la recherche médicale) U1083, SFR ICAT, University of Angers, Angers, France
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Meriem Hechmi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Abir Zioudi
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Majida Charif
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Morgane Le Mao
- University of Angers, MitoLab Team, Unité MitoVasc, UMR CNRS (Unité mixte de recherche Centre national de la recherche scientifique) 6015 INSERM (Institut national de la santé et de la recherche médicale) U1083, SFR ICAT, University of Angers, Angers, France
| | - Said Galai
- Faculty of Medicine of Tunis, Tunis, Tunisia
- Department of Clinical Biology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia
| | - Lilia Kraoua
- Tunis El Manar University, Tunis, Tunisia
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | - Ilhem Ben Youssef-Turki
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia
| | - Ichraf Kraoua
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- Research Laboratory LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia
| | - Guy Lenaers
- University of Angers, MitoLab Team, Unité MitoVasc, UMR CNRS (Unité mixte de recherche Centre national de la recherche scientifique) 6015 INSERM (Institut national de la santé et de la recherche médicale) U1083, SFR ICAT, University of Angers, Angers, France
- Department of Neurology, CHU d’Angers, Angers, France
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
7
|
Alchoueiry M, Cornejo K, Henske EP. Kidney cancer: Links between hereditary syndromes and sporadic tumorigenesis. Semin Diagn Pathol 2024; 41:1-7. [PMID: 38008653 DOI: 10.1053/j.semdp.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Multiple hereditary syndromes predispose to kidney cancer, including Von Hippel-Lindau syndrome, BAP1-Tumor Predisposition Syndrome, Hereditary Papillary Renal Cell Carcinoma, Tuberous Sclerosis Complex, Birt-Hogg-Dubé syndrome, Hereditary Paraganglioma-Pheochromocytoma Syndrome, Fumarate Hydratase Tumor Predisposition Syndrome, and Cowden syndrome. In some cases, mutations in the genes that cause hereditary kidney cancer are tightly linked to similar histologic features in sporadic RCC. For example, clear cell RCC occurs in the hereditary syndrome VHL, and sporadic ccRCC usually has inactivation of the VHL gene. In contrast, mutations in FLCN, the causative gene for Birt-Hogg-Dube syndrome, are rarely found in sporadic RCC. Here, we focus on the genes and pathways that link hereditary and sporadic RCC.
Collapse
Affiliation(s)
- Michel Alchoueiry
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristine Cornejo
- Pathology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Ruan Y, Feng W, Yang C. A novel nonsense mutation in the fumarate hydratase gene in a Chinese patient with recurrent leiomyomas. F S Rep 2023; 4:410-415. [PMID: 38204953 PMCID: PMC10774885 DOI: 10.1016/j.xfre.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 01/12/2024] Open
Abstract
Objective To describe a novel nonsense mutation in the fumarate hydratase (FH) gene in a Chinese patient with recurrent multiple leiomyomas. Design Case report. Setting Medical school-affiliated tertiary hospital. Patients A nulligravida patient aged 30 years with large uterine leiomyomas (ULMs) and severe anemia. Interventions Clinical evaluation, abdominal myomectomy, targeted next-generation sequencing. Main outcome measures Fumarate hydratase gene mutation in ULMs. Results A novel nonsense mutation (c.771T>G) in the FH gene was identified in this patient. This mutation is located in exon 6, which encodes the N-terminal fumarate lyase domain. It leads to a predicted truncated protein with loss of the majority of the lyase domain, resulting in FH deficiency. Conclusions Because of the recurrent multiple leiomyomas, this patient received 2 myomectomies within 5 years. On immunostaining the leiomyoma, FH deficiency was detected, and targeted next-generation sequencing revealed a novel mutation of the FH gene. This patient was at risk for early disease relapse and developing renal cancer, and close disease monitoring is recommended. Meanwhile, the expanded mutation database should benefit patients in diagnosing FH gene-associated ULMs.
Collapse
Affiliation(s)
- Yiyin Ruan
- Department of Gynecology and obstetrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Weiwei Feng
- Department of Gynecology and obstetrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chenmin Yang
- Department of Gynecology and obstetrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
9
|
Wildschut MHE, Mena J, Dördelmann C, van Oostrum M, Hale BD, Settelmeier J, Festl Y, Lysenko V, Schürch PM, Ring A, Severin Y, Bader MS, Pedrioli PGA, Goetze S, van Drogen A, Balabanov S, Skoda RC, Lopes M, Wollscheid B, Theocharides APA, Snijder B. Proteogenetic drug response profiling elucidates targetable vulnerabilities of myelofibrosis. Nat Commun 2023; 14:6414. [PMID: 37828014 PMCID: PMC10570306 DOI: 10.1038/s41467-023-42101-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Myelofibrosis is a hematopoietic stem cell disorder belonging to the myeloproliferative neoplasms. Myelofibrosis patients frequently carry driver mutations in either JAK2 or Calreticulin (CALR) and have limited therapeutic options. Here, we integrate ex vivo drug response and proteotype analyses across myelofibrosis patient cohorts to discover targetable vulnerabilities and associated therapeutic strategies. Drug sensitivities of mutated and progenitor cells were measured in patient blood using high-content imaging and single-cell deep learning-based analyses. Integration with matched molecular profiling revealed three targetable vulnerabilities. First, CALR mutations drive BET and HDAC inhibitor sensitivity, particularly in the absence of high Ras pathway protein levels. Second, an MCM complex-high proliferative signature corresponds to advanced disease and sensitivity to drugs targeting pro-survival signaling and DNA replication. Third, homozygous CALR mutations result in high endoplasmic reticulum (ER) stress, responding to ER stressors and unfolded protein response inhibition. Overall, our integrated analyses provide a molecularly motivated roadmap for individualized myelofibrosis patient treatment.
Collapse
Affiliation(s)
- Mattheus H E Wildschut
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Cyril Dördelmann
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Marc van Oostrum
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Benjamin D Hale
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jens Settelmeier
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Patrick M Schürch
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Alexander Ring
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Michael S Bader
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Patrick G A Pedrioli
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Sandra Goetze
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Audrey van Drogen
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Stefan Balabanov
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Radek C Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland.
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
10
|
Zhou L, Ou S, Liang T, Li M, Xiao P, Cheng J, Zhou J, Yuan L. MAEL facilitates metabolic reprogramming and breast cancer progression by promoting the degradation of citrate synthase and fumarate hydratase via chaperone-mediated autophagy. FEBS J 2023. [PMID: 36866961 DOI: 10.1111/febs.16768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 03/04/2023]
Abstract
Metabolic reprogramming is a hallmark of cancer. Several studies have shown that inactivation of Krebs cycle enzymes, such as citrate synthase (CS) and fumarate hydratase (FH), facilitates aerobic glycolysis and cancer progression. MAEL has been shown to play an oncogenic role in bladder, liver, colon, and gastric cancers, but its role in breast cancer and metabolism is still unknown. Here, we demonstrated that MAEL promoted malignant behaviours and aerobic glycolysis in breast cancer cells. Mechanistically, MAEL interacted with CS/FH and HSAP8 via its MAEL domain and HMG domain, respectively, and then enhanced the binding affinity of CS/FH with HSPA8, facilitating the transport of CS/FH to the lysosome for degradation. MAEL-induced degradation of CS and FH could be suppressed by the lysosome inhibitors leupeptin and NH4 Cl, but not by the macroautophagy inhibitor 3-MA or the proteasome inhibitor MG132. These results suggested that MAEL promoted the degradation of CS and FH via chaperone-mediated autophagy (CMA). Further studies showed that the expression of MAEL was significantly and negatively correlated with CS and FH in breast cancer. Moreover, overexpression of CS or/and FH could reverse the oncogenic effects of MAEL. Taken together, MAEL promotes a metabolic shift from oxidative phosphorylation to glycolysis by inducing CMA-dependent degradation of CS and FH, thereby promoting breast cancer progression. These findings have elucidated a novel molecular mechanism of MAEL in cancer.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish & Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha, China.,College of Clinical Laboratory, Changsha Medical University, China
| | - Shuobo Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish & Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha, China
| | - Ting Liang
- State Key Laboratory of Developmental Biology of Freshwater Fish & Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha, China
| | - Meiling Li
- State Key Laboratory of Developmental Biology of Freshwater Fish & Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha, China
| | - Pei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish & Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha, China
| | - Jiaxin Cheng
- State Key Laboratory of Developmental Biology of Freshwater Fish & Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianlin Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish & Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha, China
| | - Liqin Yuan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Aging and memory are altered by genetically manipulating lactate dehydrogenase in the neurons or glia of flies. Aging (Albany NY) 2023; 15:947-981. [PMID: 36849157 PMCID: PMC10008500 DOI: 10.18632/aging.204565] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
The astrocyte-neuron lactate shuttle hypothesis posits that glial-generated lactate is transported to neurons to fuel metabolic processes required for long-term memory. Although studies in vertebrates have revealed that lactate shuttling is important for cognitive function, it is uncertain if this form of metabolic coupling is conserved in invertebrates or is influenced by age. Lactate dehydrogenase (Ldh) is a rate limiting enzyme that interconverts lactate and pyruvate. Here we genetically manipulated expression of Drosophila melanogaster lactate dehydrogenase (dLdh) in neurons or glia to assess the impact of altered lactate metabolism on invertebrate aging and long-term courtship memory at different ages. We also assessed survival, negative geotaxis, brain neutral lipids (the core component of lipid droplets) and brain metabolites. Both upregulation and downregulation of dLdh in neurons resulted in decreased survival and memory impairment with age. Glial downregulation of dLdh expression caused age-related memory impairment without altering survival, while upregulated glial dLdh expression lowered survival without disrupting memory. Both neuronal and glial dLdh upregulation increased neutral lipid accumulation. We provide evidence that altered lactate metabolism with age affects the tricarboxylic acid (TCA) cycle, 2-hydroxyglutarate (2HG), and neutral lipid accumulation. Collectively, our findings indicate that the direct alteration of lactate metabolism in either glia or neurons affects memory and survival but only in an age-dependent manner.
Collapse
|
12
|
Liu Y, Tang Y, Ren S, Chen L. Antibacterial Components and Modes of the Methanol-Phase Extract from Commelina communis Linn. PLANTS (BASEL, SWITZERLAND) 2023; 12:890. [PMID: 36840240 PMCID: PMC9966474 DOI: 10.3390/plants12040890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Infectious diseases caused by pathogenic bacteria severely threaten human health. Traditional Chinese herbs are potential sources of new or alternative medicine. In this study, we analyzed for the first time antibacterial substances in the methanol-phase extract from a traditional Chinese herb-Commelina communis Linn-which showed an inhibition rate of 58.33% against 24 species of common pathogenic bacteria. The extract was further purified using preparative high-performance liquid chromatography (Prep-HPLC), which generated four single fragments (Fragments 1 to 4). The results revealed that Fragment 1 significantly increased bacterial cell surface hydrophobicity and membrane permeability and decreased membrane fluidity, showing disruptive effects on cell integrity of Gram-positive and Gram-negative bacteria, such as Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, and Salmonella enterica subsp., compared to the control groups (p < 0.05). In sum, 65 compounds with known functions in Fragment 1 were identified using liquid chromatography and mass spectrometry (LC-MS), of which quercetin-3-o-glucuronide was predominant (19.35%). Comparative transcriptomic analysis revealed multiple altered metabolic pathways mediated by Fragment 1, such as inhibited ABC transporters, ribosome, citrate cycle and oxidative phosphorylation, and upregulated nitrogen metabolism and purine metabolism, thereby resulting in the repressed bacterial growth and even death (p < 0.05). Overall, the results of this study demonstrate that Fragment 1 from C. communis Linn is a promising candidate against common pathogenic bacteria.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingping Tang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shunlin Ren
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, VA 23298, USA
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
13
|
Punjabi LS, Thomas A. The Waldo of fibroids under the microscope: fumarate hydratase–deficient leiomyomata. F S Rep 2022; 3:172-173. [PMID: 35789721 PMCID: PMC9250141 DOI: 10.1016/j.xfre.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/11/2022] Open
|