1
|
Al-Omari AA, Cook KW, Symonds P, Skinner A, Wright A, Zhu Y, Coble VL, Mohammed OJ, Choudhury RH, Uddin N, Ranglani P, Parry A, Adams SE, Lynn GM, Durrant LG, Brentville VA. Modi-2 a vaccine stimulating CD4 responses to homocitrullinated self epitopes as therapy for solid cancers. NPJ Vaccines 2024; 9:236. [PMID: 39604380 PMCID: PMC11603156 DOI: 10.1038/s41541-024-01029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Stresses within the tumour microenvironment can mediate post-translational modifications of self-proteins. Homocitrullination is the conversion of lysine to homocitrulline which generates neoepitopes and bypasses self-tolerance. In this study a vaccine targeting homocitrullinated antigens was assessed for stimulation of anti-tumour immunity. Peptides that bind HLA are often hydrophobic which can complicate large scale manufacture and solubility. Here we demonstrate the self-assembling nanoparticle technology (SNAPvaxTM) to co-deliver four homocitrullinated peptides and adjuvant in nanoparticles of a precise size and composition as a vaccine ("Modi-2") that is optimized for manufacturing ease and T cell induction. Strong T cell responses and anti-tumour immunity in mouse tumour models was stimulated against against B16 melanoma (p = 0.0113), CT26 colorectal cancer (p < 0.0001) and 4T1 breast cancer (p = 0.0090). We demonstrate that human lung, colorectal, breast and prostate tumours express the Modi-2 target antigens and propose the Modi-2 vaccine has potential for translation into clinic in several cancer indications.
Collapse
Affiliation(s)
- Abdullah A Al-Omari
- Scancell Ltd; Bellhouse Building, Sanders Road, Oxford Science Park, Oxford, OX4 4GD, UK
| | - Katherine W Cook
- Scancell Ltd; Bellhouse Building, Sanders Road, Oxford Science Park, Oxford, OX4 4GD, UK
| | - Peter Symonds
- Scancell Ltd; Bellhouse Building, Sanders Road, Oxford Science Park, Oxford, OX4 4GD, UK
| | - Anne Skinner
- Scancell Ltd; Bellhouse Building, Sanders Road, Oxford Science Park, Oxford, OX4 4GD, UK
| | - Alissa Wright
- Scancell Ltd; Bellhouse Building, Sanders Road, Oxford Science Park, Oxford, OX4 4GD, UK
| | - Yaling Zhu
- Barinthus Biotherapeutics North America, Inc; 20400 Century Blvd, Suite 210, Germantown, MD, 20874, USA
| | - Vincent L Coble
- Barinthus Biotherapeutics North America, Inc; 20400 Century Blvd, Suite 210, Germantown, MD, 20874, USA
| | - Omar J Mohammed
- Scancell Ltd; Bellhouse Building, Sanders Road, Oxford Science Park, Oxford, OX4 4GD, UK
| | - Ruhul H Choudhury
- Scancell Ltd; Bellhouse Building, Sanders Road, Oxford Science Park, Oxford, OX4 4GD, UK
| | - Nazim Uddin
- Scancell Ltd; Bellhouse Building, Sanders Road, Oxford Science Park, Oxford, OX4 4GD, UK
| | - Priscilla Ranglani
- Scancell Ltd; Bellhouse Building, Sanders Road, Oxford Science Park, Oxford, OX4 4GD, UK
| | - Adrian Parry
- Scancell Ltd; Bellhouse Building, Sanders Road, Oxford Science Park, Oxford, OX4 4GD, UK
| | - Sally E Adams
- Scancell Ltd; Bellhouse Building, Sanders Road, Oxford Science Park, Oxford, OX4 4GD, UK
| | - Geoffrey M Lynn
- Barinthus Biotherapeutics North America, Inc; 20400 Century Blvd, Suite 210, Germantown, MD, 20874, USA
| | - Lindy G Durrant
- Scancell Ltd; Bellhouse Building, Sanders Road, Oxford Science Park, Oxford, OX4 4GD, UK.
| | - Victoria A Brentville
- Scancell Ltd; Bellhouse Building, Sanders Road, Oxford Science Park, Oxford, OX4 4GD, UK
| |
Collapse
|
2
|
Parvin A, Erabi G, Alemi A, Rezanezhad A, Maleksabet A, Sadeghpour S, Taheri-Anganeh M, Ghasemnejad-Berenji H. Seminal plasma proteomics as putative biomarkers for male infertility diagnosis. Clin Chim Acta 2024; 561:119757. [PMID: 38857670 DOI: 10.1016/j.cca.2024.119757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Male infertility represents a significant global public health issue that is currently emerging as a prominent research focus. Presently, laboratories adhere to the guidelines outlined by the World Health Organization (WHO) manuals for conducting routine semen analysis to diagnose male infertility. However, the accuracy of results in predicting sperm quality and fertility is limited because some individuals with a normal semen analysis report, an unremarkable medical history, and a physical examination may still experience infertility. As a result, the importance of employing more advanced techniques to investigate sperm function and male fertility in the treatment of male infertility and/or subfertility becomes apparent. The standard test for evaluating human semen has been improved by more complex tests that look at things like reactive oxygen species (ROS) levels, total antioxidant capacity (TAC), sperm DNA fragmentation levels, DNA compaction, apoptosis, genetic testing, and the presence and location of anti-sperm antibodies. Recent discoveries of novel biomarkers have significantly enriched our understanding of male fertility. Moreover, the notable biological diversity among samples obtained from the same individual complicates the efficacy of routine semen analysis. Therefore, unraveling the molecular mechanisms involved in fertilization is pivotal in expanding our understanding of factors contributing to male infertility. By understanding how these proteins work and what role they play in sperm activity, we can look at the expression profile in men who can't have children to find diagnostic biomarkers. This review examines the various sperm and seminal plasma proteins associated with infertility, as well as proteins that are either deficient or exhibit aberrant expression, potentially contributing to male infertility causes.
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Alemi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arman Rezanezhad
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Maleksabet
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics and Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Szczygieł A, Węgierek-Ciura K, Mierzejewska J, Wróblewska A, Rossowska J, Anger-Góra N, Szermer-Olearnik B, Świtalska M, Goszczyński TM, Pajtasz-Piasecka E. The modulation of local and systemic anti-tumor immune response induced by methotrexate nanoconjugate in murine MC38 colon carcinoma and B16 F0 melanoma tumor models. Am J Cancer Res 2023; 13:4623-4643. [PMID: 37970366 PMCID: PMC10636663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 11/17/2023] Open
Abstract
Methotrexate (MTX) which is one of the longest-used cytostatics, belongs to the group of antimetabolites and is used for treatment in different types of cancer as well as during autoimmune diseases. MTX can act as a modulator enable to create the optimal environment to generate the specific anti-tumor immune response. A novel system for MTX delivery is its conjugation with high-molecular-weight carriers such as hydroxyethyl starch (HES), a modified amylopectin-based polymer applied in medicine as a colloidal plasma volume expander. Such modification prolongs the plasma half-life of the HES-MTX nanoconjugate and improves the distribution of the drug in the body. In the current study, we focused on evaluating the dose-dependent therapeutic efficacy of chemotherapy with HES-MTX nanoconjugate compared to the free form of MTX, and examining the time-dependent changes in the local and systemic anti-tumor immune response induced by this therapy. To confirm the higher effectiveness of HES-MTX in comparison to MTX, we analyzed its action using murine MC38 colon carcinoma and B16 F0 melanoma tumor models. It was noted that HES-MTX at a dose of 20 mg/kg b.w. was more effective in tumor growth inhibition than MTX in both tumor models. One of the main differences between the two analyzed tumor models concerned the kinetics of the appearance of the immunomodulation. In MC38 tumors, the beneficial change in the tumor microenvironment (TME) landscape, manifested by the depletion of pro-tumor immune cells, and increased influx of cells with strong anti-tumor activity was noted already 3 days after HES-MTX administration, while in B16 F0 model, these changes occurred 10 days after the start of therapy. Thus, the immunomodulatory potential of the HES-MTX nanoconjugate may be closely related to the specific immune cell composition of the TME, which combined with additional treatment such as immunotherapies, would enhance the therapeutic potential of the nanoconjugate.
Collapse
Affiliation(s)
- Agnieszka Szczygieł
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Katarzyna Węgierek-Ciura
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Jagoda Mierzejewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Anna Wróblewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Joanna Rossowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Natalia Anger-Góra
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Marta Świtalska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Tomasz M Goszczyński
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Elżbieta Pajtasz-Piasecka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| |
Collapse
|
4
|
Shah S, Cook KW, Symonds P, Weißer J, Skinner A, Al Omari A, Paston SJ, Pike I, Durrant LG, Brentville VA. Vaccination with post-translational modified, homocitrullinated peptides induces CD8 T-cell responses that mediate antitumor immunity. J Immunother Cancer 2023; 11:e006966. [PMID: 37857526 PMCID: PMC10603355 DOI: 10.1136/jitc-2023-006966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Post-translational modification of proteins has the potential to alter the ability of T cells to recognize major histocompatibility complex (MHC) class -I and class-II restricted antigens, thereby resulting in altered immune responses. One such modification is carbamylation (homocitrullination) that results in the formation of homocitrulline (Hcit) residues in a non-enzymatic reaction of cyanate with the lysine residues in the polypeptide chain. Homocitrullination occurs in the tumor microenvironment and CD4-mediated immune responses to Hcit epitopes can target stressed tumor cells and provide a potent antitumor response in mouse models. METHODS Homocitrullinated peptides were identified and assessed in vitro for HLA-A2 binding and in vivo in human leukocyte antigen (HLA) transgenic mouse models for immunogenicity. CD8 responses were assessed in vitro for cytotoxicity and in vivo tumor therapy. Human tumor samples were analyzed by targeted mass spectrometry for presence of homocitrullinated peptides. RESULTS Homocitrullinated peptides from aldolase and cytokeratin were identified, that stimulated CD8-mediated responses in vivo. Modified peptides showed enhanced binding to HLA-A2 compared with the native sequences and immunization of HLA-A2 transgenic mice generated high avidity modification specific CD8 responses that killed peptide expressing target cells. Importantly, in vivo the homocitrullinated aldolase specific response was associated with efficient CD8 dependent antitumor therapy of the aggressive murine B16 tumor model indicating that this epitope is naturally presented in the tumor. In addition, the homocitrullinated aldolase epitope was also detected in human tumor samples. CONCLUSION This is the first evidence that homocitrullinated peptides can be processed and presented via MHC-I and targeted for tumor therapy. Thus, Hcit-specific CD8 T-cell responses have potential in the development of future anticancer therapy.
Collapse
Affiliation(s)
| | | | | | - Juliane Weißer
- Proteome Science R&D GmbH und Co, Frankfurt am Main, Hessen, Germany
| | | | | | | | - Ian Pike
- Proteome Science R&D GmbH und Co, Frankfurt am Main, Hessen, Germany
| | - Lindy G Durrant
- Scancell Ltd, Nottingham, UK
- University of Nottingham, Nottingham, UK
| | | |
Collapse
|
5
|
Roy R, Lorca C, Mulet M, Sánchez Milán JA, Baratas A, de la Casa M, Espinet C, Serra A, Gallart-Palau X. Altered ureido protein modification profiles in seminal plasma extracellular vesicles of non-normozoospermic men. Front Endocrinol (Lausanne) 2023; 14:1113824. [PMID: 37033249 PMCID: PMC10073716 DOI: 10.3389/fendo.2023.1113824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
INTRODUCTION Extracellular vesicles (EVs) have been recognized as key players in numerous physiological functions. These vesicles alter their compositions attuned to the health and disease states of the organism. In men, significant changes in the proteomic composition(s) of seminal plasma EVs (sEVs) have already been found to be related to infertility. METHODS Methods: In this study, we analyze the posttranslational configuration of sEV proteomes from normozoospermic (NZ) men and non-normozoospermic (non-NZ) men diagnosed with teratozoospermia and/or asthenozoospermia by unbiased, discovery-driven proteomics and advanced bioinformatics, specifically focusing on citrulline (Cit) and homocitrulline (hCit) posttranscriptional residues, both considered product of ureido protein modifications. RESULTS AND DISCUSSION Significant increase in the proteome-wide cumulative presence of hCit together with downregulation of Cit in specific proteins related to decisive molecular functions have been encountered in sEVs of non-NZ subjects. These findings identify novel culprits with a higher chance of affecting fundamental aspects of sperm functional quality and define potential specific diagnostic and prognostic non-invasive markers for male infertility.
Collapse
Affiliation(s)
- Rosa Roy
- Department of Biology, Genetics Unit, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Cristina Lorca
- Biomedical Research Institute of Lleida (IRBLLEIDA), +Pec Proteomics Research Group (+PPRG), Neuroscience Area, University Hospital Arnau de Vilanova (HUAV), Lleida, Spain
- IMDEA-Food Research Institute, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, Madrid, Spain
| | - María Mulet
- Biomedical Research Institute of Lleida (IRBLLEIDA), +Pec Proteomics Research Group (+PPRG), Neuroscience Area, University Hospital Arnau de Vilanova (HUAV), Lleida, Spain
- IMDEA-Food Research Institute, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, Madrid, Spain
| | - José Antonio Sánchez Milán
- Biomedical Research Institute of Lleida (IRBLLEIDA), +Pec Proteomics Research Group (+PPRG), Neuroscience Area, University Hospital Arnau de Vilanova (HUAV), Lleida, Spain
| | - Alejandro Baratas
- Department of Biology, Genetics Unit, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Moisés de la Casa
- Department of Biology, Genetics Unit, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- GINEFIV, Assisted Reproduction Centre, Madrid, Spain
| | - Carme Espinet
- Department of Medical Basic Sciences, University of Lleida (UdL), Lleida, Spain
| | - Aida Serra
- Biomedical Research Institute of Lleida (IRBLLEIDA), +Pec Proteomics Research Group (+PPRG), Neuroscience Area, University Hospital Arnau de Vilanova (HUAV), Lleida, Spain
- IMDEA-Food Research Institute, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, Madrid, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), Lleida, Spain
- *Correspondence: Aida Serra, ; Xavier Gallart-Palau,
| | - Xavier Gallart-Palau
- Biomedical Research Institute of Lleida (IRBLLEIDA), +Pec Proteomics Research Group (+PPRG), Neuroscience Area, University Hospital Arnau de Vilanova (HUAV), Lleida, Spain
- Department of Psychology, University of Lleida (UdL), Lleida, Spain
- *Correspondence: Aida Serra, ; Xavier Gallart-Palau,
| |
Collapse
|
6
|
Shah S, Al-Omari A, Cook KW, Paston SJ, Durrant LG, Brentville VA. What do cancer-specific T cells 'see'? DISCOVERY IMMUNOLOGY 2022; 2:kyac011. [PMID: 38567060 PMCID: PMC10917189 DOI: 10.1093/discim/kyac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 04/04/2024]
Abstract
Complex cellular interactions between the immune system and cancer can impact tumour development, growth, and progression. T cells play a key role in these interactions; however, the challenge for T cells is to recognize tumour antigens whilst minimizing cross-reactivity with antigens associated with healthy tissue. Some tumour cells, including those associated with viral infections, have clear, tumour-specific antigens that can be targeted by T cells. A high mutational burden can lead to increased numbers of mutational neoantigens that allow very specific immune responses to be generated but also allow escape variants to develop. Other cancer indications and those with low mutational burden are less easily distinguished from normal tissue. Recent studies have suggested that cancer-associated alterations in tumour cell biology including changes in post-translational modification (PTM) patterns may also lead to novel antigens that can be directly recognized by T cells. The PTM-derived antigens provide tumour-specific T-cell responses that both escape central tolerance and avoid the necessity for individualized therapies. PTM-specific CD4 T-cell responses have shown tumour therapy in murine models and highlight the importance of CD4 T cells as well as CD8 T cells in reversing the immunosuppressive tumour microenvironment. Understanding which cancer-specific antigens can be recognized by T cells and the way that immune tolerance and the tumour microenvironment shape immune responses to cancer is vital for the future development of cancer therapies.
Collapse
Affiliation(s)
- Sabaria Shah
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Abdullah Al-Omari
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Katherine W Cook
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Samantha J Paston
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Lindy G Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Victoria A Brentville
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| |
Collapse
|
7
|
Han J, Hu Y, Ding S, Liu S, Wang H. The analysis of the pyroptosis-related genes and hub gene TP63 ceRNA axis in osteosarcoma. Front Immunol 2022; 13:974916. [PMID: 36389801 PMCID: PMC9664215 DOI: 10.3389/fimmu.2022.974916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Pyroptosis is a type of programmed cell death that is associated with tumor development, prognosis, and therapeutic response. The significance of pyroptosis-related genes (PRGs) in the tumor microenvironment (TME) remains unclear. We examined the expression patterns of PRGs in 141 OS samples from two different datasets and characterized the genetic and transcriptional changes in PRGs. Based on these PRGs, all OS samples could be classified into two clusters. We discovered that multilayer PRG changes were linked to clinicopathological traits, prognosis, and TME characteristics in two separate genetic subtypes. The PRG score was then developed for predicting overall survival, and its predictive efficacy in OS patients was tested. As a result, we developed a very precise nomogram to improve the PRG-predictive model in clinical application. Furthermore, a competing endogenous RNA (ceRNA) network was built to find a LAMTOR5-AS1/hsa-miR-23a-3p/TP63 regulatory axis. Through experimental verification, it was found that the pyroptosis gene TP63 plays an important role in the regulation of osteosarcoma pyroptosis. The possible functions of PRGs in the TME, clinicopathological characteristics, and prognosis were established in our investigation of PRGs in OS. These findings may aid in our understanding of PRGs in OS as well as provide a novel way for prognostic evaluation and the creation of more effective immunotherapy treatments.
Collapse
Affiliation(s)
- Jun Han
- School of Graduates, Dalian Medical University, Dalian, China,Department of Orthopedics, Dalian Municipal Central Hospital, Dalian City, China
| | - Yunxiang Hu
- School of Graduates, Dalian Medical University, Dalian, China,Department of Orthopedics, Dalian Municipal Central Hospital, Dalian City, China
| | - Shengqiang Ding
- Department of Spine Surgery, The People’s Hospital of Liuyang City, Changsha, China
| | - Sanmao Liu
- School of Graduates, Dalian Medical University, Dalian, China,Department of Orthopedics, Dalian Municipal Central Hospital, Dalian City, China
| | - Hong Wang
- Department of Orthopedics, Dalian Municipal Central Hospital, Dalian City, China,*Correspondence: Hong Wang,
| |
Collapse
|
8
|
Cook K, Xue W, Atabani S, Symonds P, Al Omari A, Daniels I, Shah S, Choudhury RH, Weston D, Metheringham R, Brentville V, Durrant L. Vaccine Can Induce CD4-Mediated Responses to Homocitrullinated Peptides via Multiple HLA-Types and Confer Anti-Tumor Immunity. Front Immunol 2022; 13:873947. [PMID: 35464453 PMCID: PMC9028767 DOI: 10.3389/fimmu.2022.873947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Homocitrullination is the post translation modification (PTM) of the amino acid lysine to homocitrulline also referred to as carbamylation. This PTM has mainly been studied in relation to autoimmune diseases including rheumatoid arthritis. Homocitrullination of lysines alters their charge which can lead to generation of neoepitopes that are differentially presented by MHC-II and induce modification-specific immune responses. Homocitrullination is often considered a process which triggers autoimmune disease by bypassing self-tolerance however, we suggest that homocitrullination may also have an alternative role in immune responses including protection against cancer. Here we demonstrate that immune responses to homocitrullinated peptides from three different proteins can be induced via multiple HLA-types. Immunization of Balb/c or HLA-transgenic DR4 and DR1 mice can induce modification-specific CD4 mediated IFNγ responses. Healthy human donors show a clear repertoire for the homocitrullinated Vimentin peptide (Vim116-135Hcit), with modification-specific and oligoclonal responses. Importantly, in vivo homocitrulline specific Vim116-135Hcit,Cyk8 371-388Hcit and Aldo 140-157Hcit responses are able to confer an anti-tumor effect in the murine B16 melanoma model. The Vim116-135Hcit anti-tumor response was dependent upon tumor expression of MHC-II suggesting the direct recognition of PTMs on tumor is an important anti-tumor mechanism. Cancer patients also have a CD4 repertoire for Vim116-135Hcit. Together these results suggest that homocitrulline-specific immune responses can be generated in healthy mice and detected in human donors through a variety of HLA-restrictions. Immunization can induce responses to Vim116-135Hcit,Aldolase 140-157Hcit and Cyk8 371-388Hcit which provide anti-tumor therapy across several HLA-types. Our results advance our understanding of homocitrulline-specific immune responses, with implications for a number of fields beyond autoimmunity, including tumor immune surveillance.
Collapse
Affiliation(s)
- Katherine Cook
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Wei Xue
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Suha Atabani
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- The Cancer Vaccine Group, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Peter Symonds
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Abdullah Al Omari
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Ian Daniels
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Sabaria Shah
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Ruhul Hasan Choudhury
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Daisy Weston
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Rachael Metheringham
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Victoria Brentville
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Lindy Durrant
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- The Cancer Vaccine Group, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Lindy Durrant,
| |
Collapse
|
9
|
Zhang Y, He R, Lei X, Mao L, Jiang P, Ni C, Yin Z, Zhong X, Chen C, Zheng Q, Li D. A Novel Pyroptosis-Related Signature for Predicting Prognosis and Indicating Immune Microenvironment Features in Osteosarcoma. Front Genet 2021; 12:780780. [PMID: 34899864 PMCID: PMC8662937 DOI: 10.3389/fgene.2021.780780] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is a common malignant bone tumor with a propensity for drug resistance, recurrence, and metastasis. A growing number of studies have elucidated the dual role of pyroptosis in the development of cancer, which is a gasdermin-regulated novel inflammatory programmed cell death. However, the interaction between pyroptosis and the overall survival (OS) of osteosarcoma patients is poorly understood. This study aimed to construct a prognostic model based on pyroptosis-related genes to provide new insights into the prognosis of osteosarcoma patients. We identified 46 differentially expressed pyroptosis-associated genes between osteosarcoma tissues and normal control tissues. A total of six risk genes affecting the prognosis of osteosarcoma patients were screened to form a pyroptosis-related signature by univariate and LASSO regression analysis and verified using GSE21257 as a validation cohort. Combined with other clinical characteristics, including age, gender, and metastatic status, we found that the pyroptosis-related signature score, which we named “PRS-score,” was an independent prognostic factor for patients with osteosarcoma and that a low PRS-score indicated better OS and a lower risk of metastasis. The result of ssGSEA and ESTIMATE algorithms showed that a lower PRS-score indicated higher immune scores, higher levels of tumor infiltration by immune cells, more active immune function, and lower tumor purity. In summary, we developed and validated a pyroptosis-related signature for predicting the prognosis of osteosarcoma, which may contribute to early diagnosis and immunotherapy of osteosarcoma.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rong He
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Xuan Lei
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lianghao Mao
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Pan Jiang
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Guizhou Orthopedics Hospital, Guiyang, China
| | - Chenlie Ni
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyu Yin
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xinyu Zhong
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Chen
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University Zhenjiang, Guiyang, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University Zhenjiang, Guiyang, China.,Shenzhen Academy of Peptide Targeting Technology at Pingshan, and Shenzhen Tyercan Bio-Pharm Co., Ltd., Shenzhen, China
| | - Dapeng Li
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|