1
|
Ajoolabady A, Pratico D, Tang D, Zhou S, Franceschi C, Ren J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res Rev 2024; 101:102540. [PMID: 39395575 DOI: 10.1016/j.arr.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Age-related changes initiate a cascade of cellular and molecular alterations that lead to immune system dysfunction or abnormal activation, predisposing individuals to age-related diseases. This phenomenon, commonly referred to as immunosenescence, highlighting aging-associated progressive decline of the immune system. Moreover, mounting evidence suggests that immunosenescence contributes to a related pathological phenomenon known as inflammaging. Inflammaging refers to chronic, low-grade, and systemic inflammation associated with aging, occurring despite the absence of overt stimuli. In the body, inflammation is typically activated in response to overt stimuli such as bacterial/microbial invasion or a pathological state, however, inflammaging occurrence and its underpinning mechanisms seem to be independent and in the absence of such stimuli. Despite recent advancements in molecular characterization and the scrutiny of disease relevance, these two interconnected concepts have remained largely unexplored and unrecognized. In this comprehensive review, we aim to shed light on the mechanistic and cellular aspects of immunosenescence and inflammaging, as well as their pivotal roles in the pathogenesis of aging-related diseases, including cancer, infections, dementia, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuqin Zhou
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
2
|
Zhang F, Guo J, Yu S, Zheng Y, Duan M, Zhao L, Wang Y, Yang Z, Jiang X. Cellular senescence and metabolic reprogramming: Unraveling the intricate crosstalk in the immunosuppressive tumor microenvironment. Cancer Commun (Lond) 2024; 44:929-966. [PMID: 38997794 PMCID: PMC11492308 DOI: 10.1002/cac2.12591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
The intrinsic oncogenic mechanisms and properties of the tumor microenvironment (TME) have been extensively investigated. Primary features of the TME include metabolic reprogramming, hypoxia, chronic inflammation, and tumor immunosuppression. Previous studies suggest that senescence-associated secretory phenotypes that mediate intercellular information exchange play a role in the dynamic evolution of the TME. Specifically, hypoxic adaptation, metabolic dysregulation, and phenotypic shifts in immune cells regulated by cellular senescence synergistically contribute to the development of an immunosuppressive microenvironment and chronic inflammation, thereby promoting the progression of tumor events. This review provides a comprehensive summary of the processes by which cellular senescence regulates the dynamic evolution of the tumor-adapted TME, with focus on the complex mechanisms underlying the relationship between senescence and changes in the biological functions of tumor cells. The available findings suggest that components of the TME collectively contribute to the progression of tumor events. The potential applications and challenges of targeted cellular senescence-based and combination therapies in clinical settings are further discussed within the context of advancing cellular senescence-related research.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
- Department of Hepatobiliary and Pancreatic SurgeryPeking University First HospitalBeijingP. R. China
| | - Junchen Guo
- Department of RadiologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Shengmiao Yu
- Outpatient DepartmentThe Fourth Affiliated HospitalChina Medical UniversityShenyangLiaoningP. R. China
| | - Youwei Zheng
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Meiqi Duan
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Liang Zhao
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Yihan Wang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Zhi Yang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Xiaofeng Jiang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| |
Collapse
|
3
|
Schaubaecher JB, Smiljanov B, Haring F, Steiger K, Wu Z, Ugurluoglu A, Luft J, Ballke S, Mahameed S, Schneewind V, Hildinger J, Canis M, Mittmann LA, Braun C, Zuchtriegel G, Kaiser R, Nicolai L, Mack M, Weichert W, Lauber K, Uhl B, Reichel CA. Procoagulant platelets promote immune evasion in triple-negative breast cancer. Blood 2024; 144:216-226. [PMID: 38648571 DOI: 10.1182/blood.2023022928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
ABSTRACT Triple-negative breast cancer (TNBC) is an aggressive tumor entity in which immune checkpoint (IC) molecules are primarily synthesized in the tumor environment. Here, we report that procoagulant platelets bear large amounts of such immunomodulatory factors and that the presence of these cellular blood components in TNBC relates to protumorigenic immune-cell activity and impaired survival. Mechanistically, tumor-released nucleic acids attract platelets to the aberrant tumor microvasculature, where they undergo procoagulant activation, thus delivering specific stimulatory and inhibitory IC molecules. This concomitantly promotes protumorigenic myeloid leukocyte responses and compromises antitumorigenic lymphocyte activity, ultimately supporting tumor growth. Interference with platelet-leukocyte interactions prevented immune cell misguidance and suppressed tumor progression, nearly as effective as systemic IC inhibition. Hence, our data uncover a self-sustaining mechanism of TNBC by using platelets to misdirect immune-cell responses. Targeting this irregular multicellular interplay may represent a novel immunotherapeutic strategy for TNBC without the adverse effects of systemic IC inhibition.
Collapse
Affiliation(s)
- Johanna B Schaubaecher
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Bojan Smiljanov
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Florian Haring
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Katja Steiger
- Department of Pathology, Technical University Munich, Munich, Germany
| | - Zhengquan Wu
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Anais Ugurluoglu
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Joshua Luft
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Simone Ballke
- Department of Pathology, Technical University Munich, Munich, Germany
| | - Shaan Mahameed
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Vera Schneewind
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Jonas Hildinger
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Comprehensive Cancer Center, Munich Ludwig-Maximilians-Universität, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Laura A Mittmann
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Constanze Braun
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Gabriele Zuchtriegel
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Rainer Kaiser
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Medicine I, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Berlin, Germany
| | - Leo Nicolai
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Medicine I, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Berlin, Germany
| | - Matthias Mack
- Department of Nephrology, University of Regensburg, Regensburg, Germany
| | - Wilko Weichert
- Department of Pathology, Technical University Munich, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Bernd Uhl
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Christoph A Reichel
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Comprehensive Cancer Center, Munich Ludwig-Maximilians-Universität, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| |
Collapse
|
4
|
Jain SS, Burton Sojo G, Sun H, Friedland BN, McNamara ME, Schmidt MO, Wellstein A. The Role of Aging and Senescence in Immune Checkpoint Inhibitor Response and Toxicity. Int J Mol Sci 2024; 25:7013. [PMID: 39000121 PMCID: PMC11241020 DOI: 10.3390/ijms25137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Cellular senescence accumulates with age and has been shown to impact numerous physiological and pathological processes, including immune function. The role of cellular senescence in cancer is multifaceted, but the impact on immune checkpoint inhibitor response and toxicity has not been fully evaluated. In this review, we evaluate the impact of cellular senescence in various biological compartments, including the tumor, the tumor microenvironment, and the immune system, on immune checkpoint inhibitor efficacy and toxicity. We provide an overview of the impact of cellular senescence in normal and pathological contexts and examine recent studies that have connected aging and cellular senescence to immune checkpoint inhibitor treatment in both the pre-clinical and clinical contexts. Overall, senescence plays a multi-faceted, context-specific role and has been shown to modulate immune-related adverse event incidence as well as immune checkpoint inhibitor response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anton Wellstein
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (S.S.J.)
| |
Collapse
|
5
|
Källberg E, Mehmeti-Ajradini M, Björk Gunnarsdottir F, Göransson M, Bergenfelz C, Allaoui Fredriksson R, Hagerling C, Johansson ME, Welinder C, Jirström K, Leandersson K. AIRE is expressed in breast cancer TANs and TAMs to regulate the extrinsic apoptotic pathway and inflammation. J Leukoc Biol 2024; 115:664-678. [PMID: 38060995 DOI: 10.1093/jleuko/qiad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 04/02/2024] Open
Abstract
The autoimmune regulator (AIRE) is a transcriptional regulator expressed in the thymus and is necessary for maintaining immunological self-tolerance. Extrathymic AIRE expression is rare, and a role for AIRE in tumor-associated innate immune cells has not yet been established. In this study, we show that AIRE is expressed in human pro-tumor neutrophils. In breast cancer, AIRE was primarily located to tumor-associated neutrophils (TANs), and to a lesser extent to tumor-associated macrophages (TAMs) and tumor cells. Expression of AIRE in TAN/TAMs, but not in cancer cells, was associated with an adverse prognosis. We show that the functional role for AIRE in neutrophils and macrophages is to regulate expression of immune mediators and the extrinsic apoptotic pathway involving the Fas/TNFR death receptors and cathepsin G. Here, we propose that the role for AIRE in TAN/TAMs in breast tumors is to regulate cell death and inflammation, thus promoting tumor progression.
Collapse
Affiliation(s)
- Eva Källberg
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Meliha Mehmeti-Ajradini
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Frida Björk Gunnarsdottir
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Marcus Göransson
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Caroline Bergenfelz
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Roni Allaoui Fredriksson
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Catharina Hagerling
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Martin E Johansson
- Sahlgrenska Center for Cancer Research, Department of Biomedicine, Vasaparken Universitetsplatsen 1, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Charlotte Welinder
- Mass Spectrometry, Department for Clinical Sciences, Lund University, Sölvegatan 19, 221 84 Lund, Sweden
| | - Karin Jirström
- Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 19, 221 84 Lund, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| |
Collapse
|
6
|
Piro G, Carbone C, Agostini A, Esposito A, De Pizzol M, Novelli R, Allegretti M, Aramini A, Caggiano A, Granitto A, De Sanctis F, Ugel S, Corbo V, Martini M, Lawlor RT, Scarpa A, Tortora G. CXCR1/2 dual-inhibitor ladarixin reduces tumour burden and promotes immunotherapy response in pancreatic cancer. Br J Cancer 2023; 128:331-341. [PMID: 36385556 PMCID: PMC9902528 DOI: 10.1038/s41416-022-02028-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with few therapeutic options available. Despite immunotherapy has revolutionised cancer treatment, the results obtained in PDAC are still disappointing. Emerging evidence suggests that chemokines/CXCRs-axis plays a pivotal role in immune tumour microenvironment modulation, which may influence immunotherapy responsiveness. Here, we evaluated the effectiveness of CXCR1/2 inhibitor ladarixin, alone or in combination with anti-PD-1, against immunosuppression in PDAC. METHODS A set of preclinical models was obtained by engrafting mouse PDAC-derived cells into syngeneic immune-competent mice, as well as by orthotopically transplanting patient-derived PDAC tumour into human immune-system-reconstituted (HIR) mice (HuCD34-NSG-mice). Tumour-bearing mice were randomly assigned to receive vehicles, ladarixin, anti-PD-1 or drugs combination. RESULTS CXCR1/2 inhibition by ladarixin reverted in vitro tumour-mediated M2 macrophages polarisation and migration. Ladarixin as single agent reduced tumour burden in cancer-derived graft (CDG) models with high-immunogenic potential and increased the efficacy of ICI in non-immunogenic CDG-resistant models. In a HIR mouse model bearing the immunogenic subtype of human PDAC, ladarixin showed high efficacy increasing the antitumor effect of anti-PD-1. CONCLUSION Ladarixin in combination with anti-PD-1 might represent an extremely effective approach for the treatment of immunotherapy refractory PDAC, allowing pro-tumoral to immune-permissive microenvironment conversion.
Collapse
Affiliation(s)
- Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Annachiara Esposito
- Medical Oncology, Department of Medical and Surgical Sciences Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | | | - Rubina Novelli
- Dompé Farmaceutici S.p.A., Via Santa Lucia 6, Milan, Italy
| | | | - Andrea Aramini
- Dompé Farmaceutici S.p.A., Via Santa Lucia 6, Milan, Italy
| | - Alessia Caggiano
- Medical Oncology, Department of Medical and Surgical Sciences Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Alessia Granitto
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Maurizio Martini
- Division of Anatomic Pathology and Histology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Rita Teresa Lawlor
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Giampaolo Tortora
- Medical Oncology, Department of Medical and Surgical Sciences Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy.
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy.
| |
Collapse
|
7
|
Sounbuli K, Mironova N, Alekseeva L. Diverse Neutrophil Functions in Cancer and Promising Neutrophil-Based Cancer Therapies. Int J Mol Sci 2022; 23:ijms232415827. [PMID: 36555469 PMCID: PMC9779721 DOI: 10.3390/ijms232415827] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils represent the most abundant cell type of leukocytes in the human blood and have been considered a vital player in the innate immune system and the first line of defense against invading pathogens. Recently, several studies showed that neutrophils play an active role in the immune response during cancer development. They exhibited both pro-oncogenic and anti-tumor activities under the influence of various mediators in the tumor microenvironment. Neutrophils can be divided into several subpopulations, thus contradicting the traditional concept of neutrophils as a homogeneous population with a specific function in the innate immunity and opening new horizons for cancer therapy. Despite the promising achievements in this field, a full understanding of tumor-neutrophil interplay is currently lacking. In this review, we try to summarize the current view on neutrophil heterogeneity in cancer, discuss the different communication pathways between tumors and neutrophils, and focus on the implementation of these new findings to develop promising neutrophil-based cancer therapies.
Collapse
Affiliation(s)
- Khetam Sounbuli
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-383-363-51-61
| | - Ludmila Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Wu F, Chen J, Yao K, Fan D, Wang M, Liu Y, Xin S, Sun Z, Li S, Sun Y, Liu Q. The Infiltration of Neutrophil Granulocytes Due to Loss of PTEN Was Associated with Poor Response to Immunotherapy in Renal Cell Carcinoma. J Inflamm Res 2022; 15:6553-6567. [PMID: 36510494 PMCID: PMC9738981 DOI: 10.2147/jir.s388990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction A primary impediment to the efficacy of immune checkpoint inhibitors is the lack of biomarkers for therapeutic responses and prognosis. Although patients with clear cell renal cell carcinoma (ccRCC) could be precisely selected for targeted therapy based on somatic mutations, it remains controversial to choose the suitable patients with a high response rate to immune checkpoint inhibitors (ICIs). The immune-dependent roles of tumor suppressor PTEN in the formation of tumor immune microenvironment remain elusive. Methods We comprehensively analyzed the genomic and transcriptomic data from multiple ccRCC datasets, including bulk-RNA sequencing and single-cell RNA sequencing data. In vitro, immunoblotting, qRT-PCR, and RNA sequencing were conducted in ccRCC cell lines upon PTEN depletion. Gene ontology and gene set enrichment analysis were performed to screen the critical pathway and molecules in response to PTEN deletion. Immunohistochemistry staining and further bioinformatic analysis were used to validate our data. Results Based on multi-omics analysis of public datasets of renal cancer, the frequently mutated or deleted PTEN was found to be correlated with a suppressive tumor immune microenvironment in ccRCC. Furthermore, we depleted PTEN via CRISPR-Cas9 in Caki-1 cells, which led to the upregulation of multiple neutrophil chemokines, particularly CXCL1, CXCL2, CXCL5, CXCL6, and CXCL8. The roles of neutrophil chemokines and neutrophil markers were further validated and investigated for the association with prognosis in vitro, clinical samples, and the publicly available databases. The expression of CXCL1, CXCL8, and neutrophil markers, S100A9 and BCL2A1, were significantly associated with a poor immunotherapy-related prognosis in public dataset of renal cancer patients receiving ICIs treatment. Conclusion These results add a new layer to understanding the association between PTEN status and the role of neutrophil infiltration in ccRCC. Moreover, our findings propose low expression of PTEN as candidate factor of resistance to anti-PD-1-based immunotherapy in ccRCC.
Collapse
Affiliation(s)
- Fei Wu
- Department of Urology, the First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250014, People’s Republic of China,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China,Department of Urology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Jie Chen
- Department of Urology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People’s Republic of China
| | - Kang Yao
- Department of Urology, the First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250014, People’s Republic of China
| | - Daming Fan
- Department of Pathology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People’s Republic of China
| | - Minglei Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Yongjun Liu
- Department of Urology, the First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250014, People’s Republic of China
| | - Shouhu Xin
- Department of Urology, the First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250014, People’s Republic of China
| | - Zeqiang Sun
- Department of Urology, the First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250014, People’s Republic of China
| | - Shun Li
- Department of Urology, the First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250014, People’s Republic of China
| | - Yang Sun
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China,Correspondence: Yang Sun; Qingyong Liu, Email ;
| | - Qingyong Liu
- Department of Urology, the First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250014, People’s Republic of China
| |
Collapse
|
9
|
Crippa M, Talò G, Lamouline A, Bolis S, Arrigoni C, Bersini S, Moretti M. A microfluidic model of human vascularized breast cancer metastasis to bone for the study of neutrophil-cancer cell interactions. Mater Today Bio 2022; 17:100460. [PMID: 36278146 PMCID: PMC9583110 DOI: 10.1016/j.mtbio.2022.100460] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
The organ-specific metastatization of breast cancer to bone is driven by specific interactions between the host microenvironment and cancer cells (CCs). However, it is still unclear the role that circulating immune cells, including neutrophils, play during bone colonization (i.e. pro-tumoral vs. anti-tumoral). Here, we aimed at analyzing the migratory behavior of neutrophils when exposed to breast CCs colonizing the bone and their contribution to the growth of breast cancer micrometastases. Based on our previous bone metastasis models, we designed a microfluidic system that allows to independently introduce human vascularized breast cancer metastatic seeds within a bone-mimicking microenvironment containing osteo-differentiated mesenchymal stromal cells and endothelial cells (ECs). ECs self-assembled into microvascular networks and connected the bone-mimicking microenvironment with the metastatic seed. Compared to controls without CCs, metastatic seeds compromised the architecture of microvascular networks resulting in a lower number of junctions (5.7 ± 1.2 vs. 18.8 ± 4.5, p = 0.025) and shorter network length (10.5 ± 1.0 vs. 13.4 ± 0.8 [mm], p = 0.042). Further, vascular permeability was significantly higher with CCs (2.60 × 10-8 ± 3.59 × 10-8 vs. 0.53 × 10-8 ± 0.44 × 10-8 [cm/s], p = 0.05). Following metastatic seed maturation, neutrophils were injected into microvascular networks resulting in a higher extravasation rate when CCs were present (27.9 ± 13.7 vs. 14.7 ± 12.4 [%], p = 0.01). Strikingly, the percentage of dying CCs increased in presence of neutrophils, as confirmed by confocal imaging and flow cytometry on isolated cells from the metastatic seeds. The biofabricated metastatic niche represents a powerful tool to analyze the mechanisms of interaction between circulating immune cells and organ-specific micrometastases and to test novel drug combinations targeting the metastatic microenvironment.
Collapse
Affiliation(s)
- Martina Crippa
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland,Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, 6900, Lugano, Switzerland,Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Giuseppe Talò
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Anaïs Lamouline
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland,Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, 6900, Lugano, Switzerland,Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Sara Bolis
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland
| | - Chiara Arrigoni
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland,Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, 6900, Lugano, Switzerland,Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900, Lugano, Switzerland
| | - Simone Bersini
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland,Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, 6900, Lugano, Switzerland,Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900, Lugano, Switzerland,Corresponding author. Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland.
| | - Matteo Moretti
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland,Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, 6900, Lugano, Switzerland,Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy,Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900, Lugano, Switzerland,Corresponding author. Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland.
| |
Collapse
|
10
|
Genkel V, Dolgushin I, Baturina I, Savochkina A, Nikushkina K, Minasova A, Pykhova L, Sumerkina V, Kuznetsova A, Shaposhnik I. Circulating Ageing Neutrophils as a Marker of Asymptomatic Polyvascular Atherosclerosis in Statin-Naïve Patients without Established Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms231710195. [PMID: 36077592 PMCID: PMC9456564 DOI: 10.3390/ijms231710195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Current data on the possible involvement of aging neutrophils in atherogenesis are limited. This study aimed to research the diagnostic value of aging neutrophils in their relation to subclinical atherosclerosis in statin-naïve patients without established atherosclerotic cardiovascular diseases (ASCVD). Methods: The study was carried out on 151 statin-naïve patients aged 40–64 years old without ASCVD. All patients underwent duplex scanning of the carotid arteries, lower limb arteries and abdominal aorta. Phenotyping and differentiation of neutrophil subpopulations were performed through flow cytometry (Navios 6/2, Beckman Coulter, USA). Results: The number of CD62LloCXCR4hi-neutrophils is known to be significantly higher in patients with subclinical atherosclerosis compared with patients without atherosclerosis (p = 0.006). An increase in the number of CD62LloCXCR4hi-neutrophils above cut-off values makes it possible to predict atherosclerosis in at least one vascular bed with sensitivity of 35.4–50.5% and specificity of 80.0–92.1%, in two vascular beds with sensitivity of 44.7–84.4% and specificity of 80.8–33.3%. Conclusion: In statin-naïve patients 40–64 years old without established ASCVD with subclinical atherosclerosis, there is an increase in circulating CD62LloCXCR4hi-neutrophils. It was also concluded that the increase in the number of circulating CD62LloCXCR4hi-neutrophils demonstrated moderate diagnostic efficiency (AUC 0.617–0.656) in relation to the detection of subclinical atherosclerosis, including polyvascular atherosclerosis.
Collapse
|
11
|
Hadjigol S, Shah BA, O’Brien-Simpson NM. The 'Danse Macabre'-Neutrophils the Interactive Partner Affecting Oral Cancer Outcomes. Front Immunol 2022; 13:894021. [PMID: 35784290 PMCID: PMC9243430 DOI: 10.3389/fimmu.2022.894021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Over the past few decades, tremendous advances in the prevention, diagnosis, and treatment of cancer have taken place. However for head and neck cancers, including oral cancer, the overall survival rate is below 50% and they remain the seventh most common malignancy worldwide. These cancers are, commonly, aggressive, genetically complex, and difficult to treat and the delay, which often occurs between early recognition of symptoms and diagnosis, and the start of treatment of these cancers, is associated with poor prognosis. Cancer development and progression occurs in concert with alterations in the surrounding stroma, with the immune system being an essential element in this process. Despite neutrophils having major roles in the pathology of many diseases, they were thought to have little impact on cancer development and progression. Recent studies are now challenging this notion and placing neutrophils as central interactive players with other immune and tumor cells in affecting cancer pathology. This review focuses on how neutrophils and their sub-phenotypes, N1, N2, and myeloid-derived suppressor cells, both directly and indirectly affect the anti-tumor and pro-tumor immune responses. Emphasis is placed on what is currently known about the interaction of neutrophils with myeloid innate immune cells (such as dendritic cells and macrophages), innate lymphoid cells, natural killer cells, and fibroblasts to affect the tumor microenvironment and progression of oral cancer. A better understanding of this dialog will allow for improved therapeutics that concurrently target several components of the tumor microenvironment, increasing the possibility of constructive and positive outcomes for oral cancer patients. For this review, PubMed, Web of Science, and Google Scholar were searched for manuscripts using keywords and combinations thereof of "oral cancer, OSCC, neutrophils, TANs, MDSC, immune cells, head and neck cancer, and tumor microenvironment" with a focus on publications from 2018 to 2021.
Collapse
Affiliation(s)
- Sara Hadjigol
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| | | | - Neil M. O’Brien-Simpson
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|