1
|
Wu J, Wu Y, Sun Y, You J, Zhang W, Zhao T. Analysis of immune status and prognostic model incorporating lactate metabolism and immune-related genes in clear cell renal cell carcinoma. Discov Oncol 2025; 16:1024. [PMID: 40481935 PMCID: PMC12145390 DOI: 10.1007/s12672-025-02746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 05/19/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most prevalent and highly aggressive subtype of kidney cancer. Despite the progress in research, the roles of lactate metabolism and immune-related genes (LMRGs) in its prognosis and immune microenvironment remain unclear. Until now, no studies have explored the potential impact of LMRGs on the prognosis of ccRCC and their relationship with the tumor immune microenvironment. METHODS Transcriptomic analysis was carried out using the TCGA and GEO databases. Non-negative matrix factorization (NMF) was used to subtype ccRCC samples. The Cox proportional hazards regression model and the LASSO algorithm were combined to screen the core genes related to prognosis. The Kaplan-Meier survival analysis was used to assess the relationship between these genes and patient survival. The CIBERSORT and ESTIMATE algorithms were used to analyze the level of immune infiltration. RESULTS Using NMF analysis, ccRCC samples were classified into two subtypes. Kaplan-Meier survival analysis revealed that patients in Cluster 2 exhibited a better prognosis than those in Cluster 1. LASSO regression analysis identified five key genes-STAT2, PDGFRL, APLNR, PRKCQ, and THRB-which were subsequently used to construct a prognostic model. The survival rate in the high-risk group was significantly lower than that in the low-risk group. Immune microenvironment analysis demonstrated that the high-risk group exhibited higher immune cell infiltration, while the low-risk group was enriched for metabolism-related pathways. Tumor mutation burden (TMB) analysis indicated that TMB synergized with the risk score. Finally, the prognostic value of these key genes was validated using the K-M database. CONCLUSION Lactate metabolism and immune-related genes are of great significance in the prognostic evaluation of ccRCC. The core genes screened based on these mechanisms have the potential value as biomarkers.
Collapse
Affiliation(s)
- Jun Wu
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- Department of Medical Oncology, People's Hospital of Rizhao, Rizhao, 276826, China
| | - Yuqian Wu
- Department of Medical Oncology, People's Hospital of Rizhao, Rizhao, 276826, China
| | - Yefeng Sun
- Department of Emergency, People's Hospital of Rizhao, Rizhao, 276826, China
| | - Jianhang You
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
| | - Wenjie Zhang
- Department of Medical Oncology, People's Hospital of Rizhao, Rizhao, 276826, China.
| | - Tao Zhao
- Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory of The People's Hospital of Rizhao, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People's Hospital of Rizhao, Rizhao, 276826, Shandong, China.
| |
Collapse
|
2
|
Yang A, Zhou M, Gao Y, Zhang Y. Mechanisms of CD8 + T cell exhaustion and its clinical significance in prognosis of anti-tumor therapies: A review. Int Immunopharmacol 2025; 159:114843. [PMID: 40394796 DOI: 10.1016/j.intimp.2025.114843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
In recent years, immunotherapy has gradually become one of the main strategies for cancer treatment, with immune checkpoint inhibitors (ICIs) offering new possibilities for tumor therapy. However, some cancer patients exhibit low responses and resistance to ICIs treatment. T cell exhaustion, a process associated with tumor progression, refers to a subset of T cells that progressively lose effector functions and exhibit increased expression of inhibitory receptors. These exhausted T cells are considered key players in the therapeutic efficacy of immune checkpoint inhibitors. Therefore, understanding the impact of T cell exhaustion on tumor immunotherapy and the underlying mechanisms is critical for improving clinical treatment outcomes. Several elegant studies have provided insights into the prognostic value of exhausted T cells in cancers. In this review, we highlight the process of exhausted T cells and its predictive value in various cancers, as well as the relevant mechanisms behind it, providing new insights into the immunotherapy of cancer.
Collapse
Affiliation(s)
- Anrui Yang
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Meng Zhou
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yixuan Gao
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Weng D, Guo R, Gao Y, Xu S, Li Y, Zhou J, An R, Xu H. Immuno-PET Imaging of a 68Ga-Labeled Single-Domain Antibody for Detecting Tumor TIGIT Expression. Mol Pharm 2025. [PMID: 40298304 DOI: 10.1021/acs.molpharmaceut.4c00900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Preclinical studies have shown that the expression of T cell immunoglobulin and the immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) in the tumor microenvironment is associated with the efficacy of anti-TIGIT-based immunotherapy. This study aimed to develop a TIGIT single-domain antibody (sdAb)-based positron emission tomography (PET) radiotracer, [68Ga]Ga-NOTA-NABT3A1, and evaluate its characteristics. The NABT3A1 was modified with a NOTA derivative and radiolabeled with 68Ga. In vitro stability of [68Ga]Ga-NOTA-NABT3A1 was assessed in phosphate-buffered saline (PBS) and fetal bovine serum (FBS), along with its specificity for TIGIT stably transfected A375 Human melanoma cells (A375-TIGIT) was performed. In vivo imaging was conducted on A375-TIGIT tumor-bearing nude mice at different time points after the injection of [68Ga]Ga-NOTA-NABT3A1. The synthesized [68Ga]Ga-NOTA-NABT3A1 achieved a radiochemical yield of 70.56 ± 1.14% and purity levels of 95.80 ± 0.58% in PBS and 96.79 ± 1.69% in FBS at 2 h. Immuno-PET imaging revealed specific accumulation of [68Ga]Ga-NOTA-NABT3A1 in A375-TIGIT tumor-bearing nude mice, with a maximum uptake of 3.86 ± 0.29% injected dose/g at 0.5 h. Biodistribution and immunohistochemical analyses confirmed the in vivo imaging results. In conclusion, we successfully synthesized an NABT3A1-derived PET radiotracer with the potential to noninvasively assess TIGIT expression in tumors.
Collapse
Affiliation(s)
- Dinghu Weng
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 201318 Shanghai, China
- Department of Medical Imaging, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, 430071 Wuhan, China
- Wuhan Clinical Research and Development Center of Brain Resuscitation and Functional Imaging, 430071 Wuhan, China
| | - Rong Guo
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430000, China
| | - Yu Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430000, China
| | - Shasha Xu
- Beijing Novaboody Biotechnological Ltd., Beijing 102600, China
| | - Yingying Li
- Beijing Novaboody Biotechnological Ltd., Beijing 102600, China
| | - Jun Zhou
- Interventional Diagnostic and Therapeutic Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430000, China
| | - Haibo Xu
- Department of Medical Imaging, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
- Hubei Provincial Engineering Research Center of Multimodal Medical Imaging Technology and Clinical Application, 430071 Wuhan, China
- Wuhan Clinical Research and Development Center of Brain Resuscitation and Functional Imaging, 430071 Wuhan, China
| |
Collapse
|
4
|
Xie DH, Li SQ, Sun K, Wang J, Shi ZY, Wang YZ, Chang Y, Yuan XY, Jiang H, Jiang Q, Chang YJ, Huang XJ, Qin YZ. The effect of TIGIT and PD1 expression on T cell function and prognosis in adult patients with acute myeloid leukemia at diagnosis. Cancer Immunol Immunother 2025; 74:170. [PMID: 40214805 PMCID: PMC11992289 DOI: 10.1007/s00262-025-04024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) is a recently-identified immune checkpoint molecule, and no study ever explores the prognostic significance of TIGIT on bone marrow T cells of newly-diagnosed acute myeloid leukemia (AML) patients. We collected fresh marrow samples from 71 adult AML patients at diagnosis and 31 healthy donors (HDs) to test for TIGIT and PD1 expression in T cells by flow cytometry. Fifteen newly-diagnosed AML patients and six HDs were performed T cell activation in vitro and tested intracellular TNF-α and INF-γ production. Three bone marrow samples of AML patients were performed single cell RNA-sequencing (scRNA-seq). AML patients had significantly higher frequency of TIGIT + cells in CD4 + T cells but similar frequency in CD8 + T cells compared with HDs (p = 0.0006 and 0.77). High percentage of TIGIT + PD1 + in CD8 + T cells independently predicted poor relapse-free survival (RFS) (p = 0.029). Differing from HDs, AML patients had lower level of intracellular TNF-α and INF-γ in TIGIT + cells compared with their TIGIT- counterparts in both CD4 + T and CD8 + T cells. TIGIT + PD1 + CD8 + T cells of patients exhibited significantly lower level of intracellular TNF-α compared with those of HDs (p = 0.024). scRNA-seq data showed that TIGIT + PDCD1 + CD8 + T cells had significantly higher exhaustion score than TIGIT + and PD1 + CD8 + T cells and lower cytotoxic score than TIGIT + CD8 + T cells (p = 0.0016, 0.012 and 0.0014). Therefore, CD8 + T cells with TIGIT and PD1 co-expression exhibited high degree of exhaustion and dysfunctional cytotoxicity, and high percentage of bone marrow TIGIT + PD1 + in CD8 + T cells at diagnosis predicted poor outcome in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Female
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Male
- Adult
- Middle Aged
- Prognosis
- Aged
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Young Adult
- Lymphocyte Activation/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Dai-Hong Xie
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Si-Qi Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Kai Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Jun Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Zong-Yan Shi
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Yan Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Xiao-Ying Yuan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Kalemoglu E, Jani Y, Canaslan K, Bilen MA. The role of immunotherapy in targeting tumor microenvironment in genitourinary cancers. Front Immunol 2025; 16:1506278. [PMID: 40260236 PMCID: PMC12009843 DOI: 10.3389/fimmu.2025.1506278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Genitourinary (GU) cancers, including renal cell carcinoma, prostate cancer, bladder cancer, and testicular cancer, represent a significant health burden and are among the leading causes of cancer-related mortality worldwide. Despite advancements in traditional treatment modalities such as chemotherapy, radiotherapy, and surgery, the complex interplay within the tumor microenvironment (TME) poses substantial hurdles to achieving durable remission and cure. The TME, characterized by its dynamic and multifaceted nature, comprises various cell types, signaling molecules, and the extracellular matrix, all of which are instrumental in cancer progression, metastasis, and therapy resistance. Recent breakthroughs in immunotherapy (IO) have opened a new era in the management of GU cancers, offering renewed hope by leveraging the body's immune system to combat cancer more selectively and effectively. This approach, distinct from conventional therapies, aims to disrupt cancer's ability to evade immune detection through mechanisms such as checkpoint inhibition, therapeutic vaccines, and adoptive cell transfer therapies. These strategies highlight the shift towards personalized medicine, emphasizing the importance of understanding the intricate dynamics within the TME for the development of targeted treatments. This article provides an in-depth overview of the current landscape of treatment strategies for GU cancers, with a focus on IO targeting the specific cell types of TME. By exploring the roles of various cell types within the TME and their impact on cancer progression, this review aims to underscore the transformative potential of IO strategies in TME targeting, offering more effective and personalized treatment options for patients with GU cancers, thereby improving outcomes and quality of life.
Collapse
Affiliation(s)
- Ecem Kalemoglu
- Department of Internal Medicine, Rutgers-Jersey City Medical Center, Jersey City, NJ, United States
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Türkiye
| | - Yash Jani
- Medical College of Georgia, Augusta, GA, United States
| | - Kubra Canaslan
- Department of Medical Oncology, Dokuz Eylul University, Izmir, Türkiye
| | - Mehmet Asim Bilen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
- Department of Urology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
6
|
You L, Wu Q. Cellular senescence in tumor immune escape: Mechanisms, implications, and therapeutic potential. Crit Rev Oncol Hematol 2025; 208:104628. [PMID: 39864532 DOI: 10.1016/j.critrevonc.2025.104628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Cellular senescence, a hallmark of aging, has emerged as a captivating area of research in tumor immunology with profound implications for cancer prevention and treatment. In the tumor microenvironment, senescent cells exhibit a dual role, simultaneously hindering tumor development through collaboration with immune cells and evading immune cell attacks by upregulating immunoinhibitory proteins. However, the intricate immune escape mechanism of cellular senescence in the tumor microenvironment remains a subject of intense investigation. Chronic inflammation is exacerbated by cellular senescence through the upregulation of pro-inflammatory factors such as interleukin-1β, thereby augmenting the risk of tumorigenesis. Additionally, the interplay between autophagy and cellular senescence adds another layer of complexity. Autophagy, known to slow down the aging process by reducing p53/p21 levels, may be downregulated by cellular senescence. To harness the therapeutic potential of cellular senescence, targeting its immunological aspects has gained significant attention. Strategies such as immune checkpoint inhibitors and T-cell senescence inhibition are being explored in the context of cellular senescence immunotherapy. In this comprehensive review, we provide a compelling overview of the regulation of cellular senescence and delve into the influencing factors, including chronic inflammation, autophagy, and circadian rhythms, associated with senescence in the tumor microenvironment. We specifically focus on unraveling the enigmatic dual role of cellular senescence in tumor immune escape. By deciphering the intricate nature of cellular senescence in the tumor microenvironment, this review aims to advance our understanding and pave the way for leveraging senescence as a promising target for tumor immunotherapy applications.
Collapse
Affiliation(s)
- Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China; College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
7
|
Jin K, Xu J, Zhang L, Liu Z, Su X, Xu Z, Ding Y, Liu H, Chang Y, Xu L, Wang Z, Zhu Y, Xu J. TERT promoter mutations or protein overexpression define an aggressive subset with favourable immunotherapeutic response in advanced urothelial carcinoma. BMJ ONCOLOGY 2025; 4:e000586. [PMID: 40099003 PMCID: PMC11911668 DOI: 10.1136/bmjonc-2024-000586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Objective Telomerase reverse transcriptase (TERT) gene promoter mutation (TPM) is a key non-coding somatic alteration in urothelial carcinoma (UC) that plays a critical role in telomerase activation. Despite its importance, the prognostic value of TPM has shown mixed results in previous studies. Methods and analysis This study included 155 UC patients from two local clinical centres and 1652 patients from four public datasets, along with matched clinical annotation. Immunohistochemistry of TERT and immune-related markers was performed on tissue microarrays, and transcriptomic and genomic data were analysed to evaluate immune microenvironment characteristics and mutational profiles associated with TPM. We assessed the association of TPM or TERT overexpression (OE) with clinical outcomes, genomics and immunological profiles across tumour stages. Results In early-stage UC, TPM or TERT OE was not significantly associated with patient outcomes. However, in advanced urothelial carcinoma (aUC), TPM or TERT OE was linked to markedly worse overall survival (OS) and a poor response to platinum-based chemotherapy. Notably, despite this unfavourable prognosis, these patients exhibited a more favourable response to anti-PD-1/PD-L1 immunotherapy. aUC with TPM or TERT OE was characterised by an immune-evasive microenvironment, including infiltration of exhausted CD8+ T cells and elevated PD-1 and PD-L1 expression. Furthermore, genomic analysis further revealed a higher APOBEC mutational signature and a lower clock-like mutational signature in aUC with TPM or TERT OE. Conclusion In this retrospective study, TPM or TERT OE identifies a more aggressive subset of patients with poor OS and an immune-evasive microenvironment but a better response to immunotherapy in aUC.
Collapse
Affiliation(s)
- Kaifeng Jin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingtong Xu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lingkai Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaopei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaohe Su
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziyue Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yawei Ding
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hailong Liu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Li C, Zhang ED, Yu R, Yuan B, Yang Y, Zeng Z, Huang H. Comprehensive multi-omics analysis showed that CDC6 is a potential prognostic and immunotherapy biomarker for multiple cancer types including HCC. Transl Oncol 2025; 53:102314. [PMID: 39904279 PMCID: PMC11846587 DOI: 10.1016/j.tranon.2025.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/07/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Cell division cycle 6 (CDC6) is a member of the AAA+ ATPase family and has chaperone-like activity. Many studies have shown that CDC6 plays an important role in cancer development and progression. METHODS Explored CDC6 mRNA and protein expression in normal human tissues and tumors using TCGA, GTEx, and HPA. The role of CDC6 in cancer was analyzed using multiple web platforms and software, including R, cBioPortal, UALCAN, SangerBox and others. Finally, CCK-8, EdU assays and Transwell assays were used to verify the effects of CDC6 knockdown on HCC cell proliferation, migration, and invasion. RESULTS CDC6 expression was upregulated in most cancers and was associated with poorer prognosis. RNA methylation may play an important role in CDC6 epigenetic modification. CDC6 was significantly positively associated with CD4+ Th2 cells and MDSC in a variety of tumors. Furthermore, immunomodulatory genes are strongly associated with CDC6 expression in most tumor types. CDC6 has higher predictive value than B. Clonality and TMB, and its expression is significantly positively correlated with TMB/MSI and DNAss/RNAss, and is closely related to cell cycle events. Down-regulation of CDC6 can inhibit proliferation, migration and invasion of HCC cells. CONCLUSIONS CDC6 is associated with the occurrence and progression of multiple cancer types by regulating the cell cycle. It holds promise as a diagnostic and prognostic biomarker for cancer, and offers potential in immunomodulatory and targeted therapies.
Collapse
Affiliation(s)
- Chenxuan Li
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnnan, China
| | - En-di Zhang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnnan, China
| | - Rui Yu
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnnan, China
| | - Bo Yuan
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnnan, China
| | - Yunxin Yang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnnan, China
| | - Zhong Zeng
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnnan, China.
| | - Hanfei Huang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnnan, China.
| |
Collapse
|
9
|
Tian T, Shen C, Zapała Ł, Fang X, Zheng B. Identification of a C2H2 zinc finger-related lncRNA prognostic signature and its association with the immune microenvironment in clear cell renal cell carcinoma. Transl Androl Urol 2025; 14:412-431. [PMID: 40114819 PMCID: PMC11921207 DOI: 10.21037/tau-2024-769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/22/2025] [Indexed: 03/22/2025] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the main component of renal cell carcinoma, and advanced ccRCC often predicts a poor prognosis. In recent years, research has revealed the critical role of Cys2His2 zinc finger genes (CHZFs) and long non-coding RNAs (lncRNAs) in the development of cancer. Currently, little is known about the prognostic value of the lncRNAs linked to Cys2His2 (C2H2) zinc finger proteins (ZFPs) in ccRCC. The aim of this study was to construct a prognostic model for C2H2-associated lncRNAs to assist in the selection of clinical therapy. Methods RNA-sequencing data, and related clinical and prognostic information were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate and multivariate Cox regression analyses were conducted to identify Cys2His2 zinc finger-associated long non-coding RNAs (CHZFLs) and build prediction signatures. A receiver operating characteristic (ROC) curve analysis was performed to validate the risk model. The prognosis of the groups was analyzed using the Kaplan-Meier method. The independent prognostic significance of these signatures was evaluated by univariate and multivariate Cox regression analyses. The relationship between the CHZFL signature and ccRCC tumor immunity was confirmed by a differential analysis of immune function and immunological checkpoints. Results A signature composed of five lncRNAs (AL117336.2, AC026401.3, AC124854.1, DBH-AS1, and LINC02100) was constructed. The results revealed a strong correlation between the CHZFLs signature and the prognosis of ccRCC patients. Prognostic characteristics of CHZFLs are independent prognostic factors in ccRCC patients. The diagnostic efficacy of the predictive signature was higher than that of individual clinicopathologic variables, and it had a ROC area under the curve (AUC) of 0.775. The results of the clinical subgroup analysis showed that the high-risk group had shorter overall survival (OS) than the low-risk group. Common chemotherapy medications, including vinorelbine, cytarabine, epirubicin, and gemcitabine, caused increased sensitivity in the high-risk group. Additionally, the single-sample gene set enrichment analysis (ssGSEA) revealed that the immunological state of the ccRCC patients was substantially linked with the predictive parameters. Conclusions The five CHZFL signature can help predict the prognosis of ccRCC patients, and assist in selecting immunotherapy and chemotherapy regimens in clinical practice.
Collapse
Affiliation(s)
- Ting Tian
- Operating Room Nursing, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Cheng Shen
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, China
- Jiangsu Nantong Urological Clinical Medical Center, Nantong, China
| | - Łukasz Zapała
- Clinic of General, Oncological and Functional Urology, Medical University of Warsaw, Warsaw, Poland
| | - Xingxing Fang
- Department of Nephrology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Bing Zheng
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, China
- Jiangsu Nantong Urological Clinical Medical Center, Nantong, China
| |
Collapse
|
10
|
Zhang Y, Du C, Zhang SQ, Yu HX, Mo HL, Yang QY, Li Y. Missense mutations of GPER1 in breast invasive carcinoma: Exploring gene expression, signal transduction and immune cell infiltration with insights from cellular pharmacology. Biomed Rep 2025; 22:22. [PMID: 39720300 PMCID: PMC11668130 DOI: 10.3892/br.2024.1900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/15/2024] [Indexed: 12/26/2024] Open
Abstract
G protein-coupled estrogen receptor 1 (GPER1) plays a crucial role in the progression of breast cancer and has emerged as a promising therapeutic target. However, while missense mutations in GPER1 have been detected in breast invasive carcinoma (BIC) samples, the resulting molecular, cellular and pharmacological changes remain unclear. The present study categorized BIC samples from The Cancer Genome Atlas database based on mutation information available in the cBioPortal database. Subsequently, survival analysis was conducted and the samples screened for differentially expressed genes (DEGs). Using these DEGs, the present study performed Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, protein-protein interaction network analysis and hub gene selection. After assessing the prognostic value of hub genes, the immune cell infiltration between mutant and wild-type (WT) groups was analyzed. Finally, a luciferase reporter system was used to assess the cyclic AMP (cAMP) production mediated by GPER1 following treatment with the agonist G-1 for each mutation. The results revealed a significant decrease in progression-free survival and disease-specific survival in the GPER1 mutant group compared with the WT group. Gene expression analysis identified 60 DEGs, all of which were upregulated and significantly enriched in GO terms related to tumor progression, such as organic anion transport, glycosaminoglycan binding and monoatomic ion-gated channel activity. DEGs were also significantly enriched in the PI3K-Akt signaling pathway in KEGG. Hub gene selection and prognostic evaluation identified three genes significantly associated with survival: IL33, STAB2 and CFTR. Immune cell infiltration analysis revealed a significant decrease in CD8 T cell content in the GPER1 mutant group compared with the WT group. Luciferase reporter assays demonstrated that four missense mutations in GPER1 (L129M, E218Q, S235F and A345G) significantly attenuated the induction of cyclic adenosine monophosphate production mediated by its agonist. These findings provided valuable insights for the design of breast cancer drugs targeting GPER1 and for precision medicine initiatives.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chong Du
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shu-Qun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hui-Xia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Hao-Lin Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Qi-Yuan Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
11
|
Yang T, Luo W, Yu J, Zhang H, Hu M, Tian J. Bladder cancer immune-related markers: diagnosis, surveillance, and prognosis. Front Immunol 2024; 15:1481296. [PMID: 39559360 PMCID: PMC11570592 DOI: 10.3389/fimmu.2024.1481296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
As an immune-related tumor type, bladder cancer has been attracting much attention in the study of its markers. In recent years, researchers have made rapid progress in the study of immune-related markers for bladder cancer. Studies have shown that immune-related markers play an important role in the diagnosis, prognosis assessment and treatment of bladder cancer. In addition, the detection of immune-related markers can also be used to evaluate the efficacy of immunotherapy and predict the treatment response of patients. Therefore, in depth study of the expression of immune-related markers in bladder cancer and their application in the clinic is of great significance and is expected to provide new breakthroughs for individualized treatment of bladder cancer. Future studies will focus more on how to detect immune-related markers with low cost and high accuracy, as well as develop new immunotherapeutic strategies to bring better therapeutic outcomes to bladder cancer patients.
Collapse
Affiliation(s)
- Tiantian Yang
- College of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Wanru Luo
- College of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jie Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Huiping Zhang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jun Tian
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Wang J, Cao Y, Tian Y, Dai C, Jin T, Xu F. A Novel Prognostic Nomogram Based on TIGIT and NKG2A Can Predict Relapse-Free Survival of Hepatocellular Carcinoma After Hepatectomy. Cancer Med 2024; 13:e70419. [PMID: 39540362 PMCID: PMC11561519 DOI: 10.1002/cam4.70419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/19/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Hepatocellular carcinoma (HCC) is a major global health concern, and emerging evidence suggests that TIGIT and NKG2A are potential immune checkpoints with implications for HCC progression. This study aimed to evaluate the prognostic significance of TIGIT and NKG2A expression in HCC patients who underwent radical liver resection. METHODS We conducted a retrospective analysis of 144 HCC patients who underwent radical liver resection. TIGIT and NKG2A expression levels were assessed using the immunoreactive score. Cox proportional hazards models were utilized to analyze the association between TIGIT/NKG2A expression and clinical characteristics, relapse-free survival (RFS), and overall survival (OS). Prognostic models for OS and RFS was developed and validated using concordance index and calibration curves. Additionally, the random forest algorithm was employed to identify independent risk factors for OS and RFS and their correlation with predicted survival. RESULTS TIGIT and NKG2A expression were identified as independent risk factors for RFS, while TIGIT expression alone significantly impacted OS. The prognostic models showed good discriminative ability, with concordance indices exceeding 0.7 for predicting 1-, 3-, and 5-year OS or RFS. Calibration curves confirmed the reliability of the nomograms for OS and RFS prediction. The areas under the ROC curve consistently exceeded 0.7 for predicting OS and RFS. Elevated levels of TIGIT and NKG2A expression were associated with diminished RFS, highlighting their importance as prognostic factors. CONCLUSIONS Our study establishes the prognostic significance of TIGIT and NKG2A expression in predicting OS and RFS following radical liver resection for HCC patients. The developed prognostic models incorporating TIGIT and NKG2A expression hold promise for improving risk stratification and clinical management of HCC patients.
Collapse
Affiliation(s)
- Junqi Wang
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yuqing Cao
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Department of Critical Care MedicineThe Fifth People's Hospital of Zhangjiagang CitySuzhouJiangsuChina
| | - Yu Tian
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Chaoliu Dai
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Tianqiang Jin
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Feng Xu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
13
|
Azimi M, Cho S, Bozkurt E, McDonough E, Kisakol B, Matveeva A, Salvucci M, Dussmann H, McDade S, Firat C, Urganci N, Shia J, Longley DB, Ginty F, Prehn JH. Spatial effects of infiltrating T cells on neighbouring cancer cells and prognosis in stage III CRC patients. J Pathol 2024; 264:148-159. [PMID: 39092716 DOI: 10.1002/path.6327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024]
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring cancers, but prognostic biomarkers identifying patients at risk of recurrence are still lacking. In this study, we aimed to investigate in more detail the spatial relationship between intratumoural T cells, cancer cells, and cancer cell hallmarks as prognostic biomarkers in stage III colorectal cancer patients. We conducted multiplexed imaging of 56 protein markers at single-cell resolution on resected fixed tissue from stage III CRC patients who received adjuvant 5-fluorouracil (5FU)-based chemotherapy. Images underwent segmentation for tumour, stroma, and immune cells, and cancer cell 'state' protein marker expression was quantified at a cellular level. We developed a Python package for estimation of spatial proximity, nearest neighbour analysis focusing on cancer cell-T-cell interactions at single-cell level. In our discovery cohort (Memorial Sloan Kettering samples), we processed 462 core samples (total number of cells: 1,669,228) from 221 adjuvant 5FU-treated stage III patients. The validation cohort (Huntsville Clearview Cancer Center samples) consisted of 272 samples (total number of cells: 853,398) from 98 stage III CRC patients. While there were trends for an association between the percentage of cytotoxic T cells (across the whole cancer core), it did not reach significance (discovery cohort: p = 0.07; validation cohort: p = 0.19). We next utilised our region-based nearest neighbour approach to determine the spatial relationships between cytotoxic T cells, helper T cells, and cancer cell clusters. In both cohorts, we found that shorter distance between cytotoxic T cells, T helper cells, and cancer cells was significantly associated with increased disease-free survival. An unsupervised trained model that clustered patients based on the median distance between immune cells and cancer cells, as well as protein expression profiles, successfully classified patients into low-risk and high-risk groups (discovery cohort: p = 0.01; validation cohort: p = 0.003). © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mohammadreza Azimi
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Sanghee Cho
- GE HealthCare Technology and Innovation Center (formerly GE Research Center), Niskayuna, NY, USA
| | - Emir Bozkurt
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Elizabeth McDonough
- GE HealthCare Technology and Innovation Center (formerly GE Research Center), Niskayuna, NY, USA
| | - Batuhan Kisakol
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Anna Matveeva
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Heiko Dussmann
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Simon McDade
- School of Medicine, Dentistry and Biomedical Sciences, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Canan Firat
- Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Nil Urganci
- Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Jinru Shia
- Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Daniel B Longley
- School of Medicine, Dentistry and Biomedical Sciences, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Fiona Ginty
- GE HealthCare Technology and Innovation Center (formerly GE Research Center), Niskayuna, NY, USA
| | - Jochen Hm Prehn
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
14
|
Heidari-Foroozan M, Rezalotfi A, Rezaei N. The molecular landscape of T cell exhaustion in the tumor microenvironment and reinvigoration strategies. Int Rev Immunol 2024; 43:419-440. [PMID: 39257319 DOI: 10.1080/08830185.2024.2401352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2023] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for cancer treatment by harnessing the immune system to target cancer cells. However, the efficacy of immunotherapy is hindered by the tumor microenvironment (TME), comprising regulatory T cells (Tregs), macrophages, myeloid-derived suppressor cells (MDSCs), neutrophils, soluble factors (TGF-β, IL-35, IL-10), and hypoxia. These components interact with inhibitory receptors (IRs) on T cells, leading to alterations in T cell transcriptomes, epigenomes, and metabolism, ultimately resulting in T cell exhaustion and compromising the effectiveness of immunotherapy. T cell exhaustion occurs in two phases: pre-exhaustion and exhaustion. Pre-exhausted T cells exhibit reversibility and distinct molecular properties compared to terminally exhausted T cells. Understanding these differences is crucial for designing effective interventions. This comprehensive review summarizes the characteristics of pre-exhausted and exhausted T cells and elucidates the influence of TME components on T cell activity, transcriptomes, epigenomes, and metabolism, ultimately driving T cell exhaustion in cancer. Additionally, potential intervention strategies for reversing exhaustion are discussed. By gaining insights into the mechanisms underlying T cell exhaustion and the impact of the TME, this review aims to inform the development of innovative approaches for combating T cell exhaustion and enhancing the efficacy of immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Mahsa Heidari-Foroozan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alaleh Rezalotfi
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Li C, Hu M, Cai S, Yang G, Yang L, Jing H, Xing L, Sun X. Dysfunction of CD8 + T cells around tumor cells leads to occult lymph node metastasis in NSCLC patients. Cancer Sci 2024; 115:2528-2539. [PMID: 38720474 PMCID: PMC11309950 DOI: 10.1111/cas.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 08/10/2024] Open
Abstract
Occult lymph node metastasis (OLNM) is one of the main causes of regional recurrence in inoperable N0 non-small cell lung cancer (NSCLC) patients following stereotactic ablation body radiotherapy (SABR) treatment. The integration of immunotherapy and SABR (I-SABR) has shown preliminary efficiency in mitigating this recurrence. Therefore, it is necessary to explore the functional dynamics of critical immune effectors, particularly CD8+ T cells in the development of OLNM. In this study, tissue microarrays (TMAs) and multiplex immunofluorescence (mIF) were used to identify CD8+ T cells and functional subsets (cytotoxic CD8+ T cells/predysfunctional CD8+ T cells (CD8+ Tpredys)/dysfunctional CD8+ T cells (CD8+ Tdys)/other CD8+ T cells) among the no lymph node metastasis, OLNM, and clinically evident lymph node metastasis (CLNM) groups. As the degree of lymph node metastasis escalated, the density of total CD8+ T cells and CD8+ Tdys cells, as well as their proximity to tumor cells, increased progressively and remarkably in the invasive margin (IM). In the tumor center (TC), both the density and proximity of CD8+ Tpredys cells to tumor cells notably decreased in the OLNM group compared with the group without metastasis. Furthermore, positive correlations were found between the dysfunction of CD8+ T cells and HIF-1α+CD8 and cancer microvessels (CMVs). In conclusion, the deterioration in CD8+ T cell function and interactive dynamics between CD8+ T cells and tumor cells play a vital role in the development of OLNM in NSCLC. Strategies aimed at improving hypoxia or targeting CMVs could potentially enhance the efficacy of I-SABR.
Collapse
Affiliation(s)
- Chaozhuo Li
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Mengyu Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Siqi Cai
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
| | - Guanqun Yang
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
| | - Liying Yang
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
| | - Hongbiao Jing
- Department of Pathology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
16
|
Chen X, Wei H, Yue A, Zhang H, Zheng Y, Sun W, Zhou Y, Wang Y. KPNA2 promotes the progression of gastric cancer by regulating the alternative splicing of related genes. Sci Rep 2024; 14:17140. [PMID: 39060340 PMCID: PMC11282077 DOI: 10.1038/s41598-024-66678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
RNA-binding proteins (RBPs) play critical roles in genome regulation. In this study, we explored the latent function of KPNA2, which is an essential member of the RBP family, in the regulation of alternative splicing (AS) in gastric cancer (GC). We analyzed the role of KPNA2 in regulating differential expression and AS via RNA sequencing (RNA-seq) and improved RNA immunoprecipitation sequencing (iRIP-seq). Clinical specimens were used to analyze the associations between KPNA2 expression and clinicopathological characteristics. CCK8 assays, transwell assays and wound healing assays were performed to explore the effect of KPNA2/WDR62 on GC cell progression. KPNA2 was shown to be highly expressed in GC cells and tissues and associated with lymph node metastases. KPNA2 promoted the proliferation, migration and invasion of GC cells and primarily regulated exon skipping, alternative 3's splice sites (A3SSs), alternative 5' splice sites (A5SSs), and cassette exons. We further revealed that KPNA2 participated in biological processes related to cell proliferation, and the immune response in GC via the regulation of transcription. In addition, KPNA2 preferentially bound to intron regions. Notably, KPNA2 regulated the A3SS AS mode of WDR62, and upregulation of WDR62 reversed the KPNA2 downregulation-induced inhibition of GC cell proliferation, migration and invasion. Finally, we discovered that the AS of immune-related molecules could be regulated by KPNA2. Overall, our results demonstrated for the first time that KPNA2 functions as an oncogenic splicing factor in GC that regulated the AS and differential expression of GC-related genes, and KPNA2 may be a potential target for GC treatment.
Collapse
Affiliation(s)
- Xia Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Hui Wei
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Ailin Yue
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Huiyun Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Ya Zheng
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Weiming Sun
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yongning Zhou
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China.
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Yuping Wang
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China.
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
17
|
Yang J, Ding X, Fang Z, Wu S, Yuan M, Chen R, Xu Q, Gao X, Wu H, Chen L, Zheng X, Jiang J. Association of CD8 +TILs co-expressing granzyme A and interferon-γ with colon cancer cells in the tumor microenvironment. BMC Cancer 2024; 24:869. [PMID: 39030523 PMCID: PMC11265531 DOI: 10.1186/s12885-024-12605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024] Open
Abstract
CD8+T cells secreting granzyme A (GZMA) can induce pyroptosis in tumor cells by effectively cleaving gasdermin B (GSDMB), which is stimulated by interferon-γ (IFN-γ). However, the interaction between GZMA-expressing CD8+T cells and GSDMB-expressing tumor cells in colon cancer remains poorly understood. Our research employed multi-color immunohistochemistry (mIHC) staining and integrated clinical data to explore the spatial distribution and clinical relevance of GZMA- and IFN-γ-expressing CD8+ tumor-infiltrating lymphocytes (TILs), as well as GSDMB-expressing CK+ cells, within the tumor microenvironment (TME) of human colon cancer samples. Additionally, we utilizing single-cell RNA sequencing (scRNA-seq) data to examine the functional dynamics and interactions among these cell populations. scRNA-seq analysis of colorectal cancer (CRC) tissues revealed that CD8+TILs co-expressed GZMA and IFN-γ, but not other cell types. Our mIHC staining results indicated that a significant reduction in the infiltration of GZMA+IFN-γ+CD8+TILs in colon cancer patients (P < 0.01). Functional analysis results indicated that GZMA+IFN-γ+CD8+TILs demonstrated enhanced activation and effector functions compared to other CD8+TIL subsets. Furthermore, GSDMB-expressing CK+ cells exhibited augmented immunogenicity. Correlation analysis highlighted a positive association between GSDMB+CK+ cells and GZMA+IFN-γ+CD8+TILs (r = 0.221, P = 0.033). Analysis of cell-cell interactions further showed that these interactions were mediated by IFN-γ and transforming growth factor-β (TGF-β), the co-stimulatory molecule ICOS, and immune checkpoint molecules TIGIT and TIM-3. These findings suggested that GZMA+IFN-γ+CD8+TILs modulating GSDMB-expressing tumor cells, significantly impacted the immune microenvironment and patients' prognosis in colon cancer. By elucidating these mechanisms, our present study aims to provide novel insights for the advancement of immunotherapeutic strategies in colon cancer.
Collapse
Affiliation(s)
- Jiayi Yang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Xinyi Ding
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Zhang Fang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Maoling Yuan
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Rongzhang Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Qinlan Xu
- Department of Gastroenterology, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Xinran Gao
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Haoyu Wu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| | - Xiao Zheng
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, Jiangsu, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| |
Collapse
|
18
|
Bai C, Sun Y, Zhang X, Zuo Z. Assessment of AURKA expression and prognosis prediction in lung adenocarcinoma using machine learning-based pathomics signature. Heliyon 2024; 10:e33107. [PMID: 39022022 PMCID: PMC11253280 DOI: 10.1016/j.heliyon.2024.e33107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Objective This study aimed to develop quantitative feature-based models from histopathological images to assess aurora kinase A (AURKA) expression and predict the prognosis of patients with lung adenocarcinoma (LUAD). Methods A dataset of patients with LUAD was derived from the cancer genome atlas (TCGA) with information on clinical characteristics, RNA sequencing and histopathological images. The TCGA-LUAD cohort was randomly divided into training (n = 229) and testing (n = 98) sets. We extracted quantitative image features from histopathological slides of patients with LUAD using computational approaches, constructed a predictive model for AURKA expression in the training set, and estimated their predictive performance in the test set. A Cox proportional hazards model was used to assess whether the pathomic scores (PS) generated by the model independently predicted LUAD survival. Results High AURKA expression was an independent risk factor for overall survival (OS) in patients with LUAD (hazard ratio = 1.816, 95 % confidence intervals = 1.257-2.623, P = 0.001). The model based on histopathological image features had significant predictive value for AURKA expression: the area under the curve of the receiver operating characteristic curve in the training set and validation set was 0.809 and 0.739, respectively. Decision curve analysis showed that the model had clinical utility. Patients with high PS and low PS had different survival rates (P = 0.019). Multivariate analysis suggested that PS was an independent prognostic factor for LUAD (hazard ratio = 1.615, 95 % confidence intervals = 1.071-2.438, P = 0.022). Conclusion Pathomics models based on machine learning can accurately predict AURKA expression and the PS generated by the model can predict LUAD prognosis.
Collapse
Affiliation(s)
- Cuiqing Bai
- Department of Respiratory Disease, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan Sun
- Department of Respiratory Disease, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiuqin Zhang
- Department of Respiratory Disease, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zhitong Zuo
- Department of Respiratory Disease, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Yang Z, Li X, Zhou L, Luo Y, Zhan N, Ye Y, Liu Z, Zhang X, Qiu T, Lin L, Peng L, Hu Y, Pan C, Sun M, Zhang Y. Ferroptosis-related lncRNAs: Distinguishing heterogeneity of the tumour microenvironment and predicting immunotherapy response in bladder cancer. Heliyon 2024; 10:e32018. [PMID: 38867969 PMCID: PMC11168393 DOI: 10.1016/j.heliyon.2024.e32018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Ferroptosis, a cell death pathway dependent on iron, has been shown in research to play a role in the development, advancement, and outlook of tumours through ferroptosis-related lncRNAs (FRLRs). However, the value of the FRLRs in bladder cancer (BLCA) has not been thoroughly investigated. This research project involved developing a predictive model using ten specific FRLRs (AC099850.4, AL731567.1, AL133415.1, AC021321.1, SPAG5-AS1, HMGA2-AS1, RBMS3-AS3, AC006160.1, AL583785.1, and AL662844.4) through univariate COX and LASSO regression techniques. The validation of this signature as a standalone predictor was confirmed in a group of 65 patients from the urology bladder tumour database at the First Affiliated Hospital of Wenzhou Medical University in Wenzhou, China. Patients were categorized based on their median risk score into either a low-risk group or a high-risk group. Enrichment analysis identified possible molecular mechanisms that could explain the variations in clinical outcomes observed in high-risk and low-risk groups. Moreover, we explored the correlation between FLPS and immunotherapy-related indicators. The ability of FLPS to forecast the effectiveness of immunotherapy was validated by the elevated levels of immune checkpoint genes (PD-L1, CTLA4, and PD-1) in the group at high risk. We also screened the crucial FRLR (HMGA2-AS1) through congruent expression and prognostic conditions and established a ceRNA network, indicating that HMGA2-AS1 may affect epithelial-mesenchymal transition by modulating the Wnt signalling pathway through the ceRNA mechanism. We identified the top five mRNAs (NFIB, NEGR1, JAZF1, JCAD, and ESM1) based on random forest algorithm and analysed the relationship between HMGA2-AS1, the top five mRNAs, and immunotherapy, and their interactions with drug sensitivities. Our results suggest that patients with BLCA have a greater sensitivity to four drugs (dasatinib, pazopanib, erismodegib and olaparib). Our study provides new insights into the TME, key signalling pathways, genome, and potential therapeutic targets of BLCA, with future guidance for immunotherapy and targeted precision drugs.
Collapse
Affiliation(s)
- Zhan Yang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaoqi Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lijun Zhou
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yaxian Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Ning Zhan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yifan Ye
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhichao Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Xiaoting Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Tao Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lining Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lianjie Peng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yiming Hu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chaoran Pan
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mouyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yan Zhang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
20
|
Lang Y, Huang H, Jiang H, Wu S, Chen Y, Xu B, Liu Y, Zhu D, Zheng X, Chen L, Jiang J. TIGIT Blockade Reshapes the Tumor Microenvironment Based on the Single-cell RNA-Sequencing Analysis. J Immunother 2024; 47:172-181. [PMID: 38545758 DOI: 10.1097/cji.0000000000000511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/26/2024] [Indexed: 05/09/2024]
Abstract
SUMMARY Immune checkpoint blockade therapy is a pivotal approach in treating malignant tumors. TIGIT has emerged as a focal point of interest among the diverse targets for tumor immunotherapy. Nonetheless, there is still a lack of comprehensive understanding regarding the immune microenvironment alterations following TIGIT blockade treatment. To bridge this knowledge gap, we performed single-cell sequencing on mice both before and after the administration of anti-TIGIT therapy. Our analysis revealed that TIGIT was predominantly expressed on T cells and natural killer (NK) cells. The blockade of TIGIT exhibited inhibitory effects on Treg cells by downregulating the expression of Foxp3 and reducing the secretion of immunosuppressive cytokines. In addition, TIGIT blockade facilitated the activation of NK cells, leading to an increase in cell numbers, and promoted cDC1 maturation through the secretion of XCL1 and Flt3L. This activation, in turn, stimulated the TCR signaling of CD8 + T cells, thereby enhancing their antitumor effect. Consequently, anti-TIGIT therapy demonstrated substantial potential for cancer immunotherapy. Our research provided novel insights into future therapeutic strategies targeting TIGIT for patients with cancer.
Collapse
Affiliation(s)
- Yanyan Lang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Hao Huang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Hongwei Jiang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Yaping Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Bin Xu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Yingting Liu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Dawei Zhu
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- Institute of Cell Therapy, the Third Affiliated Hospital of Soochow University, Jiangsu Changzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
21
|
Shen C, Jiang K, Zhang W, Su B, Wang Z, Chen X, Zheng B, He T. LASSO regression and WGCNA-based telomerase-associated lncRNA signaling predicts clear cell renal cell carcinoma prognosis and immunotherapy response. Aging (Albany NY) 2024; 16:9386-9409. [PMID: 38819232 PMCID: PMC11210217 DOI: 10.18632/aging.205871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE To investigate whether telomerase-associated lncRNA expression affects the prognosis and anti-tumor immunity of patients with renal clear cell carcinoma (ccRCC). METHODS A series of analyses were performed to establish a prognostic risk model and validate its accuracy. Immune-related analyses were performed to assess further the association between immune status, tumor microenvironment, and prognostic risk models. RESULTS Eight telomerase-associated lncRNAs associated with prognosis were identified and applied to establish a prognostic risk model. Overall survival was higher in the low-risk group. CONCLUSION The established prognostic risk model has a good predictive ability for the prognosis of ccRCC patients and provides a new possible therapeutic target for ccRCC.
Collapse
MESH Headings
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/mortality
- Carcinoma, Renal Cell/therapy
- Carcinoma, Renal Cell/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/mortality
- Kidney Neoplasms/therapy
- Telomerase/genetics
- Telomerase/metabolism
- Prognosis
- Immunotherapy/methods
- Gene Expression Regulation, Neoplastic
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Signal Transduction/genetics
- Male
- Female
- Gene Regulatory Networks
Collapse
Affiliation(s)
- Cheng Shen
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Kaiyao Jiang
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Wei Zhang
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Baohui Su
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Zhenyu Wang
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinfeng Chen
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Bing Zheng
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Tao He
- Party Committe and Hospital Administration Office, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
22
|
Wu LY, Park SH, Jakobsson H, Shackleton M, Möller A. Immune Regulation and Immune Therapy in Melanoma: Review with Emphasis on CD155 Signalling. Cancers (Basel) 2024; 16:1950. [PMID: 38893071 PMCID: PMC11171058 DOI: 10.3390/cancers16111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Melanoma is commonly diagnosed in a younger population than most other solid malignancies and, in Australia and most of the world, is the leading cause of skin-cancer-related death. Melanoma is a cancer type with high immunogenicity; thus, immunotherapies are used as first-line treatment for advanced melanoma patients. Although immunotherapies are working well, not all the patients are benefitting from them. A lack of a comprehensive understanding of immune regulation in the melanoma tumour microenvironment is a major challenge of patient stratification. Overexpression of CD155 has been reported as a key factor in melanoma immune regulation for the development of therapy resistance. A more thorough understanding of the actions of current immunotherapy strategies, their effects on immune cell subsets, and the roles that CD155 plays are essential for a rational design of novel targets of anti-cancer immunotherapies. In this review, we comprehensively discuss current anti-melanoma immunotherapy strategies and the immune response contribution of different cell lineages, including tumour endothelial cells, myeloid-derived suppressor cells, cytotoxic T cells, cancer-associated fibroblast, and nature killer cells. Finally, we explore the impact of CD155 and its receptors DNAM-1, TIGIT, and CD96 on immune cells, especially in the context of the melanoma tumour microenvironment and anti-cancer immunotherapies.
Collapse
Affiliation(s)
- Li-Ying Wu
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Su-Ho Park
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haakan Jakobsson
- Department of Medical Oncology, Paula Fox Melanoma and Cancer Centre, Alfred Health, Melbourne, VIC 3004, Australia;
| | - Mark Shackleton
- Department of Medical Oncology, Paula Fox Melanoma and Cancer Centre, Alfred Health, Melbourne, VIC 3004, Australia;
- School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Andreas Möller
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
23
|
Wu JW, Liu Y, Dai XJ, Liu HM, Zheng YC, Liu HM. CD155 as an emerging target in tumor immunotherapy. Int Immunopharmacol 2024; 131:111896. [PMID: 38518596 DOI: 10.1016/j.intimp.2024.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
CD155 is an immunoglobulin-like protein overexpressed in almost all the tumor cells, which not only promotes proliferation, adhesion, invasion, and migration of tumor cells, but also regulates immune responses by interacting with TIGIT, CD226 or CD96 receptors expressed on several immune cells, thereby modulating the functionality of these cellular subsets. As a novel immune checkpoint, the inhibition of CD155/TIGIT, either as a standalone treatment or in conjunction with other immune checkpoint inhibitors, has demonstrated efficacy in managing advanced solid malignancies. In this review, we summarize the intricate relationship between on tumor surface CD155 and its receptors, with further discussion on how they regulate the occurrence of tumor immune escape. In addition, novel therapeutic strategies and clinical trials targeting CD155 and its receptors are summarized, providing a strong rationale and way forward for the development of next-generation immunotherapies.
Collapse
Affiliation(s)
- Jiang-Wan Wu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Xing-Jie Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Hui-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
24
|
Liu G, Jin K, Liu Z, Su X, Xu Z, Li B, Xu J, Liu H, Chang Y, Zhu Y, Xu L, Wang Z, Wang Y, Zhang W. Integration of CD4 + T cells and molecular subtype predicts benefit from PD-L1 blockade in muscle-invasive bladder cancer. Cancer Sci 2024; 115:1306-1316. [PMID: 38402640 PMCID: PMC11007017 DOI: 10.1111/cas.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Muscle-invasive bladder cancer (MIBC) is a disease characterized by molecular and clinical heterogeneity, posing challenges in selecting the most appropriate treatment in clinical settings. Considering the significant role of CD4+ T cells, there is an emerging need to integrate CD4+ T cells with molecular subtypes to refine classification. We conducted a comprehensive study involving 895 MIBC patients from four independent cohorts. The Zhongshan Hospital (ZSHS) and The Cancer Genome Atlas (TCGA) cohorts were included to investigate chemotherapeutic response. The IMvigor210 cohort was included to assess the immunotherapeutic response. NCT03179943 was used to evaluate the clinical response to a combination of immune checkpoint blockade (ICB) and chemotherapy. Additionally, we evaluated genomic characteristics and the immune microenvironment to gain deeper insights into the distinctive features of each subtype. We unveiled four immune-molecular subtypes, each exhibiting distinct clinical outcomes and molecular characteristics. These subtypes include luminal CD4+ Thigh, which demonstrated benefits from both immunotherapy and chemotherapy; luminal CD4+ Tlow, characterized by the highest level of fibroblast growth factor receptor 3 (FGFR3) mutation, thus indicating potential responsiveness to FGFR inhibitors; basal CD4+ Thigh, which could benefit from a combination of ICB and chemotherapy; and basal CD4+ Tlow, characterized by an immune suppression microenvironment and likely to benefit from transforming growth factor-β (TGF-β) inhibition. This immune-molecular classification offers new possibilities for optimizing therapeutic interventions in MIBC.
Collapse
Affiliation(s)
- Ge Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Kaifeng Jin
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Urology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Zhaopei Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaohe Su
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Ziyue Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Bingyu Li
- Department of Immunology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Jingtong Xu
- Department of Immunology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Hailong Liu
- Department of Urology, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuan Chang
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yu Zhu
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Le Xu
- Department of Urology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zewei Wang
- Department of Urology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
25
|
Kawada T, Yanagisawa T, Rajwa P, Motlagh RS, Mostafaei H, Quhal F, Laukhtina E, Pallauf M, König F, Pradere B, Araki M, Nasu Y, Shariat SF. The Prognostic Value of Tumor Infiltrating Lymphocytes After Radical Cystectomy for Bladder Cancer: A Systematic Review and Meta-Analysis. Clin Genitourin Cancer 2024; 22:535-543.e4. [PMID: 38336572 DOI: 10.1016/j.clgc.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND We aimed to assess the prognostic value of tumor infiltrating lymphocytes (TILs) in patients with bladder cancer (BC) after radical cystectomy (RC). MATERIALS AND METHODS We searched Pubmed, Web of Science and Scopus in April 2022 to identify studies assessing the prognostic value of TILs, including a subset of lymphocytes (eg, CD3, CD8, FOXP3), after RC. The endpoints were overall survival and recurrent free survival. Subgroup analyses were performed based on the evaluation method for TILs (ie, CD3, CD8, FOXP3, HE staining). RESULTS Overall, 9 studies comprising 1413 patients were included in this meta-analysis. The meta-analysis revealed that elevated expressions of TILs were significantly associated with favorable OS (pooled hazard ratio [HR]: 0.65, 95% confidence interval [CI]: 0.51-0.83) and RFS (pooled HR: 0.48, 95% CI: 0.35-0.64). In subgroup analyses, high CD8+ TILs were also associated with favorable OS (HR: 0.51, 95% CI: 0.33-0.80) and RFS (pooled HR: 0.53, 95% CI: 0.36-0.76). Among 3 studies comprising 146 patients, high intratumoral TILs were significantly associated with favorable OS (pooled HR: 0.34, 95% CI: 0.19-0.60). CONCLUSION TILs are useful prognostic markers in patients treated with RC for BC. Although the prognostic value of TILs is varied, depending on the subset and infiltration site, CD8+ TILs and intratumoral TILs are associated with oncologic outcomes. Further studies are warranted to explicate the predictive value of TILs on the response to perioperative systemic therapy to help clinical decision-making in patients with BC.
Collapse
Affiliation(s)
- Tatsushi Kawada
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Takafumi Yanagisawa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Pawel Rajwa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Medical University of Silesia, Zabrze, Poland
| | - Reza Sari Motlagh
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Tehran, Iran
| | - Hadi Mostafaei
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fahad Quhal
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ekaterina Laukhtina
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Maximilian Pallauf
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Paracelsus Medical University Salzburg, University Hospital Salzburg, Salzburg, Austria
| | - Frederik König
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Pradere
- Department of Urology, La Croix Du Sud Hospital, Quint-Fonsegrives, France
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan; Department of Urology, University of Texas Southwestern, Dallas, Texas, USA; Department of Urology, Second Faculty of Medicine, Charles University, Prag, Czech Republic; Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria; Research Center for Evidence Medicine, Urology Department Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Azimi M, Cho S, Bozkurt E, McDonough E, Kisakol B, Matveeva A, Salvucci M, Dussmann H, McDade S, Firat C, Urganci N, Shia J, Longley DB, Ginty F, Prehn JHM. Spatial Effects of Infiltrating T cells on Neighbouring Cancer Cells and Prognosis in Stage III CRC patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577720. [PMID: 38352309 PMCID: PMC10862776 DOI: 10.1101/2024.01.30.577720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring cancers, but prognostic biomarkers identifying patients at risk of recurrence are still lacking. In this study, we aimed to investigate in more detail the spatial relationship between intratumoural T cells, cancer cells, and cancer cell hallmarks, as prognostic biomarkers in stage III colorectal cancer patients. We conducted multiplexed imaging of 56 protein markers at single cell resolution on resected fixed tissue from stage III CRC patients who received adjuvant 5-fluorouracil-based chemotherapy. Images underwent segmentation for tumour, stroma and immune cells, and cancer cell 'state' protein marker expression was quantified at a cellular level. We developed a Python package for estimation of spatial proximity, nearest neighbour analysis focusing on cancer cell - T cell interactions at single-cell level. In our discovery cohort (MSK), we processed 462 core samples (total number of cells: 1,669,228) from 221 adjuvant 5FU-treated stage III patients. The validation cohort (HV) consisted of 272 samples (total number of cells: 853,398) from 98 stage III CRC patients. While there were trends for an association between percentage of cytotoxic T cells (across the whole cancer core), it did not reach significance (Discovery cohort: p = 0.07, Validation cohort: p = 0.19). We next utilized our region-based nearest neighbourhood approach to determine the spatial relationships between cytotoxic T cells, helper T cells and cancer cell clusters. In the both cohorts, we found that lower distance between cytotoxic T cells, T helper cells and cancer cells was significantly associated with increased disease-free survival. An unsupervised trained model that clustered patients based on the median distance between immune cells and cancer cells, as well as protein expression profiles, successfully classified patients into low-risk and high-risk groups (Discovery cohort: p = 0.01, Validation cohort: p = 0.003).
Collapse
Affiliation(s)
- Mohammadreza Azimi
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Sanghee Cho
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA (formerly GE Research Center)
| | - Emir Bozkurt
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Elizabeth McDonough
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA (formerly GE Research Center)
| | - Batuhan Kisakol
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Anna Matveeva
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Heiko Dussmann
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Simon McDade
- School of Medicine, Dentistry and Biomedical Sciences, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | | | | | - Jinru Shia
- Memorial Sloan Kettering Cancer Centre, NY
| | - Daniel B Longley
- School of Medicine, Dentistry and Biomedical Sciences, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Fiona Ginty
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA (formerly GE Research Center)
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| |
Collapse
|
27
|
Li B, Jin K, Liu Z, Su X, Xu Z, Liu G, Xu J, Liu H, Chang Y, Wang Y, Zhu Y, Wang Z, Xu L, Zhang W. Integrating molecular subtype and CD8 + T cells infiltration to predict treatment response and survival in muscle-invasive bladder cancer. Cancer Immunol Immunother 2024; 73:66. [PMID: 38430246 PMCID: PMC10908619 DOI: 10.1007/s00262-024-03651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/03/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Luminal and Basal are the primary intrinsic subtypes of muscle-invasive bladder cancer (MIBC). The presence of CD8+ T cells infiltration holds significant immunological relevance, potentially influencing the efficacy of antitumor responses. This study aims to synergize the influence of molecular subtypes and CD8+ T cells infiltration in MIBC. METHODS This study included 889 patients with MIBC from Zhongshan Hospital, The Cancer Genome Atlas, IMvigor210 and NCT03179943 cohorts. We classified the patients into four distinct groups, based on the interplay of molecular subtypes and CD8+ T cells and probed into the clinical implications of these subgroups in MIBC. RESULTS Among patients with Luminal-CD8+Thigh tumors, the confluence of elevated tumor mutational burden and PD-L1 expression correlated with a heightened potential for positive responses to immunotherapy. In contrast, patients featured by Luminal-CD8+Tlow displayed a proclivity for deriving clinical advantages from innovative targeted interventions. The Basal-CD8+Tlow subgroup exhibited the least favorable three-year overall survival outcome, whereas their Basal-CD8+Thigh counterparts exhibited a heightened responsiveness to chemotherapy. CONCLUSIONS We emphasized the significant role of immune-molecular subtypes in shaping therapeutic approaches for MIBC. This insight establishes a foundation to refine the process of selecting subtype-specific treatments, thereby advancing personalized interventions for patients.
Collapse
Affiliation(s)
- Bingyu Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaifeng Jin
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaopei Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaohe Su
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziyue Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ge Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingtong Xu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hailong Liu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Su X, Jin K, Guo Q, Xu Z, Liu Z, Zeng H, Wang Y, Zhu Y, Xu L, Wang Z, Chang Y, Xu J. Integrative score based on CDK6, PD-L1 and TMB predicts response to platinum-based chemotherapy and PD-1/PD-L1 blockade in muscle-invasive bladder cancer. Br J Cancer 2024; 130:852-860. [PMID: 38212482 PMCID: PMC10912081 DOI: 10.1038/s41416-023-02572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/06/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase 6 (CDK6) was proved to be an important regulator in the progression of cell cycle and has been a promising therapeutic target in cancer treatment. However, the clinical significance of CDK6 in muscle-invasive bladder cancer (MIBC) remains obscure. Herein, we attempt to explore the clinical relevance of CDK6 and assess the feasibility of the integrative model to predict immune checkpoint blockade (ICB) response. METHODS This study enrolled 933 patients with muscle-invasive bladder cancer (MIBC) from Zhongshan Hospital (ZSHS), The Cancer Genome Atlas (TCGA), Chemo, IMvigor210 and UC-GENOME cohorts. Kaplan-Meier survival and Cox regression analyses were performed to assess clinical outcomes based on CDK6 expression. RESULTS High CDK6 expression conferred poor prognosis and superior response to platinum-based chemotherapy but inferior response to ICB in MIBC. Furthermore, the integrative model named response score based on CDK6, PD-L1 and TMB could better predict the response to ICB and chemotherapy. Patients with higher response scores were characterised by inflamed immune microenvironment and genomic instability. CONCLUSIONS CDK6 expression was correlated with prognosis and therapy response in MIBC. Integration of CDK6, PD-L1 and TMB could better identify patients who were most likely to benefit from ICB and chemotherapy.
Collapse
Affiliation(s)
- Xiaohe Su
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaifeng Jin
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiji Guo
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziyue Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaopei Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Han Zeng
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Zhang P, Liu X, Gu Z, Jiang Z, Zhao S, Song Y, Yu J. Targeting TIGIT for cancer immunotherapy: recent advances and future directions. Biomark Res 2024; 12:7. [PMID: 38229100 PMCID: PMC10790541 DOI: 10.1186/s40364-023-00543-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 01/18/2024] Open
Abstract
As a newly identified checkpoint, T cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is highly expressed on CD4+ T cells, CD8+ T cells, natural killer (NK) cells, regulatory T cells (Tregs), and tumor-infiltrating lymphocytes (TILs). TIGIT has been associated with NK cell exhaustion in vivo and in individuals with various cancers. It not only modulates NK cell survival but also mediates T cell exhaustion. As the primary ligand of TIGIT in humans, CD155 may be the main target for immunotherapy due to its interaction with TIGIT. It has been found that the anti-programmed cell death protein 1 (PD-1) treatment response in cancer immunotherapy is correlated with CD155 but not TIGIT. Anti-TIGIT alone and in combination with anti-PD-1 agents have been tested for cancer immunotherapy. Although two clinical studies on advanced lung cancer had positive results, the TIGIT-targeted antibody, tiragolumab, recently failed in two new trials. In this review, we highlight the current developments on TIGIT for cancer immunotherapy and discuss the characteristics and functions of TIGIT.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Xinyuan Liu
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zhuoyu Gu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yongping Song
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China.
| |
Collapse
|
30
|
Lv Z, Hou J, Wang Y, Wang X, Wang Y, Wang K. Knowledge-map analysis of bladder cancer immunotherapy. Hum Vaccin Immunother 2023; 19:2267301. [PMID: 37903500 PMCID: PMC10760393 DOI: 10.1080/21645515.2023.2267301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023] Open
Abstract
This study aimed to conduct a bibliometric analysis in the field of bladder cancer (BC) immunotherapy, and explore the research trends, hotspots and frontiers from 2000 to 2022. VOSviewer software was used to analyze the collaborative relationships between authors, institutions, countries/regions, and journals through citation, co-authorship, and co-citation analysis, to identify research hotspots and frontiers in this field. Researchers based in the United States of America have published a total of 627 papers with 27,308 citations. Indeed, the USA ranked first among the top 10 most active countries and showed the most extensive collaboration with other countries. The University of Texas MD Anderson CANC CTR has published 58 articles, making it the top most institution in terms of published articles and active collaborative research. Kamat AM and Lamm DL were the most active and co-cited authors with 28 papers and 980 co-citations, respectively. Chang Yuan and Xu le were the most active collaborative authors with a total link strength of 195. The J UROLOGY was the most active and frequently co-cited journal, with 100 papers and 6,668 co-citations. Studies of BC immunotherapy can be broadly classified into three categories: "basic research", "clinical trial", and "prognosis". Our findings provide an overview of the research priorities and future directions of BC immunotherapy. Tumor microenvironment and immune checkpoint inhibitors (ICIs) of BC, as well as the combination of ICIs with other drugs, may become the main direction of future research.
Collapse
Affiliation(s)
- Zongwei Lv
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Junhui Hou
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yibing Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
31
|
Wu J, Lu Z, Zhao H, Lu M, Gao Q, Che N, Wang J, Ma T. The expanding Pandora's toolbox of CD8 +T cell: from transcriptional control to metabolic firing. J Transl Med 2023; 21:905. [PMID: 38082437 PMCID: PMC10714647 DOI: 10.1186/s12967-023-04775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
CD8+ T cells are the executor in adaptive immune response, especially in anti-tumor immunity. They are the subset immune cells that are of high plasticity and multifunction. Their development, differentiation, activation and metabolism are delicately regulated by multiple factors. Stimuli from the internal and external environment could remodel CD8+ T cells, and correspondingly they will also make adjustments to the microenvironmental changes. Here we describe the most updated progresses in CD8+ T biology from transcriptional regulation to metabolism mechanisms, and also their interactions with the microenvironment, especially in cancer and immunotherapy. The expanding landscape of CD8+ T cell biology and discovery of potential targets to regulate CD8+ T cells will provide new viewpoints for clinical immunotherapy.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Zhendong Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Hong Zhao
- Department of Pathology, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Qing Gao
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Nanying Che
- Department of Pathology, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
32
|
Wang D, Ning H, Wu H, Song Y, Chu Y, Liu F, Zhao Z, Wu F, Lyu J. Construction and evaluation of a novel prognostic risk model of aging-related genes in bladder cancer. Curr Urol 2023; 17:236-245. [PMID: 37994343 PMCID: PMC10662852 DOI: 10.1097/cu9.0000000000000218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/22/2023] [Indexed: 11/24/2023] Open
Abstract
Background Bladder cancer (BLCA) is the most common malignancy of the urinary system. Muscle-invasive bladder cancer (MIBC), which constitutes approximately 25% of all BLCA cases, is characterized by frequent recurrence and early onset of metastasis. Bladder cancer most commonly occurs in elderly patients and is significantly associated with aging. However, the prognostic value of age-related genes in BLCA, especially in MIBC, remains unclear. Materials and methods Training and testing sets were obtained from The Cancer Genome Atlas BLCA project. Differentially expressed genes between BLCA and normal samples intersected with human aging-related genes. Univariate Cox regression and least absolute shrinkage and selection operator regression analyses were used to identify prognostic aging-related signatures, followed by the construction of a risk score model and nomogram. Kaplan-Meier and receiver operating characteristic analyses were conducted to assess the predictive power. An independent BLCA cohort of 165 samples was included for external validation. The CIBERSORT algorithm was used to explore the characteristics of the immune microenvironment. Results Seven genes (IGF1, NGF, GCLM, PYCR1, EFEMP1, APOC3, and IFNB1) were identified by Cox and least absolute shrinkage and selection operator analyses. After combining the gene signature with the clinical parameters of patients with BLCA, a risk-prognosis model and nomogram were constructed and validated with the testing set. Bladder cancer cases with high 7-gene signature scores (high-risk group) and low scores (low-risk group) showed distinct prognoses. Furthermore, 7 types of immune cells were significantly altered between the low- and high-risk groups. Conclusions Collectively, our data provide a 7-gene signature that serves as a potential biomarker for BLCA, especially MIBC. Moreover, this 7-gene signature highlights the role of the tumor immune microenvironment in prognosis and thus might be related to the response to anti-programmed cell death protein 1-based immunotherapy.
Collapse
Affiliation(s)
- Delin Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hao Ning
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Haihu Wu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yufeng Song
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yaru Chu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Feifan Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhenlin Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fei Wu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jiaju Lyu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
33
|
Peng M, Chu X, Peng Y, Li D, Zhang Z, Wang W, Zhou X, Xiao D, Yang X. Targeted therapies in bladder cancer: signaling pathways, applications, and challenges. MedComm (Beijing) 2023; 4:e455. [PMID: 38107059 PMCID: PMC10724512 DOI: 10.1002/mco2.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Bladder cancer (BC) is one of the most prevalent malignancies in men. Understanding molecular characteristics via studying signaling pathways has made tremendous breakthroughs in BC therapies. Thus, targeted therapies including immune checkpoint inhibitors (ICIs), antibody-drug conjugates (ADCs), and tyrosine kinase inhibitor (TKI) have markedly improved advanced BC outcomes over the last few years. However, the considerable patients still progress after a period of treatment with current therapeutic regimens. Therefore, it is crucial to guide future drug development to improve BC survival, based on the molecular characteristics of BC and clinical outcomes of existing drugs. In this perspective, we summarize the applications and benefits of these targeted drugs and highlight our understanding of mechanisms of low response rates and immune escape of ICIs, ADCs toxicity, and TKI resistance. We also discuss potential solutions to these problems. In addition, we underscore the future drug development of targeting metabolic reprogramming and cancer stem cells (CSCs) with a deep understanding of their signaling pathways features. We expect that finding biomarkers, developing novo drugs and designing clinical trials with precisely selected patients and rationalized drugs will dramatically improve the quality of life and survival of patients with advanced BC.
Collapse
Affiliation(s)
- Mei Peng
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Xuetong Chu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Yan Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Duo Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Zhirong Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Weifan Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Xiaochen Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| |
Collapse
|
34
|
Cao L, Xie W, Ma W, Zhao H, Wang J, Liang Z, Tian S, Wang B, Ma J. The unique immune ecosystems in pediatric brain tumors: integrating single-cell and bulk RNA-sequencing. Front Immunol 2023; 14:1238684. [PMID: 38094301 PMCID: PMC10716463 DOI: 10.3389/fimmu.2023.1238684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Background The significant progress of immune therapy in non-central nervous system tumors has sparked interest in employing the same strategy for adult brain tumors. However, the advancement of immunotherapy in pediatric central nervous system (CNS) tumors is not yet on par. Currently, there is a lack of comprehensive comparative studies investigating the immune ecosystem in pediatric and adult CNS tumors at a high-resolution single-cell level. Methods In this study, we comprehensively analyzed over 0.3 million cells from 171 samples, encompassing adult gliomas (IDH wild type and IDH mutation) as well as four major types of pediatric brain tumors (medulloblastoma (MB), ependymoma (EPN), H3K27M-mutation (DIPG), and pediatric IDH-mutation glioma (P-IDH-M)). Our approach involved integrating publicly available and newly generated single-cell datasets. We compared the immune landscapes in different brain tumors, as well as the detailed functional phenotypes of T-cell and myeloid subpopulations. Through single-cell analysis, we identified gene sets associated with major cell types in the tumor microenvironment (gene features from single-cell data, scFes) and compared them with existing gene sets such as GSEA and xCell. The CBTTC and external GEO cohort was used to analyze and validate the immune-stromal-tumor patterns in pediatric brain tumors which might potentially respond to the immunotherapy. Results From the perspective of single-cell analysis, it was observed that major pediatric brain tumors (MB, EPN, P-IDH-M, DIPG) exhibited lower immune contents compared with adult gliomas. Additionally, these pediatric brain tumors displayed diverse immunophenotypes, particularly in regard to myeloid cells. Notably, the presence of HLA-enriched myeloid cells in MB was found to be independently associated with prognosis. Moreover, the scFes, when compared with commonly used gene features, demonstrated superior performance in independent single-cell datasets across various tumor types. Furthermore, our study revealed the existence of heterogeneous immune ecosystems at the bulk-RNA sequencing level among different brain tumor types. In addition, we identified several immune-stromal-tumor patterns that could potentially exhibit significant responses to conventional immune checkpoint inhibitors. Conclusion The single-cell technique provides a rational path to deeply understand the unique immune ecosystem of pediatric brain tumors. In spite of the traditional attitudes of "cold" tumor towards pediatric brain tumor, the immune-stroma-tumor patterns identified in this study suggest the feasibility of immune checkpoint inhibitors and pave the way for the upcoming tide of immunotherapy in pediatric brain tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuaiwei Tian
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baocheng Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Li M, Zhao Z, Mak TK, Wang X, Chen J, Ren H, Yu Z, Zhang C. Neutrophil extracellular traps-related signature predicts the prognosis and immune infiltration in gastric cancer. Front Med (Lausanne) 2023; 10:1174764. [PMID: 37636564 PMCID: PMC10447905 DOI: 10.3389/fmed.2023.1174764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Gastric cancer (GC) is the fifth most prevalent cancer globally, with the third highest case fatality rate. Neutrophil extracellular traps (NETs) are a reticulated structure of DNA, histones, and antimicrobial peptides produced by active neutrophils that trap pathogens. Even though NETs are associated with poorer recurrence-free survival (RFS) and overall survival (OS), the specifics of this interaction between NETs and cancer cells are yet unknown. Methods The keywords "neutrophil extracellular traps and gastric cancer" were used in the GEO database for retrieval, and the GSE188741 dataset was selected to obtain the NETs-related gene. 27 NETs-related genes were screened by univariate Cox regression analysis (p < 0.05). 27 NETs-related genes were employed to identify and categorize NETs-subgroups of GC patients under the Consensus clustering analysis. 808 GC patients in TCGA-STAD combined with GES84437 were randomly divided into a training group (n = 403) and a test group (n = 403) at a ratio of 1:1 to validate the NETs-related signature. Results Based on Multivariate Cox regression and LASSO regression analysis to develop a NETs-related prognosis model. We developed a very specific nomogram to improve the NETs-clinical score's usefulness. Similarly, we also performed a great result in pan-cancer study with NETs-score. Low NETs scores were linked to higher MSI-H (microsatellite instability-high), mutation load, and immune activity. The cancer stem cell (CSC) index and chemotherapeutic treatment sensitivity were also connected to the NET score. Our comprehensive analysis of NETs in GC suggests that NETs have a role in the tumor microenvironment, clinicopathological features, and prognosis. Discussion The NETs-score risk model provides a basis for better prognosis and therapy outcomes in GC patients.
Collapse
Affiliation(s)
- Mingzhe Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zidan Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tsz Kin Mak
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaoqun Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jingyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Ren
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhiwei Yu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
36
|
Basak D, Mondal S, Srivastava SK, Sarkar D, Sarkar I, Basu S, Bhoumik A, Chowdhury S, Pal DK, Chatterjee S. Intratumoral PD1 +CD38 +Tim3 + CD8 + T Cells in Pre-BCG Tumor Tissues Are Associated with Poor Responsiveness to BCG Immunotherapy in Patients with Non-Muscle Invasive Bladder Cancer. Cells 2023; 12:1939. [PMID: 37566017 PMCID: PMC10416886 DOI: 10.3390/cells12151939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/09/2023] [Accepted: 06/06/2023] [Indexed: 08/12/2023] Open
Abstract
Intravesical immunotherapy with Bacillus Calmette-Guerin (BCG) is a standard of care therapy for non-muscle invasive bladder cancer (NMIBC), which accounts for about 75% of newly diagnosed urothelial cancer. However, given the frequent recurrence and progression, identification of a pre-treatment biomarker capable of predicting responsiveness to BCG in NMIBC is of utmost importance. Herein, using multiparametric flow cytometry, we characterized CD8+ T cells from peripheral blood and tumor tissues collected from 27 pre-BCG patients bearing NMIBC to obtain immune correlates of bladder cancer prognosis and responsiveness to BCG therapy. We observed that intratumoral CD8+ T cell subsets were highly heterogenous in terms of their differentiation state and exist at different proportions in tumor tissues. Remarkably, among the different CD8+ T cell subsets present in the tumor tissues, the frequency of the terminally exhausted-like CD8+ T cell subset, marked as PD1+CD38+Tim3+ CD8+ T cells, was inversely correlated with a favorable outcome for patients and a responsiveness to BCG therapy. Moreover, we also noted that the intratumoral abundance of the progenitor exhausted-like PD1+CD8+ T cell subset in pre-BCG NMIBC tumor tissues was indicative of better recurrence-free survival after BCG. Collectively, our study led to the identification of biomarkers that can predict the therapeutic responsiveness of BCG in NMIBC.
Collapse
Affiliation(s)
- Debashree Basak
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Soumya Mondal
- Department of Urology, IPGME&R and SSKM Hospital, Kolkata 700020, India
| | | | - Deborpita Sarkar
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Ishita Sarkar
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sukanya Basu
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Arpita Bhoumik
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Snehanshu Chowdhury
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dilip Kumar Pal
- Department of Urology, IPGME&R and SSKM Hospital, Kolkata 700020, India
| | - Shilpak Chatterjee
- Division of Cancer Biology and Inflammatory Disorder, IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
37
|
Heiduk M, Klimova A, Reiche C, Digomann D, Beer C, Aust DE, Distler M, Weitz J, Seifert AM, Seifert L. TIGIT Expression Delineates T-cell Populations with Distinct Functional and Prognostic Impact in Pancreatic Cancer. Clin Cancer Res 2023; 29:2638-2650. [PMID: 37140899 PMCID: PMC10345964 DOI: 10.1158/1078-0432.ccr-23-0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/05/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE Immunotherapy has led to a fundamental shift in the treatment of several cancers. However, its efficacy in pancreatic ductal adenocarcinoma (PDAC) is limited. Understanding the expression of inhibitory immune checkpoint receptors (ICR) by intratumoral T cells may help to unravel their involvement in insufficient T-cell-mediated antitumor immunity. EXPERIMENTAL DESIGN Using multicolor flow cytometry, we analyzed circulating and intratumoral T cells from blood (n = 144) and matched tumor samples (n = 107) of patients with PDAC. We determined the expression of programmed cell death protein 1 (PD-1) and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibition motif (ITIM) domains (TIGIT) by CD8+ T-cells, conventional CD4+ T-cells (Tconv) and regulatory T cells (Treg) and their association with T-cell differentiation, tumor reactivity, and cytokine expression. A comprehensive follow-up was used to determine their prognostic value. RESULTS Intratumoral T cells were characterized by increased PD-1 and TIGIT expression. Both markers delineated distinct T-cell subpopulations. PD-1+TIGIT- T cells highly expressed proinflammatory cytokines and markers of tumor reactivity (CD39, CD103), whereas TIGIT expression was linked to antiinflammatory and exhausted phenotypes. In addition, the enhanced presence of intratumoral PD-1+TIGIT- Tconv was associated with improved clinical outcomes, while high ICR expression on blood T cells was a significant hazard for overall survival (OS). CONCLUSIONS Our results uncover the association between ICR expression and T-cell functionality. PD-1 and TIGIT characterized intratumoral T cells with highly divergent phenotypes linked to clinical outcomes, further underscoring the relevance of TIGIT for immunotherapeutic approaches in PDAC. The prognostic value of ICR expression in patient blood may be a valuable tool for patient stratification.
Collapse
Affiliation(s)
- Max Heiduk
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Anna Klimova
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Charlotte Reiche
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - David Digomann
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Carolin Beer
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniela E. Aust
- Institute of Pathology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Biobank Dresden, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adrian M. Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Seifert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Else Kröner Clinician Scientist Professor for Translational Tumor Immunological Research, Dresden, Germany
| |
Collapse
|
38
|
Li W, Liu Z, Jin K, Shao F, Zeng H, Wang Y, Zhu Y, Xu L, Wang Z, Chang Y, Zhang W. Immune inactivation by VISTA predicts clinical outcome and therapeutic benefit in muscle-invasive bladder cancer. BMC Cancer 2023; 23:661. [PMID: 37452272 PMCID: PMC10347783 DOI: 10.1186/s12885-023-11157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND V domain Immunoglobulin suppressor of T cell activation (VISTA) has been proved to be a novel immune checkpoint molecule that positively regulates T cell infiltration in several malignancies. However, the clinical impact of VISTA on muscle-invasive bladder cancer (MIBC) patients remains relatively obscure. METHODS This study enrolled 135 MIBC patients from Zhongshan Hospital (ZSHS) and 391 patients from The Cancer Genome Atlas (TCGA) to examine the VISTA expression and immune contexture based on immunohistochemistry (IHC) staining and CIBERSORT algorithm. Additionally, IMvigor210 Cohort included 195 bladder-derived urothelial carcinoma patients to evaluate the efficacy of immunotherapy. Kaplan-Meier curve and Cox regression analyses were conducted to assess clinical outcomes. RESULTS MIBC patients with high VISTA+ immune cells (ICs) possessed poor overall survival and inferior therapeutic responsiveness to adjuvant chemotherapy (ACT), but superior responsiveness to PD-L1 inhibitor. VISTA+ ICs infiltration shaped an immunoevasive context featured by regulatory T cells (Tregs), M2 macrophages, mast cells and exhausted CD8+ T cells infiltration, with increased interleukin 10 (IL-10), transforming growth factor-β (TGF-β) and interferon-γ (IFN-γ), but also elevated T-cell immunoglobulin mucin-3 (TIM-3), lymphocyte activation gene 3 (LAG-3) and T-cell immunoglobulin and ITIM domain (TIGIT), which was also mainly presented in basal-squamous and luminal-infiltrated subtypes of MIBC. CONCLUSION VISTA+ ICs infiltration could be an independent predictor to identify poor prognosis and therapeutic responses (PD-L1 blockade and ACT) in MIBC patients, which was associated with immunoevasive contexture. The novel immune checkpoint VISTA might be utilized as a candidate treatment biomarker in MIBC patients.
Collapse
Affiliation(s)
- Wandi Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhaopei Liu
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Kaifeng Jin
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fei Shao
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Zeng
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugate Research, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
39
|
Kong X, Chen L, Su Z, Sullivan RJ, Blum SM, Qi Z, Liu Y, Huo Y, Fang Y, Zhang L, Gao J, Wang J. Toxicities associated with immune checkpoint inhibitors: a systematic study. Int J Surg 2023; 109:1753-1768. [PMID: 37132038 PMCID: PMC10389211 DOI: 10.1097/js9.0000000000000368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/12/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Available evidence shows that the incidence of toxicities associated with cancer immunotherapy, such as programmed cell death 1 (PD-1) and programmed cell death 1 ligand 1 (PD-L1)-related toxicities, is estimated to be between 0.3 and 1.3%. OBJECTIVE This systematic review aimed to investigate cancer patients' susceptibility to toxicities associated with PD-1/PD-L1 inhibitors and establish a clinically relevant landscape of side effects of PD-1/PD-L1 inhibitors. DATA SOURCES Relevant publications from PubMed, Embase, Cochrane Library, Web of Science, and China National Knowledge Infrastructure (CNKI) between 2014 and 2019. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTIONS We searched randomized controlled trials (RCTs) reporting treatment-related toxicities associated with PD-1 and PD-L1 inhibitors in the treatment of cancers. The primary endpoint was to assess the difference in the incidences of toxicities between cancer patients who did and did not receive PD-1/PD-L1 inhibitors. A total of 29 RCTs, incorporating 8576 patients, met the eligibility criteria. STUDY APPRAISAL AND SYNTHESIS METHODS We calculated the pooled relative risks and corresponding 95% CIs using a random-effects model and assessed the heterogeneity between different groups. The subgroup analyses were conducted based on cancer type, toxicity grade (severity), system and organ, treatment regimens in the intervention arm and the control arm, PD-1/PD-L1 inhibitor drug type, and cancer type. RESULTS A total of 11 categories (e.g. endocrine toxicity), and 39 toxicity types (e.g. hyperthyroidism) were identified. For toxicities at any grade, those treated with PD-1/PD-L1 inhibitors were at lower risks for gastrointestinal toxicity, hematologic toxicity, and treatment event leading to discontinuation; and were at higher risks for respiratory toxicity (all P <0.05). Those treated with PD-1/PD-L1 inhibitors were at lower risks for fatigue, asthenia, and peripheral edema and were at higher risks for pyrexia, cough, dyspnea, pneumonitis, and pruritus. LIMITATIONS The present research is a meta-analysis at the study level rather than at the patient level; insights on risk factors associated with the development of toxicities cannot be found in our study. There was a possible overlap in Common Terminology Criteria for Adverse Events (CTCAE) definitions which prevents understanding the true rates of specific toxicities. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS For most toxicity types based on system and organ, the incidence proportions for patients in the intervention arm were lower than those in the control arm, which suggested the general safety of PD-1/PD-L1 inhibitors against conventional chemotherapy and cytotoxic t-lymphocyte-associated protein 4 (CTLA-4) inhibitors. Future research should focus on taking effective targeted measures to decrease the risks of different toxicities for different patient populations. SYSTEMATIC REVIEW REGISTRATION NUMBER We registered the research protocol with PROSPERO (registration number CRD42019135113).
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Li Chen
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaohui Su
- Center on Smart and Connected Health Technologies, Mays Cancer Center, School of Nursing, UT Health San Antonio, San Antonio,Texas, United States of America
| | - Ryan J. Sullivan
- Center for Melanoma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Harvard University, Boston, Massachusetts, United States of America
| | - Steven M. Blum
- Department of Medicine-Oncology, Dana-Farber Cancer Institute, Harvard Medical School,Harvard University, Boston, Massachusetts, United States of America
| | - Zhihong Qi
- Clinical Laboratory, Peking Union Medical College Hospital, China
| | - Yulu Liu
- Fintech Lab, Department of Computer Science, Chow Yei Ching Building, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yujia Huo
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- The School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Xue Y, Zhao G, Pu X, Jiao F. Construction of T cell exhaustion model for predicting survival and immunotherapy effect of bladder cancer based on WGCNA. Front Oncol 2023; 13:1196802. [PMID: 37324016 PMCID: PMC10266200 DOI: 10.3389/fonc.2023.1196802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction The prognosis of bladder cancer (BLCA) and response to immune checkpoint inhibitors (ICIs) are determined by multiple factors. Existed biomarkers for predicting the effect of immunotherapy cannot accurately predict the response of BLCA patients to ICIs. Methods To further accurately stratify patients' response to ICIs and identify potential novel predictive biomarkers, we used the known T cell exhaustion (TEX)-related specific pathways, including tumor necrosis factor (TNF), interleukin (IL)-2, interferon (IFN)-g, and T- cell cytotoxicpathways, combined with weighted correlation network analysis (WGCNA) to analyze the characteristics of TEX in BLCA in detail, constructed a TEX model. Results This model including 28 genes can robustly predict the survival of BLCA and immunotherapeutic efficacy. This model could divide BLCA into two groups, TEXhigh and TEXlow, with significantly different prognoses, clinical features, and reactivity to ICIs. The critical characteristic genes, such as potential biomarkers Charged Multivesicular Body Protein 4C (CHMP4C), SH2 Domain Containing 2A (SH2D2A), Prickle Planar Cell Polarity Protein 3 (PRICKLE3) and Zinc Finger Protein 165 (ZNF165) were verified in BLCA clinical samples by real-time quantitative chain reaction (qPCR) and immunohistochemistry (IHC). Discussion Our findings show that the TEX model can serve as biological markers for predicting the response to ICIs, and the involving molecules in the TEX model might provide new potential targets for immunotherapy in BLCA.
Collapse
Affiliation(s)
- Yuwen Xue
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Guanghui Zhao
- Peking University People’s Hospital, Qingdao Women and Children’s Hospital, Qingdao, China
- Medical Laboratory Center, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Xiaoxin Pu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Fangdong Jiao
- Department of Urology Surgery, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| |
Collapse
|
41
|
Jiang S, Cui Z, Zheng J, Wu Q, Yu H, You Y, Zheng C, Sun Y. Significance of Immunogenic Cell Death-Related Prognostic Gene Signature in Cervical Cancer Prognosis and Anti-Tumor Immunity. J Inflamm Res 2023; 16:2189-2207. [PMID: 37250106 PMCID: PMC10218566 DOI: 10.2147/jir.s410140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Background Immunogenic cell death (ICD) can reshape the immune microenvironment of tumors. Driven by stressful pressure, by directly destroying tumor cells and activating the body's adaptive immunity, ICD acts as a modulator of cell death, enabling the body to generate an anti-tumor immune response that produces a more effective therapeutic effect, while tumor cells are driven to kill. Hence, this research aimed to find and evaluate ICD-related genetic signatures as cervical cancer (CC) prognostic factors. Methods Data of CC patients from the Tumor Genome Atlas (TCGA) were used as the basis to obtain immunogenic cell-death-related prognostic genes (IPGs) in patients with CC, using the least absolute shrinkage and selection operator and Cox regression screening, and the IPGs scoring system was constructed to classify patients into high- and low-risk groups, with the Gene Expression Omnibus (GEO) dataset as the validation group. Finally, the difference analysis of single-sample gene set enrichment analysis, tumor microenvironment (TME), immune cells, tumor mutational burden, and chemotherapeutic drug sensitivity between the high-risk and low-risk groups was investigated. Results A prognostic model with four IPGs (PDIA3, CASP8, IL1, and LY96) was developed, and it was found that the group of CC patients with a higher risk score of IPGs expression had a lower survival rate. Single and multifactor Cox regression analysis also showed that this risk score was a reliable predictor of overall survival. In comparison to the low-risk group, the high-risk group had lower TME scores and immune cell infiltration, and gene set variation analysis showed that immune-related pathways were more enriched in the high-risk group. Conclusion A risk model constructed from four IPGs can independently predict the prognosis of CC patients and recommend more appropriate immunotherapy strategies for patients.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, People’s Republic of China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Zhaolei Cui
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, People’s Republic of China
| | - Jianfeng Zheng
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, People’s Republic of China
| | - Qiaoling Wu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, People’s Republic of China
| | - Haijuan Yu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, People’s Republic of China
| | - Yiqing You
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, People’s Republic of China
| | - Chaoqiang Zheng
- Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, People’s Republic of China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, People’s Republic of China
| |
Collapse
|
42
|
Ren L, Yang X, Liu J, Wang W, Liu Z, Lin Q, Huang B, Pan J, Mao X. An innovative model based on N7-methylguanosine-related lncRNAs for forecasting prognosis and tumor immune landscape in bladder cancer. Cancer Cell Int 2023; 23:85. [PMID: 37158958 PMCID: PMC10165842 DOI: 10.1186/s12935-023-02933-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND As a novel type of the prevalent post-transcriptional modifications, N7-methylguanosine (m7G) modification is essential in the tumorigenesis, progression, and invasion of many cancers, including bladder cancer (BCa). However, the integrated roles of m7G-related lncRNAs in BCa remain undiscovered. This study aims to develop a prognostic model based on the m7G-related lncRNAs and explore its predictive value of the prognosis and anti-cancer treatment sensitivity. METHODS We obtained RNA-seq data and corresponding clinicopathological information from the TCGA database and collected m7G-related genes from previous studies and GSEA. Based on LASSO and Cox regression analysis, we developed a m7G prognostic model. The Kaplan-Meier (K-M) survival analysis and ROC curves were performed to evaluate the predictive power of the model. Gene set enrichment analysis (GSEA) was conducted to explore the molecular mechanisms behind apparent discrepancies between the low- and high-risk groups. We also investigated immune cell infiltration, TIDE score, TMB, the sensitivity of common chemotherapy drugs, and the response to immunotherapy between the two risk groups. Finally, we validated the expression levels of these ten m7G-related lncRNAs in BCa cell lines by qRT-PCR. RESULTS We developed a m7G prognostic model (risk score) composed of 10 m7G-related lncRNAs that are significantly associated with the OS of BCa patients. The K-M survival curves revealed that the high-risk group patients had significantly worse OS than those in the low-risk group. The Cox regression analysis confirmed that the risk score was a significant independent prognostic factor for BCa patients. We found that the high-risk group had higher the immune scores and immune cell infiltration. Furthermore, the results of the sensitivity of common anti-BCa drugs showed that the high-risk group was more sensitive to neoadjuvant cisplatin-based chemotherapy and anti-PD1 immunotherapy. Finally, qRT-PCR revealed that AC006058.1, AC073133.2, LINC00677, and LINC01338 were significantly downregulated in BCa cell lines, while the expression levels of AC124312.2 and AL158209.1 were significantly upregulated in BCa cell lines compared with normal cell lines. CONCLUSION The m7G prognostic model can be applied to accurately predict the prognosis and provide robust directions for clinicians to develop better individual-based and precise treatment strategies for BCa patients.
Collapse
Affiliation(s)
- Lei Ren
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Xu Yang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Jinwen Liu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Weifeng Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Zixiong Liu
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Qingyuan Lin
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Bin Huang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Jincheng Pan
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Xiaopeng Mao
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
43
|
Weng D, Guo R, Zhu Z, Gao Y, An R, Zhou X. Peptide-based PET imaging agent of tumor TIGIT expression. EJNMMI Res 2023; 13:38. [PMID: 37129788 PMCID: PMC10154443 DOI: 10.1186/s13550-023-00982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Accumulating studies have demonstrated that elevated TIGIT expression in tumor microenvironment correlates with better therapeutic response to TIGIT-based immunotherapy in pre-clinical studies. Therefore, a non-invasive method to detect tumor TIGIT expression is crucial to predict the therapeutic effect. METHODS In this study, a peptide-based PET imaging agent, 68Ga-DOTA-DTBP-3, was developed to non-invasively detect TIGIT expression by micro-PET in tumor-bearing BALB/c mice. DTBP-3, a D-peptide comprising of 12 amino acids, was radiolabeled with 68Ga through a DOTA chelator. In vitro studies were performed to evaluate the affinity of 68Ga-DOTA-DTBP-3 to TIGIT and its stability in fetal bovine serum. In vivo studies were assessed by micro-PET, biodistribution, and immunohistochemistry on tumor-bearing BALB/c mice. RESULTS The in vitro studies showed the equilibrium dissociation constant of 68Ga-DOTA-DTBP-3 for TIGIT was 84.21 nM and its radiochemistry purity was 89.24 ± 1.82% in FBS at 4 h in room temperature. The results of micro-PET, biodistribution and immunohistochemistry studies indicated that 68Ga-DOTA-DTBP-3 could be specifically targeted in 4T1 tumor-bearing mice, with a highest uptake at 0.5 h. CONCLUSION 68Ga-DOTA-DTBP-3 holds potential for non-invasively detect tumor TIGIT expression and for timely assessment of the therapeutic effect of immune checkpoint blockade.
Collapse
Affiliation(s)
- Dinghu Weng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Rong Guo
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430000, Hubei, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430000, Hubei, China
| | - Yu Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430000, Hubei, China
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430000, Hubei, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), SunYat-Sen University, Shenzhen, 518107, Guangdong, China
| |
Collapse
|
44
|
Xie S, He J, Feng B, Rao D, Wang S, He Y. A potential biological signature of 7-methylguanosine-related lncRNA to predict the immunotherapy effects in bladder cancer. Heliyon 2023; 9:e15897. [PMID: 37215925 PMCID: PMC10199227 DOI: 10.1016/j.heliyon.2023.e15897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Bladder urothelial carcinoma (BLCA) is the second prevalent genitourinary carcinoma globally. N7-methylguanosine (m7G) is important for tumorigenesis and progression. This study aimed to build a predictive model for m7G-related long non-coding RNAs (lncRNAs), elucidate their role in the tumor immune microenvironment (TIME), and predict immunotherapy response in BLCA. METHODS We first used univariate Cox regression and coexpression analyses to identify m7G-related lncRNAs. Next, the prognostic model was built by utilizing LASSO regression analysis. Then, the prognostic significance of the model was examined utilizing Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves, nomogram, and univariate, multivariate Cox regression. We also analyzed Gene set enrichment analyses (GSEA), immune analysis and principal component analysis (PCA) in risk groups. To further predict immunotherapy effectiveness, we evaluated the predictive ability for immunotherapy in 2 risk groups and clusters using tumor immune dysfunction and exclusion (TIDE) score and Immunophenoscore (IPS). RESULTS Seven lncRNAs related to m7G were used to create a model. The calibration plots for the model suggested a strong fit with the prediction of overall survival (OS). The area under the curve (AUC) for first, second, and third years was respectively, 0.722, 0.711, and 0.686. In addition, the risk score had strong correlation with TIME features and genes linked to immune checkpoint blockade (ICB). TIDE scores were dramatically different between two risk groups (p < 0.05), and IPS scores were markedly different between two clusters (p < 0.05). CONCLUSION Our research constructed a novel m7G-related lncRNAs that could be used to predict patient outcomes and the effectiveness of immunotherapy in BLCA. Immunotherapy may be more effective for the low-risk group and cluster 2.
Collapse
Affiliation(s)
- Shangxun Xie
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, People's Republic of China
| | - Jibao He
- Department of Urology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province 210028, People's Republic of China
| | - Baofu Feng
- Nanjing Medical University, Nanjing, Jiangsu Province 210028, People's Republic of China
| | - Dapang Rao
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, People's Republic of China
| | - Shuaibin Wang
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, People's Republic of China
| | - Youhua He
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, People's Republic of China
| |
Collapse
|
45
|
Xie S, He J, Feng B, Rao D, Wang S, He Y. A potential biological signature of 7-methylguanosine-related lncRNA to predict the immunotherapy effects in bladder cancer. Heliyon 2023; 9:e15897. [PMID: 37215925 DOI: 10.1016/j.heliyon.2023.e15897.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 10/31/2024] Open
Abstract
BACKGROUND Bladder urothelial carcinoma (BLCA) is the second prevalent genitourinary carcinoma globally. N7-methylguanosine (m7G) is important for tumorigenesis and progression. This study aimed to build a predictive model for m7G-related long non-coding RNAs (lncRNAs), elucidate their role in the tumor immune microenvironment (TIME), and predict immunotherapy response in BLCA. METHODS We first used univariate Cox regression and coexpression analyses to identify m7G-related lncRNAs. Next, the prognostic model was built by utilizing LASSO regression analysis. Then, the prognostic significance of the model was examined utilizing Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves, nomogram, and univariate, multivariate Cox regression. We also analyzed Gene set enrichment analyses (GSEA), immune analysis and principal component analysis (PCA) in risk groups. To further predict immunotherapy effectiveness, we evaluated the predictive ability for immunotherapy in 2 risk groups and clusters using tumor immune dysfunction and exclusion (TIDE) score and Immunophenoscore (IPS). RESULTS Seven lncRNAs related to m7G were used to create a model. The calibration plots for the model suggested a strong fit with the prediction of overall survival (OS). The area under the curve (AUC) for first, second, and third years was respectively, 0.722, 0.711, and 0.686. In addition, the risk score had strong correlation with TIME features and genes linked to immune checkpoint blockade (ICB). TIDE scores were dramatically different between two risk groups (p < 0.05), and IPS scores were markedly different between two clusters (p < 0.05). CONCLUSION Our research constructed a novel m7G-related lncRNAs that could be used to predict patient outcomes and the effectiveness of immunotherapy in BLCA. Immunotherapy may be more effective for the low-risk group and cluster 2.
Collapse
Affiliation(s)
- Shangxun Xie
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, People's Republic of China
| | - Jibao He
- Department of Urology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province 210028, People's Republic of China
| | - Baofu Feng
- Nanjing Medical University, Nanjing, Jiangsu Province 210028, People's Republic of China
| | - Dapang Rao
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, People's Republic of China
| | - Shuaibin Wang
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, People's Republic of China
| | - Youhua He
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, People's Republic of China
| |
Collapse
|
46
|
Pescia C, Pini G, Olmeda E, Ferrero S, Lopez G. TIGIT in Lung Cancer: Potential Theranostic Implications. Life (Basel) 2023; 13:life13041050. [PMID: 37109579 PMCID: PMC10145071 DOI: 10.3390/life13041050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
TIGIT (T cell immunoreceptor with Ig and ITIM domains) is a co-inhibitory receptor expressed on various immune cells, including T cells, NK cells, and dendritic cells. TIGIT interacts with different ligands, such as CD155 and CD112, which are highly expressed on cancer cells, leading to the suppression of immune responses. Recent studies have highlighted the importance of TIGIT in regulating immune cell function in the tumor microenvironment and its role as a potential therapeutic target, especially in the field of lung cancer. However, the role of TIGIT in cancer development and progression remains controversial, particularly regarding the relevance of its expression both in the tumor microenvironment and on tumor cells, with prognostic and predictive implications that remain to date essentially undisclosed. Here, we provide a review of the recent advances in TIGIT-blockade in lung cancer, and also insights on TIGIT relevance as an immunohistochemical biomarker and its possible theranostic implications.
Collapse
Affiliation(s)
- Carlo Pescia
- Pathology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Giuditta Pini
- Pathology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Edoardo Olmeda
- Pathology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefano Ferrero
- Pathology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Gianluca Lopez
- Pathology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| |
Collapse
|
47
|
Lin Y, Zhang R, Pan H, Li Y. A Novel Immune-Related Signature to Predict Prognosis and Immune Infiltration of Cervical Cancer. Med Sci Monit 2023; 29:e938660. [PMID: 36973995 PMCID: PMC10066621 DOI: 10.12659/msm.938660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Cervical cancer is one of the most common malignances among women globally. This study aimed to construct a novel immune-related signature to predict the prognosis and immune infiltration of cervical cancer. MATERIAL AND METHODS Transcriptomic profiles and corresponding clinical information of cervical cancer patients were obtained from The Cancer Genome Atlas (TCGA) database and GEO database. The hub immune-related genes were screened and selected using Cox regression analysis and LASSO regression analysis. A novel signature was established based on the expression levels and corresponding coefficients of the selected hub immune-related genes. Kaplan-Meier survival curve and ROC curve illustrated the prognostic value of this novel signature in cervical cancer. The predictive accuracy and stability of this novel signature were confirmed in the validation cohort, internal testing set and external testing set. Then, a nomogram was constructed to predict individual survival probability of cervical cancer patient. The association between the risk scores of novel signature and immune infiltration was investigated through single-sample gene set enrichment analysis (ssGSEA). RESULTS Ten hub immune-related genes (TFRC, SPP1, CAMP, CSF2, TUBB3, ZAP70, CHIT1, LEPR, DLL4, and DES) were selected to construct a novel signature. The risk score of this novel signature could be an independent prognostic factor in cervical cancer, which divided patients into high-risk and low-risk groups. The patients in high-risk groups showed significantly worse overall survival rates than those in low-risk groups in all training and validation cohorts (all P<0.05). A nomogram model was constructed based on the risk score of the novel signature and other clinical characteristics, which achieved the highest clinical net benefit across the entire range of reasonable threshold probabilities (concordance index=0.813). Furthermore, gene enrichment analysis revealed that the novel signature was closely related with immunology. The novel signature was negatively correlated with the infiltration of most immune cell types, especially T cell subsets (P<0.001). CONCLUSIONS The novel signature could comprehensively predict the prognosis and immune infiltration of cervical cancer. It may provide new insights for the precise treatment in cervical cancer.
Collapse
Affiliation(s)
- Yun Lin
- Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, PR China
| | - Rendong Zhang
- Breast Center, Surgical Oncology Session No. 1, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, PR China
| | - Hongchao Pan
- Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, PR China
| | - Yaochen Li
- Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, PR China
| |
Collapse
|
48
|
Babl N, Hofbauer J, Matos C, Voll F, Menevse AN, Rechenmacher M, Mair R, Beckhove P, Herr W, Siska PJ, Renner K, Kreutz M, Schnell A. Low-density lipoprotein balances T cell metabolism and enhances response to anti-PD-1 blockade in a HCT116 spheroid model. Front Oncol 2023; 13:1107484. [PMID: 36776340 PMCID: PMC9911890 DOI: 10.3389/fonc.2023.1107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction The discovery of immune checkpoints and the development of their specific inhibitors was acclaimed as a major breakthrough in cancer therapy. However, only a limited patient cohort shows sufficient response to therapy. Hence, there is a need for identifying new checkpoints and predictive biomarkers with the objective of overcoming immune escape and resistance to treatment. Having been associated with both, treatment response and failure, LDL seems to be a double-edged sword in anti-PD1 immunotherapy. Being embedded into complex metabolic conditions, the impact of LDL on distinct immune cells has not been sufficiently addressed. Revealing the effects of LDL on T cell performance in tumor immunity may enable individual treatment adjustments in order to enhance the response to routinely administered immunotherapies in different patient populations. The object of this work was to investigate the effect of LDL on T cell activation and tumor immunity in-vitro. Methods Experiments were performed with different LDL dosages (LDLlow = 50 μg/ml and LDLhigh = 200 μg/ml) referring to medium control. T cell phenotype, cytokines and metabolism were analyzed. The functional relevance of our findings was studied in a HCT116 spheroid model in the context of anti-PD-1 blockade. Results The key points of our findings showed that LDLhigh skewed the CD4+ T cell subset into a central memory-like phenotype, enhanced the expression of the co-stimulatory marker CD154 (CD40L) and significantly reduced secretion of IL-10. The exhaustion markers PD-1 and LAG-3 were downregulated on both T cell subsets and phenotypical changes were associated with a balanced T cell metabolism, in particular with a significant decrease of reactive oxygen species (ROS). T cell transfer into a HCT116 spheroid model resulted in a significant reduction of the spheroid viability in presence of an anti-PD-1 antibody combined with LDLhigh. Discussion Further research needs to be conducted to fully understand the impact of LDL on T cells in tumor immunity and moreover, to also unravel LDL effects on other lymphocytes and myeloid cells for improving anti-PD-1 immunotherapy. The reason for improved response might be a resilient, less exhausted phenotype with balanced ROS levels.
Collapse
Affiliation(s)
- Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Joshua Hofbauer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Carina Matos
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Florian Voll
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Ayse Nur Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Michael Rechenmacher
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ruth Mair
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Beckhove
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Peter J. Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Annette Schnell
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,*Correspondence: Annette Schnell,
| |
Collapse
|
49
|
Wu S, Ballah AK, Che W, Wang X. A Novel Cuprotosis-Related lncRNA Signature Effectively Predicts Prognosis in Glioma Patients. J Mol Neurosci 2023; 73:185-204. [PMID: 36705778 DOI: 10.1007/s12031-023-02102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023]
Abstract
Cuprotosis is a novel and different cell death mechanism from the existing known ones that can be used to explore new approaches to treating cancer. Just like ferroptosis and pyroptosis, cuprotosis-related genes regulate various types of tumorigenesis, invasion, and metastasis. However, the relationship between cuprotosis-related long non-coding RNA (cuprotosis-related lncRNA) in glioma development and prognosis has not been investigated. We obtained relevant data from the Genotype-Tissue Expression (GTEx), Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and published articles. First, we identified 365 cuprotosis-related lncRNAs based on 10 cuprotosis-related differential genes (|R2|> 0.4, p < 0.001). Then using Lasso and Cox regression analysis methods, 12 prognostic cuprotosis-related lncRNAs were obtained and constructed the CuLncSigi risk score formula. Our next step was to divide the tumor gliomas into two groups (high risk and low risk) based on the median risk score, and we found that patients in the high-risk group had a significantly worse prognosis. We used internal and external validation methods to simultaneously analyze and validate that the risk score model has good predictive power for patients with glioma. Next, we also performed enrichment analyses such as GSEA and aaGSEA and evaluated the relationship between immune-related drugs and tumor treatment. In conclusion, we successfully constructed a formula of cuprotosis-related lncRNAs with a powerful predictive function. More importantly, our study paves the way for exploring cuprotosis mechanisms in glioma occurrence and development and helps to find new relevant biomarkers for glioma early identification and diagnosis and to investigate new therapeutic approaches.
Collapse
Affiliation(s)
- Shuaishuai Wu
- First Affiliated Hospital, Department of Neurosurgery, Jinan University, Guangzhou, China
| | - Augustine K Ballah
- First Affiliated Hospital, Department of Neurosurgery, Jinan University, Guangzhou, China
| | - Wenqiang Che
- First Affiliated Hospital, Department of Neurosurgery, Jinan University, Guangzhou, China
| | - Xiangyu Wang
- First Affiliated Hospital, Department of Neurosurgery, Jinan University, Guangzhou, China.
| |
Collapse
|
50
|
The Cuproptosis-Related Long Noncoding RNA Signature Predicts Prognosis and Immune Cell Infiltration in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:9557690. [PMID: 36891559 PMCID: PMC9988371 DOI: 10.1155/2023/9557690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 03/02/2023]
Abstract
Background Hepatocellular carcinoma (HCC), ranking as one of the most common malignant tumors, is one of the leading causes of cancer death, with a poor prognosis. Cuproptosis, a novel programmed cell death modality that has just been confirmed recently, may play an important role in HCC prognosis. Long noncoding RNA (LncRNA) is a key participant in tumorigenesis and immune responses. It may be of great significance to predict HCC based on cuproptosis genes and their related LncRNA. Methods The sample data on HCC patients were obtained from The Cancer Genome Atlas (TCGA) database. Combined with cuproptosis-related genes collected from the literature search, expression analysis was carried out to find cuproptosis genes and their related LncRNAs significantly expressed in HCC. The prognostic model was constructed by least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression. The feasibility of these signature LncRNAs used for the evaluation of the overall survival rate in HCC patients as independent factors was investigated. The expression profile of cuproptosis, immune cell infiltration, and the status of somatic mutation were analyzed and compared. Results A prognostic model of HCC consisting of seven cuproptosis gene-related LncRNA signatures was constructed. Multiple verification methods have showed that this model can accurately predict the prognosis of HCC patients. It was showed that the classified high-risk group under the risk score of this model had worse survival status, more significant expression of the immune function, and higher mutation frequency. During the analysis, the cuproptosis gene CDKN2A was found to be most closely related to LncRNA DDX11-AS1 in the expression profile of HCC patients. Conclusion The cuproptosis-related signature LncRNA in HCC was identified, on the basis of which a model was constructed, and it was verified that it can be used to predict the prognosis of HCC patients. The potential role of these cuproptosis-related signature LncRNAs as new targets for disease therapy in antagonizing HCC development was discussed.
Collapse
|