1
|
Bae SU, Lee HW, Park JY, Seo I, Cho JM, Kim JY, Lee JY, Lee YJ, Baek SK, Kim NK, Byun SJ, Kim S. Neoadjuvant chemoradiotherapy up-regulates PD-L1 in radioresistant colorectal cancer. Clin Transl Radiat Oncol 2025; 51:100906. [PMID: 39811542 PMCID: PMC11732604 DOI: 10.1016/j.ctro.2024.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Background Combining radiotherapy (RT) with immune checkpoint inhibitors (ICIs) is a promising strategy that can enhance the therapeutic efficacy of ICIs. However, little is known about RT-induced changes in the expression of immune checkpoints, such as PD-L1, and their clinical implications in colorectal cancer (CRC). This study aimed to investigate the association between responsiveness to RT and changes in PD-L1 expression in human CRC tissue and cell lines. Methods Tissue specimens from preoperative biopsy via sigmoidoscopy and surgical resection were obtained from 24 patients with locally advanced rectal cancer (LARC) who underwent neoadjuvant chemoradiation therapy (CRT) between August 2016 and December 2017. Immunohistochemistry for PD-L1 in formalin-fixed paraffin-embedded tissue was performed from the endoscopic biopsy and surgical specimens. RNA sequencing was performed using 11 pairs of human LARC tissues before and after irradiation. After exposing human CRC cells to radiation, we investigated changes in the expression levels of PD-L1 and its regulatory signaling pathways. Results Patients were classified by tumor regression grade into responders (grade 2; 9 patients, 37.5 %) and non-responders (grades 3, 4, or 5; 15 patients, 62.5 %). In the non-responder group, 13 patients had low PD-L1 expression, but neoadjuvant CRT increased PD-L1 expression in 7 patients (53.9 %) (McNemar's test, p=0.034). CRT up-regulated PD-L1 in non-responder LARC tissues. Similarly, radiation increased PD-L1 in radioresistant DLD-1 cells more than in radiosensitive HCT116 cells, also affecting PD-L1-regulating genes and immune checkpoints in CRC cells. Conventional fractionated radiation treatment further increased PD-L1 in DLD-1 cells compared to HCT116 cells. Conclusions This study demonstrated that radiation induces an increase in PD-L1 expression, which is more pronounced in radioresistant CRC, proving the theoretical framework for a combined treatment strategy with a PD-L1 blockade for locally advanced rectal cancer.
Collapse
Affiliation(s)
- Sung Uk Bae
- Department of Surgery, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
- Department of Medicine, The Graduate School, Yonsei University, Seoul, Republic of Korea
- Institute of Medical Science & Institute for Cancer Research, Keimyung University, Daegu, Republic of Korea
| | - Hye Won Lee
- Institute of Medical Science & Institute for Cancer Research, Keimyung University, Daegu, Republic of Korea
- Department of Pathology, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
| | - Jee Young Park
- Department of Surgery, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
- Department of Pathology, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
- Department of Radiation Oncology, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Incheol Seo
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jae-Min Cho
- Department of Surgery, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
- Department of Pathology, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
| | - Jin Young Kim
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
| | - Ju Yup Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
| | - Yoo Jin Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
| | - Seong Kyu Baek
- Department of Surgery, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
| | - Nam Kyu Kim
- Division of Colorectal Surgery, Department of Surgery, Severance Hospital, Colorectal Cancer Clinic, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Jun Byun
- Institute of Medical Science & Institute for Cancer Research, Keimyung University, Daegu, Republic of Korea
- Department of Radiation Oncology, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
| | - Shin Kim
- Institute of Medical Science & Institute for Cancer Research, Keimyung University, Daegu, Republic of Korea
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Roerden M, Spranger S. Cancer immune evasion, immunoediting and intratumour heterogeneity. Nat Rev Immunol 2025:10.1038/s41577-024-01111-8. [PMID: 39748116 DOI: 10.1038/s41577-024-01111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Cancers can avoid immune-mediated elimination by acquiring traits that disrupt antitumour immunity. These mechanisms of immune evasion are selected and reinforced during tumour evolution under immune pressure. Some immunogenic subclones are effectively eliminated by antitumour T cell responses (a process known as immunoediting), which results in a clonally selected tumour. Other cancer cells arise to resist immunoediting, which leads to a tumour that includes several distinct cancer cell populations (referred to as intratumour heterogeneity (ITH)). Tumours with high ITH are associated with poor patient outcomes and a lack of responsiveness to immune checkpoint blockade therapy. In this Review, we discuss the different ways that cancer cells evade the immune system and how these mechanisms impact immunoediting and tumour evolution. We also describe how subclonal antigen presentation in tumours with high ITH can result in immune evasion.
Collapse
Affiliation(s)
- Malte Roerden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute for Technology, Cambridge, MA, USA.
- Ragon Institute of Mass General Hospital, Massachusetts Institute for Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Kondaboina S, Parrish O, Parada CA, Ferreira M. Whole Exome Sequencing of Intracranial Epidermoid Cysts Reveals Immune-Associated Mechanistic and Potential Targets. Cancers (Basel) 2024; 16:3487. [PMID: 39456581 PMCID: PMC11506683 DOI: 10.3390/cancers16203487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Intracranial Epidermoid Cysts (IECs) are rare intracranial tumors primarily treated through surgery. Cyst adherence complicates complete removal, leading to high rates of tumor progression after subtotal resection. The molecular drivers of IEC remain unknown. Consequently, advances in treatment have fallen short. Tumor genetic profiling has revealed potential targets for drug development, including FDA-approved options and reshaping treatment. The genetic landscape of IECs has not been explored. We applied Whole Exome Sequencing (WES) to IECs to gain insights into the mechanisms of oncogenesis and identify potential therapeutic targets. Methods: We performed WES on tumor tissue and matched blood samples, when available. Following GATK best practices, we conducted read processing, quality control, somatic variant calling, and copy-number inference. Data analyses and visualization were conducted in R. Results: Top altered genes are associated with the immune system and tumor microenvironment, suggesting a mechanism of immune evasion. Gene and pathway enrichment revealed a high mutation burden in genes associated with Extracellular Matrix (ECM) and PI3K-AKT-mTOR cascades. Recurrent and deleterious alterations in NOTCH2 and USP8 were identified in 50% and 30% of the cohort, respectively. Frequent amplifications in deubiquitinases and beta-defensins strengthened the involvement of immune mechanisms for oncogenic transformation. Conclusions: Top altered genes and recurrent mutations may play a role in shaping the microenvironment and modulating immune evasion in IECs. USP8 and NOTCH2 may serve as clinically relevant target for IECs. Finally, we present evidence that the crosstalk between the PI3K-Akt-mTOR and ECM signaling pathways may play a role in modulating the immune escape mechanism in IECs.
Collapse
Affiliation(s)
| | | | - Carolina Angelica Parada
- Department of Neurological Surgery, University of Washington Medical Center 1, Seattle, WA 98195, USA; (S.K.); (O.P.)
| | - Manuel Ferreira
- Department of Neurological Surgery, University of Washington Medical Center 1, Seattle, WA 98195, USA; (S.K.); (O.P.)
| |
Collapse
|
4
|
Miret Durazo CI, Zachariah Saji S, Rawat A, Motiño Villanueva AL, Bhandari A, Nurjanah T, Ryali N, Zepeda Martínez IG, Cruz Santiago JA. Exploring Aspirin's Potential in Cancer Prevention: A Comprehensive Review of the Current Evidence. Cureus 2024; 16:e70005. [PMID: 39445288 PMCID: PMC11498354 DOI: 10.7759/cureus.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Aspirin, traditionally recognized for its analgesic, anti-inflammatory, antipyretic, and antiplatelet effects, has recently attracted attention for its potential role in cancer prevention. Initially studied for cardiovascular disease prevention, emerging evidence suggests that aspirin may reduce the risk of certain cancers, particularly colorectal cancer (CRC). This narrative review integrates findings from early studies, animal models, epidemiological data, and clinical trials to evaluate aspirin's efficacy as a chemopreventive agent. Aspirin's anticancer effects are primarily attributed to its cyclooxygenase (COX) enzyme inhibition, which decreases prostaglandin E2 (PGE2) levels and disrupts cancer-related signaling pathways. While epidemiological studies support an association between aspirin use and reduced cancer incidence and mortality, especially for CRC and potentially for breast (BC) and prostate cancers (PCa), the risk of adverse effects, such as gastrointestinal (GI) and intracranial bleeding, complicates its use and warrants careful consideration. The decision to use aspirin for cancer prevention should be individualized, balancing its therapeutic benefits against potential adverse effects. It also underscores the necessity for further research to refine dosage guidelines, assess long-term impacts, and explore additional biomarkers to guide personalized cancer prevention strategies.
Collapse
Affiliation(s)
| | | | - Akash Rawat
- Department of General Medicine, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, IND
| | | | - Amit Bhandari
- Internal Medicine, American University of the Caribbean School of Medicine, Cupecoy, SXM
| | - Tutut Nurjanah
- Department of General Medicine, Universitas Yarsi, Jakarta, IDN
| | - Niharika Ryali
- Department of General Medicine, Gandhi Medical College, Hyderabad, IND
| | | | - Josue A Cruz Santiago
- Department of General Medicine, Universidad Autónoma de Guadalajara, Guadalajara, MEX
| |
Collapse
|
5
|
Wang Z, Gu H, Qin P, Wang J. DriverDetector: An R package providing multiple statistical methods for cancer driver genes detection and tools for downstream analysis. Heliyon 2024; 10:e33582. [PMID: 39816349 PMCID: PMC11733820 DOI: 10.1016/j.heliyon.2024.e33582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 01/18/2025] Open
Abstract
Identifying driver genes in cancer is a difficult task because of the heterogeneity of cancer as well as the complex interactions among genes. As sequencing data become more readily available, there is a growing need for detecting cancer driver genes based on statistical and mathematical modeling methods. Currently, plenty of driver gene identification algorithms have been published, but they fail to achieve consistent results. In order to obtain gene sets with high confidence, we present DriverDetector, an R package providing a convenient workflow for cancer driver genes detection and downstream analysis. We develop the background mutation rate calculating module based on the distance between genes in covariate space and binomial test, followed by the driver gene selection module which integrates 11 methods, including two already recognized approaches, a de novo method, and five variants of Fisher's method which are applied to driver gene identification for the first time. Through verification on 12 TCGA datasets, each method is able to identify a set of confirmed driver genes while the number of resulting genes vary significantly across different methods. For robust driver genes detection, a voting strategy based on 10 of the statistical methods is further applied. Results show that the collective prediction based on the voting strategy demonstrates superiority in achieving the consistency of prediction while ensuring a reasonable number of predicted genes and confirmed drivers. By comparing the results of each cancer dataset, we also find that sample size has a huge impact on the number of predicted genes. For downstream analysis, DriverDetector automatically generates plenty of plots and tables to elaborate the results. We propose DriverDetector as a user-friendly tool promoting early diagnosis of cancer and the development of targeted drugs.
Collapse
Affiliation(s)
- Zeyuan Wang
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Lingshui Street, Dalian, 116024, Liaoning, China
| | - Hong Gu
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Lingshui Street, Dalian, 116024, Liaoning, China
| | - Pan Qin
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Lingshui Street, Dalian, 116024, Liaoning, China
| | - Jia Wang
- Department of Breast Surgery, Institute of Breast Disease, Second Hospital of Dalian Medical University, Zhongshan Road, Dalian, 116023, Liaoning, China
| |
Collapse
|
6
|
Kubo T, Asano S, Sasaki K, Murata K, Kanaseki T, Tsukahara T, Hirohashi Y, Torigoe T. Assessment of cancer cell-expressed HLA class I molecules and their immunopathological implications. HLA 2024; 103:e15472. [PMID: 38699870 DOI: 10.1111/tan.15472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) has shown superior efficacy compared with conventional chemotherapy in certain cancer types, establishing immunotherapy as the fourth standard treatment alongside surgical intervention, chemotherapy, and radiotherapy. In cancer immunotherapy employing ICIs, CD8-positive cytotoxic T lymphocytes are recognized as the primary effector cells. For effective clinical outcomes, it is essential that the targeted cancer cells express HLA class I molecules to present antigenic peptides derived from the tumor. However, cancer cells utilize various mechanisms to downregulate or lose HLA class I molecules from their surface, resulting in evasion from immune surveillance. Correlations between prognosis and the integrity of HLA class I molecules expressed by cancer cells have been consistently found across different types of cancer. This paper provides an overview of the regulatory mechanisms of HLA class I molecules and their role in cancer immunotherapy, with a particular emphasis on the significance of utilizing pathological tissues to evaluate HLA class I molecules expressed in cancer cells.
Collapse
Affiliation(s)
- Terufumi Kubo
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Shiori Asano
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Kenta Sasaki
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Kenji Murata
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Tomohide Tsukahara
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
7
|
Tian X, Hu D, Wang N, Zhang L, Wang X. LINC01614 is a promising diagnostic and prognostic marker in HNSC linked to the tumor microenvironment and oncogenic function. Front Genet 2024; 15:1337525. [PMID: 38655053 PMCID: PMC11035733 DOI: 10.3389/fgene.2024.1337525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Background Tumor initiation and metastasis influence tumor immune exclusion and immunosuppression. Long non-coding RNA (lncRNA) LINC01614 is associated with the prognosis and metastasis of several cancers. However, the relationship between LINC01614 and cancer immune infiltration and the biofunction of LINC01614 in head and neck squamous cell carcinoma (HNSC) remain unclear. Methods The Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) datasets were used to analyze the expression difference and diagnostic value of LINC01614 in normal and tumor tissues. The correlation of pan-cancer prognosis and tumor stage of LINC01614 was analyzed based on the TCGA database. The pan-cancer association of LINC01614 expression with the tumor microenvironment (TME) including immune infiltration, expression of immune-related genes, and genomic instability parameters, was analyzed using the Spearman correlation method. The correlation between LINC01614 and tumor stemness evaluation indicators, RNA methylation-related genes, and drug resistance was also analyzed. The functional analysis of LINC01614 was performed using the clusterProfiler R package. The protein-protein interaction (PPI) network and ceRNA network of LINC01614 co-expressed genes and miRNA were constructed and visualized by STRING and Cytoscape, respectively. Finally, the cell location and influence of LINC01614 on cell proliferation and metastasis of HNSC cell lines were evaluated using FISH, CCK-8, wound-healing assay, and transwell assay. Results LINC01614 was found to be overexpressed in 23 cancers and showed a highly sensitive prediction value in nine cancers (AUC >0.85). LINC01614 dysregulation was associated with tumor stage in 12 cancers and significantly influenced the survival outcomes of 26 cancer types, with only Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC), uterine corpus endometrial carcinoma (UCEC), and bladder urothelial carcinoma (BLCA) showing a benign influence. LINC01614 was also associated with immune cell infiltration, tumor heterogeneity, cancer stemness, RNA methylation modification, and drug resistance. The potential biological function of LINC01614 was verified in HNSC, and it was found to play important roles in proliferation, immune infiltration, immunotherapy response, and metastasis of HNSC. Conclusion LINC01614 may serve as a cancer diagnosis and prognosis biomarker and an immunotherapy target for specific cancers.
Collapse
Affiliation(s)
- Xiong Tian
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Dali Hu
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Na Wang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Lele Zhang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xuequan Wang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
8
|
Wang H, Guan Z, Zheng L. Single-cell RNA sequencing explores the evolution of the ecosystem from leukoplakia to head and neck squamous cell carcinoma. Sci Rep 2024; 14:8097. [PMID: 38582791 PMCID: PMC10998855 DOI: 10.1038/s41598-024-58978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/05/2024] [Indexed: 04/08/2024] Open
Abstract
It has been found that progression from leukoplakia to head and neck squamous cell carcinoma (HNSCC) is a long-term process that may involve changes in the multicellular ecosystem. We acquired scRNA-seq samples information from gene expression omnibus and UCSC Xena database. The BEAM function was used to construct the pseudotime trajectory and analyze the differentially expressed genes in different branches. We used the ssGSEA method to explore the correlation between each cell subgroup and survival time, and obtained the cell subgroup related to prognosis. During the progression from leukoplakia to HNSCC, we found several prognostic cell subgroups, such as AURKB + epithelial cells, SFRP1 + fibroblasts, SLC7A8 + macrophages, FCER1A + CD1C + dendritic cells, and TRGC2 + NK/T cells. All cell subgroups had two different fates, one tending to cell proliferation, migration, and enhancement of angiogenesis capacity, and the other tending to inflammatory immune response, leukocyte chemotaxis, and T cell activation. Tumor-promoting genes such as CD163 and CD209 were highly expressed in the myeloid cells, and depletion marker genes such as TIGIT, LAG3 were highly expressed in NK/T cells. Our study may provide a reference for the molecular mechanism of HNSCC and theoretical basis for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenjie Guan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lian Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
9
|
Lei L, Han K, Wang Z, Shi C, Wang Z, Dai R, Zhang Z, Wang M, Guo Q. Attention-guided variational graph autoencoders reveal heterogeneity in spatial transcriptomics. Brief Bioinform 2024; 25:bbae173. [PMID: 38627939 PMCID: PMC11021349 DOI: 10.1093/bib/bbae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/03/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
The latest breakthroughs in spatially resolved transcriptomics technology offer comprehensive opportunities to delve into gene expression patterns within the tissue microenvironment. However, the precise identification of spatial domains within tissues remains challenging. In this study, we introduce AttentionVGAE (AVGN), which integrates slice images, spatial information and raw gene expression while calibrating low-quality gene expression. By combining the variational graph autoencoder with multi-head attention blocks (MHA blocks), AVGN captures spatial relationships in tissue gene expression, adaptively focusing on key features and alleviating the need for prior knowledge of cluster numbers, thereby achieving superior clustering performance. Particularly, AVGN attempts to balance the model's attention focus on local and global structures by utilizing MHA blocks, an aspect that current graph neural networks have not extensively addressed. Benchmark testing demonstrates its significant efficacy in elucidating tissue anatomy and interpreting tumor heterogeneity, indicating its potential in advancing spatial transcriptomics research and understanding complex biological phenomena.
Collapse
Affiliation(s)
- Lixin Lei
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Kaitai Han
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zijun Wang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Chaojing Shi
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zhenghui Wang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Ruoyan Dai
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zhiwei Zhang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Mengqiu Wang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Qianjin Guo
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|
10
|
Xie Y, Peng X, Li P. MIWE: detecting the critical states of complex biological systems by the mutual information weighted entropy. BMC Bioinformatics 2024; 25:44. [PMID: 38280998 PMCID: PMC10822190 DOI: 10.1186/s12859-024-05667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
Complex biological systems often undergo sudden qualitative changes during their dynamic evolution. These critical transitions are typically characterized by a catastrophic progression of the system. Identifying the critical point is critical to uncovering the underlying mechanisms of complex biological systems. However, the system may exhibit minimal changes in its state until the critical point is reached, and in the face of high throughput and strong noise data, traditional biomarkers may not be effective in distinguishing the critical state. In this study, we propose a novel approach, mutual information weighted entropy (MIWE), which uses mutual information between genes to build networks and identifies critical states by quantifying molecular dynamic differences at each stage through weighted differential entropy. The method is applied to one numerical simulation dataset and four real datasets, including bulk and single-cell expression datasets. The critical states of the system can be recognized and the robustness of MIWE method is verified by numerical simulation under the influence of different noises. Moreover, we identify two key transcription factors (TFs), CREB1 and CREB3, that regulate downstream signaling genes to coordinate cell fate commitment. The dark genes in the single-cell expression datasets are mined to reveal the potential pathway regulation mechanism.
Collapse
Affiliation(s)
- Yuke Xie
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xueqing Peng
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China
| | - Peiluan Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China.
| |
Collapse
|
11
|
Wu X, Li T, Jiang R, Yang X, Guo H, Yang R. Targeting MHC-I molecules for cancer: function, mechanism, and therapeutic prospects. Mol Cancer 2023; 22:194. [PMID: 38041084 PMCID: PMC10693139 DOI: 10.1186/s12943-023-01899-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
The molecules of Major histocompatibility class I (MHC-I) load peptides and present them on the cell surface, which provided the immune system with the signal to detect and eliminate the infected or cancerous cells. In the context of cancer, owing to the crucial immune-regulatory roles played by MHC-I molecules, the abnormal modulation of MHC-I expression and function could be hijacked by tumor cells to escape the immune surveillance and attack, thereby promoting tumoral progression and impairing the efficacy of cancer immunotherapy. Here we reviewed and discussed the recent studies and discoveries related to the MHC-I molecules and their multidirectional functions in the development of cancer, mainly focusing on the interactions between MHC-I and the multiple participators in the tumor microenvironment and highlighting the significance of targeting MHC-I for optimizing the efficacy of cancer immunotherapy and a deeper understanding of the dynamic nature and functioning mechanism of MHC-I in cancer.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianhang Li
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Rui Jiang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
12
|
Otálora-Otálora BA, López-Rivera JJ, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Host Transcriptional Regulatory Genes and Microbiome Networks Crosstalk through Immune Receptors Establishing Normal and Tumor Multiomics Metafirm of the Oral-Gut-Lung Axis. Int J Mol Sci 2023; 24:16638. [PMID: 38068961 PMCID: PMC10706695 DOI: 10.3390/ijms242316638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
The microbiome has shown a correlation with the diet and lifestyle of each population in health and disease, the ability to communicate at the cellular level with the host through innate and adaptative immune receptors, and therefore an important role in modulating inflammatory process related to the establishment and progression of cancer. The oral cavity is one of the most important interaction windows between the human body and the environment, allowing the entry of an important number of microorganisms and their passage across the gastrointestinal tract and lungs. In this review, the contribution of the microbiome network to the establishment of systemic diseases like cancer is analyzed through their synergistic interactions and bidirectional crosstalk in the oral-gut-lung axis as well as its communication with the host cells. Moreover, the impact of the characteristic microbiota of each population in the formation of the multiomics molecular metafirm of the oral-gut-lung axis is also analyzed through state-of-the-art sequencing techniques, which allow a global study of the molecular processes involved of the flow of the microbiota environmental signals through cancer-related cells and its relationship with the establishment of the transcription factor network responsible for the control of regulatory processes involved with tumorigenesis.
Collapse
Affiliation(s)
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Carlos Arturo Álvarez-Moreno
- Infectious Diseases Department, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| |
Collapse
|
13
|
Yang L, Xu F. A novel anoikis-related risk model predicts prognosis in patients with colorectal cancer and responses to different immunotherapy strategies. J Cancer Res Clin Oncol 2023; 149:10879-10892. [PMID: 37318595 DOI: 10.1007/s00432-023-04945-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE We aimed to study the role of anoikis-related genes (ARGs) in colorectal cancer (CRC) using bioinformatics. METHODS GSE39582 and GSE39084, which collectively contain 363 CRC samples, were downloaded from the NCBI Gene Expression Omnibus (GEO) database as a test set. TCGA-COADREAD, with 376 CRC samples, was downloaded from the UCSC database as a validation set. Univariate Cox regression analysis was used to screen for ARGs that were significantly associated with prognosis. The top 10 ARGs were used to classify the samples into different subtypes based on unsupervised cluster analysis. The immune environments of the different subtypes were analyzed. ARGs that were significantly associated with CRC prognosis were used to construct a risk model. Univariate and multivariate Cox regression analyses were used to screen independent prognostic factors and construct a nomogram. RESULTS Four anoikis-related subtypes (ARSs) with differential prognoses and immune microenvironments were identified. KRAS and epithelial-mesenchymal transition pathways were enriched in subtype B, which had the worst prognosis. Three ARGs (DLG1, AKT3, and LPAR1) were used to construct the risk model. Both the test and validation sets showed worse outcomes for patients in the high-risk group than those in the low-risk group. Risk score was found to be an independent prognostic factor for CRC. Moreover, there was a difference in drug sensitivity between the high- and low-risk groups. CONCLUSION The identified ARGs and risk scores were associated with CRC prognosis and could predict the responses of patients with CRC to immunotherapy strategies.
Collapse
Affiliation(s)
- Lei Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Feng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| |
Collapse
|
14
|
Yang K, Halima A, Chan TA. Antigen presentation in cancer - mechanisms and clinical implications for immunotherapy. Nat Rev Clin Oncol 2023; 20:604-623. [PMID: 37328642 DOI: 10.1038/s41571-023-00789-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, the emergence of effective immunotherapies has revolutionized the clinical management of many types of cancers. However, long-term durable tumour control is only achieved in a fraction of patients who receive these therapies. Understanding the mechanisms underlying clinical response and resistance to treatment is therefore essential to expanding the level of clinical benefit obtained from immunotherapies. In this Review, we describe the molecular mechanisms of antigen processing and presentation in tumours and their clinical consequences. We examine how various aspects of the antigen-presentation machinery (APM) shape tumour immunity. In particular, we discuss genomic variants in HLA alleles and other APM components, highlighting their influence on the immunopeptidomes of both malignant cells and immune cells. Understanding the APM, how it is regulated and how it changes in tumour cells is crucial for determining which patients will respond to immunotherapy and why some patients develop resistance. We focus on recently discovered molecular and genomic alterations that drive the clinical outcomes of patients receiving immune-checkpoint inhibitors. An improved understanding of how these variables mediate tumour-immune interactions is expected to guide the more precise administration of immunotherapies and reveal potentially promising directions for the development of new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmed Halima
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA.
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA.
- National Center for Regenerative Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
15
|
Koukourakis IM, Platoni K, Tiniakos D, Kouloulias V, Zygogianni A. Immune Response and Immune Checkpoint Molecules in Patients with Rectal Cancer Undergoing Neoadjuvant Chemoradiotherapy: A Review. Curr Issues Mol Biol 2023; 45:4495-4517. [PMID: 37232754 DOI: 10.3390/cimb45050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
It is well-established that tumor antigens and molecules expressed and secreted by cancer cells trigger innate and adaptive immune responses. These two types of anti-tumor immunity lead to the infiltration of the tumor's microenvironment by immune cells with either regulatory or cytotoxic properties. Whether this response is associated with tumor eradication after radiotherapy and chemotherapy or regrowth has been a matter of extensive research through the years, mainly focusing on tumor-infiltrating lymphocytes and monocytes and their subtypes, and the expression of immune checkpoint and other immune-related molecules by both immune and cancer cells in the tumor microenvironment. A literature search has been conducted on studies dealing with the immune response in patients with rectal cancer treated with neoadjuvant radiotherapy or chemoradiotherapy, assessing its impact on locoregional control and survival and underlying the potential role of immunotherapy in the treatment of this cancer subtype. Here, we provide an overview of the interactions between local/systemic anti-tumor immunity, cancer-related immune checkpoint, and other immunological pathways and radiotherapy, and how these affect the prognosis of rectal cancer patients. Chemoradiotherapy induces critical immunological changes in the tumor microenvironment and cancer cells that can be exploited for therapeutic interventions in rectal cancer.
Collapse
Affiliation(s)
- Ioannis M Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dina Tiniakos
- Department of Pathology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Vassilis Kouloulias
- Radiotherapy Unit, 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece
| |
Collapse
|
16
|
Johansson T, Partanen J, Saavalainen P. HLA allele-specific expression: Methods, disease associations, and relevance in hematopoietic stem cell transplantation. Front Immunol 2022; 13:1007425. [PMID: 36248878 PMCID: PMC9554311 DOI: 10.3389/fimmu.2022.1007425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Varying HLA allele-specific expression levels are associated with human diseases, such as graft versus host disease (GvHD) in hematopoietic stem cell transplantation (HSCT), cytotoxic T cell response and viral load in HIV infection, and the risk of Crohn’s disease. Only recently, RNA-based next generation sequencing (NGS) methodologies with accompanying bioinformatics tools have emerged to quantify HLA allele-specific expression replacing the quantitative PCR (qPCR) -based methods. These novel NGS approaches enable the systematic analysis of the HLA allele-specific expression changes between individuals and between normal and disease phenotypes. Additionally, analyzing HLA allele-specific expression and allele-specific expression loss provide important information for predicting efficacies of novel immune cell therapies. Here, we review available RNA sequencing-based approaches and computational tools for NGS to quantify HLA allele-specific expression. Moreover, we explore recent studies reporting disease associations with differential HLA expression. Finally, we discuss the role of allele-specific expression in HSCT and how considering the expression quantification in recipient-donor matching could improve the outcome of HSCT.
Collapse
Affiliation(s)
- Tiira Johansson
- Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
- *Correspondence: Tiira Johansson,
| | - Jukka Partanen
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Päivi Saavalainen
- Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Genetics Research Program, Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
17
|
Cui G, Wang C, Liu J, Shon K, Gu R, Chang C, Ren L, Wei F, Sun Z. Development of an exosome-related and immune microenvironment prognostic signature in colon adenocarcinoma. Front Genet 2022; 13:995644. [PMID: 36176299 PMCID: PMC9513147 DOI: 10.3389/fgene.2022.995644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The correlation between exosomes and the tumor immune microenvironment has been proved to affect tumorigenesis and progression of colon adenocarcinoma (COAD). However, it remained unclear whether exosomes had an impact on the prognostic indications of COAD patients.Methods: Expression of exosome-related genes (ERGs) and clinical data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The ERGs associated with prognosis were identified and exosome-related prognostic signature was constructed. Patients in two risk groups were classified according to the risk score calculation formula: Risk score = 1.0132 * CCKBR + 0.2416 * HOXC6 + 0.7618 * POU4F1. The expression of three ERGs was investigated by qRT-PCR. After that, we developed a nomogram predicting the likelihood of survival and verified its predictive efficiency. The differences of tumor immune microenvironment, immune cell infiltration, immune checkpoint and sensitivity to drugs in two risk groups were analyzed.Results: A prognostic signature was established based on the three ERGs (CCKBR, HOXC6, and POU4F1) and patients with different risk group were distinguished. Survival analysis revealed the negative associated of risk score and prognosis, ROC curve analyses showed the accuracy of this signature. Three ERGs expression was investigated by qRT-PCR in three colorectal cancer cell lines. Moreover, risk score was positively correlated with tumor mutational burden (TMB), immune activities, microsatellite instability level, the expression of immune checkpoint genes. Meanwhile, the expression level of three ERGs and the risk score were markedly related with the sensitive response to chemotherapy.Conclusion: The novel signature composed of three ERGs with precise predictive capabilities can be used to predict prognosis and provide a promising therapeutic target for improving the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Guoliang Cui
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Can Wang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kinyu Shon
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- *Correspondence: Fei Wei, ; Zhiguang Sun,
| | - Renjun Gu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Cheng Chang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lang Ren
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fei Wei
- Department of Physiology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- *Correspondence: Fei Wei, ; Zhiguang Sun,
| | - Zhiguang Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- *Correspondence: Fei Wei, ; Zhiguang Sun,
| |
Collapse
|
18
|
Feng H, Zhu D, Zheng J, Lyu Z, Hu W, Jiang M, Pan Z, Hou T, Li Y. Identification of Candidate Antigens and Immune Subtypes in Colon Cancer for mRNA Vaccine Development. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huolun Feng
- Department of gastrointestinal surgery Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
- The Second School of Clinical Medicine Southern Medical University Guangzhou Guangdong 510515 China
| | - Dandan Zhu
- School of Medicine South China University of Technology Guangzhou Guangdong 510006 China
- Guangdong clinical laboratory center Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
| | - Jiabin Zheng
- Department of gastrointestinal surgery Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
| | - Zejian Lyu
- Department of gastrointestinal surgery Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
| | - Weixian Hu
- Department of gastrointestinal surgery Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
| | - Meiyu Jiang
- Department of gastrointestinal surgery Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
| | - Zihao Pan
- Department of gastrointestinal surgery Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
| | - Tieying Hou
- The Second School of Clinical Medicine Southern Medical University Guangzhou Guangdong 510515 China
- School of Medicine South China University of Technology Guangzhou Guangdong 510006 China
- Guangdong clinical laboratory center Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
- Medical Department Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
| | - Yong Li
- Department of gastrointestinal surgery Guangdong Provincial People's Hospital; Guangdong Academy of Medical Sciences Guangzhou Guangdong 510080 China
- The Second School of Clinical Medicine Southern Medical University Guangzhou Guangdong 510515 China
- School of Medicine South China University of Technology Guangzhou Guangdong 510006 China
| |
Collapse
|