1
|
Li S, Yuan T, Yuan J, Zhu B, Chen D. Opportunities and challenges of using circulating tumor DNA to predict lung cancer immunotherapy efficacy. J Cancer Res Clin Oncol 2024; 150:501. [PMID: 39545998 PMCID: PMC11568038 DOI: 10.1007/s00432-024-06030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Immune checkpoint inhibitors (ICIs), particularly anti-programmed death 1 (PD-1)/ programmed death ligand 1 (PD-L1) antibodies, have led to significant progress in lung cancer treatment. However, only a minority of patients have responses to these therapies. Detecting peripheral blood of circulating tumor DNA (ctDNA) allows minimally invasive diagnosis, characterization, and monitoring of lung cancer. ctDNA has potential to be a prognostic biomarker and a predictor of the response to ICI therapy since it can indicate the genomic status and tumor burden. Recent studies on lung cancer have shown that pretreatment ctDNA analysis can detect residual proliferative disease in the adjuvant immunotherapy setting and evaluate tumor burden in patients with metastatic disease. Early ctDNA dynamics can not only predict the clinical outcome of ICI therapy but also help distinguish between pseudoprogression and real progression. Furthermore, in addition to quantitative assessment, ctDNA can also detect genetic predictors of response to ICI therapy. However, barriers still exist in the application of ctDNA analysis in clinical lung cancer treatment. The predictive value of ctDNA in lung cancer immunotherapy requires further identification and resolution of these challenges. This review aims to summarize the existing data of ctDNA analysis in patients receiving immunotherapy for lung cancer, understand the limitations of clinical treatment, and discuss future research directions.
Collapse
Affiliation(s)
- Shanshan Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Ting Yuan
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jing Yuan
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Degao Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
2
|
Liu Q, Jiang X, Tu W, Liu L, Huang Y, Xia Y, Xia X, Shi Y. Comparative efficiency of differential diagnostic methods for the identification of BRAF V600E gene mutation in papillary thyroid cancer (Review). Exp Ther Med 2024; 27:149. [PMID: 38476918 PMCID: PMC10928970 DOI: 10.3892/etm.2024.12437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
V-Raf murine sarcoma viral oncogene homolog B1 (BRAF) encodes a serine-threonine kinase. The V600E point mutation in the BRAF gene is the most common mutation, predominantly occurring in melanoma, and colorectal, thyroid and non-small cell lung cancer. Particularly in the context of thyroid cancer research, it is routinely employed as a molecular biomarker to assist in diagnosing and predicting the prognosis of papillary thyroid cancer (PTC), and to formulate targeted therapeutic strategies. Currently, several methods are utilized in clinical settings to detect BRAF V600E mutations in patients with PTC. However, the sensitivity and specificity of various detection techniques vary significantly, resulting in diverse detection outcomes. The present review highlights the advantages and disadvantages of the methods currently employed in medical practice, with the aim of guiding clinicians and researchers in selecting the most suitable detection approach for its high sensitivity, reproducibility and potential to develop targeted therapeutic regimens for patients with BRAF gene mutation-associated PTC.
Collapse
Affiliation(s)
- Qian Liu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xue Jiang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Wenling Tu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Lina Liu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Ying Huang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Yuxiao Xia
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xuliang Xia
- Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Yuhong Shi
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
3
|
Wu X, Li T, Jiang R, Yang X, Guo H, Yang R. Targeting MHC-I molecules for cancer: function, mechanism, and therapeutic prospects. Mol Cancer 2023; 22:194. [PMID: 38041084 PMCID: PMC10693139 DOI: 10.1186/s12943-023-01899-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
The molecules of Major histocompatibility class I (MHC-I) load peptides and present them on the cell surface, which provided the immune system with the signal to detect and eliminate the infected or cancerous cells. In the context of cancer, owing to the crucial immune-regulatory roles played by MHC-I molecules, the abnormal modulation of MHC-I expression and function could be hijacked by tumor cells to escape the immune surveillance and attack, thereby promoting tumoral progression and impairing the efficacy of cancer immunotherapy. Here we reviewed and discussed the recent studies and discoveries related to the MHC-I molecules and their multidirectional functions in the development of cancer, mainly focusing on the interactions between MHC-I and the multiple participators in the tumor microenvironment and highlighting the significance of targeting MHC-I for optimizing the efficacy of cancer immunotherapy and a deeper understanding of the dynamic nature and functioning mechanism of MHC-I in cancer.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianhang Li
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Rui Jiang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Shen X, Gao C, Li H, Liu C, Wang L, Li Y, Liu R, Sun C, Zhuang J. Natural compounds: Wnt pathway inhibitors with therapeutic potential in lung cancer. Front Pharmacol 2023; 14:1250893. [PMID: 37841927 PMCID: PMC10568034 DOI: 10.3389/fphar.2023.1250893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
The Wnt/β-catenin pathway is abnormally activated in most lung cancer tissues and considered to be an accelerator of carcinogenesis and lung cancer progression, which is closely related to increased morbidity rates, malignant progression, and treatment resistance. Although targeting the canonical Wnt/β-catenin pathway shows significant potential for lung cancer therapy, it still faces challenges owing to its complexity, tumor heterogeneity and wide physiological activity. Therefore, it is necessary to elucidate the role of the abnormal activation of the Wnt/β-catenin pathway in lung cancer progression. Moreover, Wnt inhibitors used in lung cancer clinical trials are expected to break existing therapeutic patterns, although their adverse effects limit the treatment window. This is the first study to summarize the research progress on various compounds, including natural products and derivatives, that target the canonical Wnt pathway in lung cancer to develop safer and more targeted drugs or alternatives. Various natural products have been found to inhibit Wnt/β-catenin in various ways, such as through upstream and downstream intervention pathways, and have shown encouraging preclinical anti-tumor efficacy. Their diversity and low toxicity make them a popular research topic, laying the foundation for further combination therapies and drug development.
Collapse
Affiliation(s)
- Xuetong Shen
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
5
|
Li L, Zhang M, Li J, Liu T, Bao Q, Li X, Long J, Fu L, Zhang Z, Huang S, Liu Z, Zhang L. Cholesterol removal improves performance of a model biomimetic system to co-deliver a photothermal agent and a STING agonist for cancer immunotherapy. Nat Commun 2023; 14:5111. [PMID: 37607938 PMCID: PMC10444796 DOI: 10.1038/s41467-023-40814-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Biological membranes often play important functional roles in biomimetic drug delivery systems. We discover that the circulation time and targeting capability of biological membrane coated nanovehicles can be significantly improved by reducing cholesterol level in the coating membrane. A proof-of-concept system using cholesterol-reduced and PD-1-overexpressed T cell membrane to deliver a photothermal agent and a STING agonist is thus fabricated. Comparing with normal membrane, this engineered membrane increases tumor accumulation by ~2-fold. In a melanoma model in male mice, tumors are eliminated with no recurrence in >80% mice after intravenous injection and laser irradiation; while in a colon cancer model in male mice, ~40% mice are cured without laser irradiation. Data suggest that the engineered membranes escape immune surveillance to avoid blood clearance while keeping functional surface molecules exposed. In summary, we develop a simple, effective, safe and widely-applicable biological membrane modification strategy. This "subtractive" strategy displays some advantages and is worth further development.
Collapse
Affiliation(s)
- Lin Li
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengxing Zhang
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jing Li
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Tiantian Liu
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qixue Bao
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi Li
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaying Long
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610065, China
| | - Leyao Fu
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610065, China
| | - Shiqi Huang
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenmi Liu
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ling Zhang
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
6
|
Ao YQ, Gao J, Wang S, Jiang JH, Deng J, Wang HK, Xu B, Ding JY. Immunotherapy of thymic epithelial tumors: molecular understandings and clinical perspectives. Mol Cancer 2023; 22:70. [PMID: 37055838 PMCID: PMC10099901 DOI: 10.1186/s12943-023-01772-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Immunotherapy has emerged to play a rapidly expanding role in the treatment of cancers. Currently, many clinical trials of therapeutic agents are on ongoing with majority of immune checkpoint inhibitors (ICIs) especially programmed death receptor 1 (PD-1) and its ligand 1 (PD-L1) inhibitors. PD-1 and PD-L1, two main immune checkpoints, are expressed at high levels in thymic epithelial tumors (TETs) and could be predictors of the progression and immunotherapeutic efficacy of TETs. However, despite inspiring efficacy reported in clinical trials and clinical practice, significantly higher incidence of immune-related adverse events (irAEs) than other tumors bring challenges to the administration of ICIs in TETs. To develop safe and effective immunotherapeutic patterns in TETs, understanding the clinical properties of patients, the cellular and molecular mechanisms of immunotherapy and irAEs occurrence are crucial. In this review, the progress of both basic and clinical research on immune checkpoints in TETs, the evidence of therapeutic efficacy and irAEs based on PD-1 /PD-L1 inhibitors in TETs treatment are discussed. Additionally, we highlighted the possible mechanisms underlying irAEs, prevention and management strategies, the insufficiency of current research and some worthy research insights. High PD-1/PD-L1 expression in TETs provides a rationale for ICI use. Completed clinical trials have shown an encouraging efficacy of ICIs, despite the high rate of irAEs. A deeper mechanism understanding at molecular level how ICIs function in TETs and why irAEs occur will help maximize the immunotherapeutic efficacy while minimizing irAEs risks in TET treatment to improve patient prognosis.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Bei Xu
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Response to Immune Checkpoint Inhibitors Is Affected by Deregulations in the Antigen Presentation Machinery: A Systematic Review and Meta-Analysis. J Clin Med 2022; 12:jcm12010329. [PMID: 36615128 PMCID: PMC9821706 DOI: 10.3390/jcm12010329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) targeting programmed death 1 (PD-1), its ligand (PD-L1), or cytotoxic T-lymphocyte antigen 4 (CTLA-4) have shown promising results against multiple cancers, where they reactivate exhausted T cells primed to eliminate tumor cells. ICI therapies have been particularly successful in hypermutated cancers infiltrated with lymphocytes. However, resistance may appear in tumors evading the immune system through alternative mechanisms than the PD-1/PD-L1 or CTLA-4 pathways. A systematic pan-cancer literature search was conducted to examine the association between alternative immune evasion mechanisms via the antigen presentation machinery (APM) and resistance towards ICI treatments targeting PD-1 (pembrolizumab and nivolumab), PD-L1 (durvalumab, avelumab, and atezolizumab), and CTLA-4 (ipilimumab). The APM proteins included the human leucocyte antigen (HLA) class I, its subunit beta-2 microglobulin (B2M), the transporter associated with antigen processing (TAP) 1, TAP2, and the NOD-like receptor family CARD domain containing 5 (NLRC5). In total, 18 cohort studies (including 21 original study cohorts) containing 966 eligible patients and 9 case studies including 12 patients were reviewed. Defects in the APM significantly predicted poor clinical benefit with an odds ratio (OR) of 0.39 (95% CI 0.24−0.63, p < 0.001). The effect was non-significant, when considering complete and partial responses only (OR = 0.52, 95% CI 0.18−1.47, p = 0.216). In summary, the APM contains important targets for tumorigenic alterations which may explain insensitivity towards ICI therapy.
Collapse
|
8
|
Gene expression profile of high PD-L1 non-small cell lung cancers refractory to pembrolizumab. Cancer Immunol Immunother 2022; 71:2791-2799. [DOI: 10.1007/s00262-022-03206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
|
9
|
Sabatier R, Garnier S, Guille A, Carbuccia N, Pakradouni J, Adelaide J, Provansal M, Cappiello M, Rousseau F, Chaffanet M, Birnbaum D, Mamessier E, Gonçalves A, Bertucci F. Whole-genome/exome analysis of circulating tumor DNA and comparison to tumor genomics from patients with heavily pre-treated ovarian cancer: subset analysis of the PERMED-01 trial. Front Oncol 2022; 12:946257. [PMID: 35965534 PMCID: PMC9373051 DOI: 10.3389/fonc.2022.946257] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionThe poor prognosis of ovarian carcinoma (OvC) is due to the advanced stage at diagnosis, a high risk of relapse after first-line therapies, and the lack of efficient treatments in the recurrence setting. Circulating tumor DNA (ctDNA) analysis is a promising tool to assess treatment-resistant OvC and may avoid iterative tissue biopsies. We aimed to evaluate the genomic profile of recurrent heavily pre-treated OvC.MethodsWe performed tumor panel-based sequencing as well as low-coverage whole-genome sequencing (LC-WGS) of tumor and plasma collected in patients with ovarian cancer included in the PERMED-01 trial. Whole-exome sequencing (WES) data of plasma samples were also analyzed and compared to mutation and copy number alteration (CNA) tumor profiles. The prognostic value [progression-free survival (PFS)] of these alterations was assessed in an exploratory analysis.ResultsTumor and plasma genomic analyses were done for 24 patients with heavily pretreated OvC [67% high-grade serous carcinoma (HGSC)]. Tumor mutation burden was low (median 2.04 mutations/Mb) and the most frequent mutated gene was TP53 (94% of HGSC). Tumor CNAs were frequent with a median of 50% of genome altered fraction. Plasma LC-WGS and WES detected ctDNA in 21/24 cases (88%) with a median tumor fraction of 12.7%. We observed a low correlation between plasma and tumor CNA profiles. However, this correlation was significant in cases with the highest circulating tumor fraction. Plasma genome altered fraction and plasma mutation burden (p = 0.011 and p = 0.041, respectively, log-rank tests) were associated with PFS.ConclusionsCombination of LC-WGS and WES can detect ctDNA in most pre-treated OvCs. Some ctDNA characteristics, such as genome altered fraction and plasma mutation burden, showed prognostic value. ctDNA assessment with LC-WGS may be a promising and non-expansive tool to evaluate disease evolution in this disease with high genomic instability.Clinical Trial Registrationhttps://clinicaltrials.gov/ct2/show/NCT02342158, identifier NCT02342158.
Collapse
Affiliation(s)
- Renaud Sabatier
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
- *Correspondence: Renaud Sabatier,
| | - Séverine Garnier
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Arnaud Guille
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Nadine Carbuccia
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Jihane Pakradouni
- Department of Clinical Research and Innovation, Institut Paoli-Calmettes, Marseille, France
| | - José Adelaide
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Magali Provansal
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
| | - Maria Cappiello
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
| | - Frédérique Rousseau
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
| | - Max Chaffanet
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Daniel Birnbaum
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Emilie Mamessier
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Anthony Gonçalves
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
| | - François Bertucci
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
| |
Collapse
|
10
|
Sivapalan L, Thorn GJ, Gadaleta E, Kocher HM, Ross-Adams H, Chelala C. Longitudinal profiling of circulating tumour DNA for tracking tumour dynamics in pancreatic cancer. BMC Cancer 2022; 22:369. [PMID: 35392854 PMCID: PMC8991893 DOI: 10.1186/s12885-022-09387-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The utility of circulating tumour DNA (ctDNA) for longitudinal tumour monitoring in pancreatic ductal adenocarcinoma (PDAC) has not been explored beyond mutations in the KRAS proto-oncogene. Here, we aimed to characterise and track patient-specific somatic ctDNA variants, to assess longitudinal changes in disease burden and explore the landscape of actionable alterations. METHODS We followed 3 patients with resectable disease and 4 patients with unresectable disease, including 4 patients with ≥ 3 serial follow-up samples, of whom 2 were rare long survivors (> 5 years). We performed whole exome sequencing of tumour gDNA and plasma ctDNA (n = 20) collected over a ~ 2-year period from diagnosis through treatment to death or final follow-up. Plasma from 3 chronic pancreatitis cases was used as a comparison for analysis of ctDNA mutations. RESULTS We detected > 55% concordance between somatic mutations in tumour tissues and matched serial plasma. Mutations in ctDNA were detected within known PDAC driver genes (KRAS, TP53, SMAD4, CDKN2A), in addition to patient-specific variants within alternative cancer drivers (NRAS, HRAS, MTOR, ERBB2, EGFR, PBRM1), with a trend towards higher overall mutation loads in advanced disease. ctDNA alterations with potential for therapeutic actionability were identified in all 7 patients, including DNA damage response (DDR) variants co-occurring with hypermutation signatures predictive of response to platinum chemotherapy. Longitudinal tracking in 4 patients with follow-up > 2 years demonstrated that ctDNA mutant allele fractions and clonal trends were consistent with CA19-9 measurements and/or clinically reported disease burden. The estimated prevalence of 'stem clones' was highest in an unresectable patient where changes in ctDNA dynamics preceded CA19-9 levels. Longitudinal evolutionary trajectories revealed ongoing subclonal evolution following chemotherapy. CONCLUSION These results provide proof-of-concept for the use of exome sequencing of serial plasma to characterise patient-specific ctDNA profiles, and demonstrate the sensitivity of ctDNA in monitoring disease burden in PDAC even in unresectable cases without matched tumour genotyping. They reveal the value of tracking clonal evolution in serial ctDNA to monitor treatment response, establishing the potential of applied precision medicine to guide stratified care by identifying and evaluating actionable opportunities for intervention aimed at optimising patient outcomes for an otherwise intractable disease.
Collapse
Affiliation(s)
- Lavanya Sivapalan
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Graeme J Thorn
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Emanuela Gadaleta
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Helen Ross-Adams
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Claude Chelala
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
11
|
Bie F, Tian H, Sun N, Zang R, Zhang M, Song P, Liu L, Peng Y, Bai G, Zhou B, Gao S. Research Progress of Anti-PD-1/PD-L1 Immunotherapy Related Mechanisms and Predictive Biomarkers in NSCLC. Front Oncol 2022; 12:769124. [PMID: 35223466 PMCID: PMC8863729 DOI: 10.3389/fonc.2022.769124] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) is an important pair of immune checkpoints (IC), which play an essential role in the immune escaping process of tumors. Anti-PD-1/PD-L1 immunotherapy can block the suppression effect of the immune system produced by tumor cells through the PD-1/PD-L1 axis and restore the pernicious effect of the immune system on tumor cells. The specific mechanism of anti-PD-1/PD-L1 immunotherapy is closely related to PI3K (phosphatidylinositol 3-kinase)/AKT (AKT serine/threonine kinase 1), JNK (c-Jun N-terminal kinase), NF-kB (nuclear factor-kappa B subunit 1), and other complex signaling pathways. Patients receiving anti-PD-1/PD-L1 immunotherapy are prone to drug resistance. The mechanisms of drug resistance mainly include weakening recognition of tumor antigens by immune cells, inhibiting activation of immune cells, and promoting the production of suppressive immune cells and molecules. Anti-PD-1/PD-L1 immunotherapy plays a vital role in non-small cell lung cancer (NSCLC). It is essential to find better efficacy prediction-related biomarkers and screen patients suitable for immunotherapy. At present, common biomarkers related to predicting immune efficacy mainly include PD-L1 expression level in tumors, tumor mutation burden (TMB), microsatellite instability (MSI)/mismatch repair (MMR), mutations of driver gene, etc. However, the screening efficacy of each indicator is not ideal, and the combined application of multiple indicators is currently used. This article comprehensively reviews anti-PD-1/PD-L1 immunotherapy-related mechanisms, drug resistance-related mechanisms, and therapeutic efficacy-related predictive biomarkers.
Collapse
Affiliation(s)
- Fenglong Bie
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruochuan Zang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Moyan Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Peng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bolun Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Stadler JC, Belloum Y, Deitert B, Sementsov M, Heidrich I, Gebhardt C, Keller L, Pantel K. Current and Future Clinical Applications of ctDNA in Immuno-Oncology. Cancer Res 2022; 82:349-358. [PMID: 34815256 PMCID: PMC9397642 DOI: 10.1158/0008-5472.can-21-1718] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/06/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023]
Abstract
Testing peripheral blood for circulating tumor DNA (ctDNA) offers a minimally invasive opportunity to diagnose, characterize, and monitor the disease in individual cancer patients. ctDNA can reflect the actual tumor burden and specific genomic state of disease and thus might serve as a prognostic and predictive biomarker for immune checkpoint inhibitor (ICI) therapy. Recent studies in various cancer entities (e.g., melanoma, non-small cell lung cancer, colon cancer, and urothelial cancer) have shown that sequential ctDNA analyses allow for the identification of responders to ICI therapy, with a significant lead time to imaging. ctDNA assessment may also help distinguish pseudoprogression under ICI therapy from real progression. Developing dynamic changes in ctDNA concentrations as a potential surrogate endpoint of clinical efficacy in patients undergoing adjuvant immunotherapy is ongoing. Besides overall ctDNA burden, further ctDNA characterization can help uncover tumor-specific determinants (e.g., tumor mutational burden and microsatellite instability) of responses or resistance to immunotherapy. In future studies, standardized ctDNA assessments need to be included in interventional clinical trials across cancer entities to demonstrate the clinical utility of ctDNA as a biomarker for personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Julia-Christina Stadler
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yassine Belloum
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Deitert
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark Sementsov
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabel Heidrich
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Keller
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Corresponding Authors: Klaus Pantel, Institute for Tumor Biologie, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, Hamburg, 20246, Germany. E-mail: ; and Laura Keller, E-mail:
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Corresponding Authors: Klaus Pantel, Institute for Tumor Biologie, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, Hamburg, 20246, Germany. E-mail: ; and Laura Keller, E-mail:
| |
Collapse
|
13
|
Dama E, Colangelo T, Fina E, Cremonesi M, Kallikourdis M, Veronesi G, Bianchi F. Biomarkers and Lung Cancer Early Detection: State of the Art. Cancers (Basel) 2021; 13:cancers13153919. [PMID: 34359818 PMCID: PMC8345487 DOI: 10.3390/cancers13153919] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer death worldwide. Detecting lung malignancies promptly is essential for any anticancer treatment to reduce mortality and morbidity, especially in high-risk individuals. The use of liquid biopsy to detect circulating biomarkers such as RNA, microRNA, DNA, proteins, autoantibodies in the blood, as well as circulating tumor cells (CTCs), can substantially change the way we manage lung cancer patients by improving disease stratification using intrinsic molecular characteristics, identification of therapeutic targets and monitoring molecular residual disease. Here, we made an update on recent developments in liquid biopsy-based biomarkers for lung cancer early diagnosis, and we propose guidelines for an accurate study design, execution, and data interpretation for biomarker development. Abstract Lung cancer burden is increasing, with 2 million deaths/year worldwide. Current limitations in early detection impede lung cancer diagnosis when the disease is still localized and thus more curable by surgery or multimodality treatment. Liquid biopsy is emerging as an important tool for lung cancer early detection and for monitoring therapy response. Here, we reviewed recent advances in liquid biopsy for early diagnosis of lung cancer. We summarized DNA- or RNA-based biomarkers, proteins, autoantibodies circulating in the blood, as well as circulating tumor cells (CTCs), and compared the most promising studies in terms of biomarkers prediction performance. While we observed an overall good performance for the proposed biomarkers, we noticed some critical aspects which may complicate the successful translation of these biomarkers into the clinical setting. We, therefore, proposed a roadmap for successful development of lung cancer biomarkers during the discovery, prioritization, and clinical validation phase. The integration of innovative minimally invasive biomarkers in screening programs is highly demanded to augment lung cancer early detection.
Collapse
Affiliation(s)
- Elisa Dama
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (E.D.); (T.C.)
| | - Tommaso Colangelo
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (E.D.); (T.C.)
| | - Emanuela Fina
- Humanitas Research Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy;
| | - Marco Cremonesi
- Adaptive Immunity Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; (M.C.); (M.K.)
| | - Marinos Kallikourdis
- Adaptive Immunity Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; (M.C.); (M.K.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Giulia Veronesi
- Division of Thoracic Surgery, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Fabrizio Bianchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (E.D.); (T.C.)
- Correspondence: ; Tel.: +39-08-8241-0954; Fax: +39-08-8220-4004
| |
Collapse
|
14
|
Adashek JJ, Janku F, Kurzrock R. Signed in Blood: Circulating Tumor DNA in Cancer Diagnosis, Treatment and Screening. Cancers (Basel) 2021; 13:3600. [PMID: 34298813 PMCID: PMC8306582 DOI: 10.3390/cancers13143600] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
With the addition of molecular testing to the oncologist's diagnostic toolbox, patients have benefitted from the successes of gene- and immune-directed therapies. These therapies are often most effective when administered to the subset of malignancies harboring the target identified by molecular testing. An important advance in the application of molecular testing is the liquid biopsy, wherein circulating tumor DNA (ctDNA) is analyzed for point mutations, copy number alterations, and amplifications by polymerase chain reaction (PCR) and/or next-generation sequencing (NGS). The advantages of evaluating ctDNA over tissue DNA include (i) ctDNA requires only a tube of blood, rather than an invasive biopsy, (ii) ctDNA can plausibly reflect DNA shedding from multiple metastatic sites while tissue DNA reflects only the piece of tissue biopsied, and (iii) dynamic changes in ctDNA during therapy can be easily followed with repeat blood draws. Tissue biopsies allow comprehensive assessment of DNA, RNA, and protein expression in the tumor and its microenvironment as well as functional assays; however, tumor tissue acquisition is costly with a risk of complications. Herein, we review the ways in which ctDNA assessment can be leveraged to understand the dynamic changes of molecular landscape in cancers.
Collapse
Affiliation(s)
- Jacob J. Adashek
- Department of Internal Medicine, University of South Florida, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33606, USA
| | - Filip Janku
- Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | |
Collapse
|
15
|
Beta2-microglobulin(B2M) in cancer immunotherapies: Biological function, resistance and remedy. Cancer Lett 2021; 517:96-104. [PMID: 34129878 DOI: 10.1016/j.canlet.2021.06.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022]
Abstract
Cancer immunotherapies have made much headway during the past decades. Techniques including the immune checkpoint inhibition (ICI) and adoptive cell therapy (ACT) have harvested impressive efficacy and provided far-reaching tools for treating cancer patients. However, due to inadequate priming of the immune system, a certain subgroup of patients remains resistant to cancer immunotherapies during or after the treatment. β2-microglobulin (B2M) is an important subunit of major histocompatibility complex (MHC) class I which exerts substantive biological functions in tumorigenesis and immune control. Accumulating evidence has shown that alterations of B2M gene and B2M proteins contribute to poor reaction to cancer immunotherapies by dampening antigen presentation. Here, we discuss the basic biological functions of B2M, its distribution in a spectrum of cancers, and current understanding of its role in ICI, cancer vaccines and chimeric antigen receptor T cell (CAR-T) therapies. Furthermore, we summarize some promising therapeutic strategies to improve the efficacy inhibited by B2M defects.
Collapse
|
16
|
Yang X, Hu Y, Yang K, Wang D, Lin J, Long J, Xie F, Mao J, Bian J, Guan M, Pan J, Huo L, Hu K, Yang X, Mao Y, Sang X, Zhang J, Wang X, Zhang H, Zhao H. Cell-free DNA copy number variations predict efficacy of immune checkpoint inhibitor-based therapy in hepatobiliary cancers. J Immunother Cancer 2021; 9:jitc-2020-001942. [PMID: 33972389 PMCID: PMC8112417 DOI: 10.1136/jitc-2020-001942] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Background This study was designed to screen potential biomarkers in plasma cell-free DNA (cfDNA) for predicting the clinical outcome of immune checkpoint inhibitor (ICI)-based therapy in advanced hepatobiliary cancers. Methods Three cohorts including 187 patients with hepatobiliary cancers were recruited from clinical trials at the Peking Union Medical College Hospital. Forty-three patients received combination therapy of programmed cell death protein 1 (PD-1) inhibitor with lenvatinib (ICI cohort 1), 108 patients received ICI-based therapy (ICI cohort 2) and 36 patients received non-ICI therapy (non-ICI cohort). The plasma cfDNA and blood cell DNA mutation profiles were assessed to identify efficacy biomarkers by a cancer gene-targeted next-generation sequencing panel. Results Based on the copy number variations (CNVs) in plasma cfDNA, the CNV risk score model was constructed to predict survival by using the least absolute shrinkage and selection operator Cox regression methods. The results of the two independent ICI-based therapy cohorts showed that patients with lower CNV risk scores had longer overall survival (OS) and progression-free survival (PFS) than those with high CNV risk scores (log-rank p<0.01). In the non-ICI cohort, the CNV risk score was not associated with PFS or OS. Furthermore, the results indicated that 53% of patients with low CNV risk scores achieved durable clinical benefit; in contrast, 88% of patients with high CNV risk scores could not benefit from combination therapy (p<0.05). Conclusions The CNVs in plasma cfDNA could predict the clinical outcome of the combination therapy of PD-1 inhibitor with lenvatinib and other ICI-based therapies in hepatobiliary cancers.
Collapse
Affiliation(s)
- Xu Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Hu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Keyan Yang
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Dongxu Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianzhen Lin
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyu Long
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fucun Xie
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinzhu Mao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Bian
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Guan
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Pan
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Huo
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Hu
- Center of Radiotherapy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiao Zhang
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Henghui Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Ninth School of Clinical Medicine, Peking University, Beijing, China; School of Oncology, Capital Medical University, Beijing, China .,Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Mehlman C, Takam Kamga P, Costantini A, Julié C, Dumenil C, Dumoulin J, Ouaknine J, Giraud V, Chinet T, Emile JF, Giroux Leprieur E. Baseline Hedgehog Pathway Activation and Increase of Plasma Wnt1 Protein Are Associated with Resistance to Immune Checkpoint Inhibitors in Advanced Non-Small-Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13051107. [PMID: 33807552 PMCID: PMC7962040 DOI: 10.3390/cancers13051107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Hedgehog (Hh) and Wingless-type (Wnt) pathways are associated with resistance to immune checkpoint inhibitors (ICIs) in preclinical studies. This study aimed to assess the association between expression and activation levels of Wnt and Sonic Hedgehog (Shh) pathways and resistance to ICIs in advanced NSCLC patients treated with ICI. Hh and Wnt pathways activation was assessed by immunohistochemistry (Gli1 and beta-catenin) on corresponding tumor tissues, and by plasma concentrations of Shh and Wnt (Wnt1, Wnt2 and Wnt3) at ICI introduction and at the first clinical evaluation. Sixty-three patients were included, with 36 patients (57.1%) with available tissue. Response rate was lower in Gli1+ NSCLC (20.0%) compared to Gli1 negative (Gli-) NSCLC (55.6%) (p = 0.015). Rate of primary resistance was 69.8%, vs. 31.2%, respectively (p = 0.04), and median progression-free survival (PFS) was 1.9 months (interquartile range (IQR) 1.2-5.7) vs. 6.1 months (1.6-26.0), respectively (p = 0.08). Median PFS and overall survival were shorter in case of increase of Wnt1 concentration during ICI treatment compared to other patients: 3.9 months vs. 11.2 months (p = 0.008), and 15.3 months vs. not reached (p = 0.003). In conclusion, baseline activation of Hh pathway and increase of Wnt1 concentrations during ICI treatment were associated with poor outcome in NSCLC patients treated with ICIs.
Collapse
Affiliation(s)
- Camille Mehlman
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
| | - Paul Takam Kamga
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
| | - Adrien Costantini
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Catherine Julié
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Pathology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France
| | - Coraline Dumenil
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Jennifer Dumoulin
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Julia Ouaknine
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Violaine Giraud
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Thierry Chinet
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Jean-François Emile
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Pathology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France
| | - Etienne Giroux Leprieur
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
- Correspondence: ; Tel.: +33-149-095-802; Fax: +33-149-095-806
| |
Collapse
|
18
|
Sivapalan L, Kocher H, Ross-Adams H, Chelala C. Molecular profiling of ctDNA in pancreatic cancer: Opportunities and challenges for clinical application. Pancreatology 2021; 21:363-378. [PMID: 33451936 PMCID: PMC7994018 DOI: 10.1016/j.pan.2020.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the second leading cause of cancer-related mortality within the next decade, with limited effective treatment options and a dismal long-term prognosis for patients. Genomic profiling has not yet manifested clinical benefits for diagnosis, treatment or prognosis in PDAC, due to the lack of available tissues for sequencing and the confounding effects of low tumour cellularity in many biopsy specimens. Increasing focus is now turning to the use of minimally invasive liquid biopsies to enhance the characterisation of actionable PDAC tumour genomes. Circulating tumour DNA (ctDNA) is the most comprehensively studied liquid biopsy analyte in blood and can provide insight into the molecular profile and biological characteristics of individual PDAC tumours, in real-time and in advance of traditional imaging modalities. This can pave the way for identification of new therapeutic targets, novel risk variants and markers of tumour response, to supplement diagnostic screening and provide enhanced scrutiny in treatment stratification. In the roadmap towards the application of precision medicine for clinical management in PDAC, ctDNA analyses may serve a leading role in streamlining candidate biomarkers for clinical integration. In this review, we highlight recent developments in the use of ctDNA-based liquid biopsies for PDAC and provide new insights into the technical, analytical and biological challenges that must be overcome for this potential to be realised.
Collapse
Affiliation(s)
- L. Sivapalan
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK
| | - H.M. Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK
| | - H. Ross-Adams
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK
| | - C. Chelala
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK,Corresponding author.
| |
Collapse
|
19
|
Makuku R, Khalili N, Razi S, Keshavarz-Fathi M, Rezaei N. Current and Future Perspectives of PD-1/PDL-1 Blockade in Cancer Immunotherapy. J Immunol Res 2021; 2021:6661406. [PMID: 33681388 PMCID: PMC7925068 DOI: 10.1155/2021/6661406] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/23/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer immunotherapy, which reactivates weakened immune cells of cancer patients, has yielded great success in recent years. Among immunotherapeutic agents, immune checkpoint inhibitors have been of particular interest and have gained approval by the FDA for treatment of cancers. Immune checkpoint blockade through targeting programmed cell death protein-1 (PD-1) has demonstrated promising antitumor effects in cancer immunotherapy of many different solid and hematologic malignancies. However, despite promising results, a favorable response is observed only in a fraction of patients, and there is still lack of a single therapy modality with curative ability. In this paper, we review the current and future perspectives of PD-1/L1 blockade in cancer immunotherapy, with a particular focus on predictive biomarkers of response to therapy. We also discuss the adverse events associated with PD-1/L1/2 inhibitors, ranging from severe life-threatening conditions such as autoimmune myocarditis to mild and moderate reactions such as skin rashes, and explore the potential strategies for improving the efficacy of immunotherapy with PD-1/L1 checkpoint inhibitors.
Collapse
Affiliation(s)
- Rangarirai Makuku
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|