1
|
Cottrell TR, Lotze MT, Ali A, Bifulco CB, Capitini CM, Chow LQM, Cillo AR, Collyar D, Cope L, Deutsch JS, Dubrovsky G, Gnjatic S, Goh D, Halabi S, Kohanbash G, Maecker HT, Maleki Vareki S, Mullin S, Seliger B, Taube J, Vos W, Yeong J, Anderson KG, Bruno TC, Chiuzan C, Diaz-Padilla I, Garrett-Mayer E, Glitza Oliva IC, Grandi P, Hill EG, Hobbs BP, Najjar YG, Pettit Nassi P, Simons VH, Subudhi SK, Sullivan RJ, Takimoto CH. Society for Immunotherapy of Cancer (SITC) consensus statement on essential biomarkers for immunotherapy clinical protocols. J Immunother Cancer 2025; 13:e010928. [PMID: 40054999 DOI: 10.1136/jitc-2024-010928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 03/12/2025] Open
Abstract
Immunotherapy of cancer is now an essential pillar of treatment for patients with many individual tumor types. Novel immune targets and technical advances are driving a rapid exploration of new treatment strategies incorporating immune agents in cancer clinical practice. Immunotherapies perturb a complex system of interactions among genomically unstable tumor cells, diverse cells within the tumor microenvironment including the systemic adaptive and innate immune cells. The drive to develop increasingly effective immunotherapy regimens is tempered by the risk of immune-related adverse events. Evidence-based biomarkers that measure the potential for therapeutic response and/or toxicity are critical to guide optimal patient care and contextualize the results of immunotherapy clinical trials. Responding to the lack of guidance on biomarker testing in early-phase immunotherapy clinical trials, we propose a definition and listing of essential biomarkers recommended for inclusion in all such protocols. These recommendations are based on consensus provided by the Society for Immunotherapy of Cancer (SITC) Clinical Immuno-Oncology Network (SCION) faculty with input from the SITC Pathology and Biomarker Committees and the Journal for ImmunoTherapy of Cancer readership. A consensus-based selection of essential biomarkers was conducted using a Delphi survey of SCION faculty. Regular updates to these recommendations are planned. The inaugural list of essential biomarkers includes complete blood count with differential to generate a neutrophil-to-lymphocyte ratio or systemic immune-inflammation index, serum lactate dehydrogenase and albumin, programmed death-ligand 1 immunohistochemistry, microsatellite stability assessment, and tumor mutational burden. Inclusion of these biomarkers across early-phase immunotherapy clinical trials will capture variation among trials, provide deeper insight into the novel and established therapies, and support improved patient selection and stratification for later-phase clinical trials.
Collapse
Affiliation(s)
- Tricia R Cottrell
- Queen's University Sinclair Cancer Research Institute, Kingston, Ontario, Canada
| | | | - Alaa Ali
- Stem Cell Transplant and Cellular Immunotherapy Program, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, Washington, DC, USA
| | - Carlo B Bifulco
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Christian M Capitini
- University of Wisconsin School of Medicine and Public Health and Carbone Cancer Center, Madison, Wisconsin, USA
| | | | - Anthony R Cillo
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deborah Collyar
- Patient Advocates In Research (PAIR), Danville, California, USA
| | - Leslie Cope
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Denise Goh
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore
| | - Susan Halabi
- Duke School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - Gary Kohanbash
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Holden T Maecker
- Stanford University School of Medicine, Stanford, California, USA
| | - Saman Maleki Vareki
- Department of Oncology and Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Sarah Mullin
- Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Barbara Seliger
- Campus Brandenburg an der Havel, Brandenburg Medical School, Halle, Germany
| | - Janis Taube
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Wim Vos
- Radiomics.bio, Liège, Belgium
| | - Joe Yeong
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Kristin G Anderson
- Department of Microbiology, Immunology and Cancer Biology, Department of Obstetrics and Gynecology, Beirne B. Carter Center for Immunology Research and the University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - Tullia C Bruno
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Codruta Chiuzan
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | | | | | | | | | - Elizabeth G Hill
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Brian P Hobbs
- Dell Medical School, The University of Texas, Austin, Texas, USA
| | - Yana G Najjar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | - Sumit K Subudhi
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital, Harvard Medical School, Needham, Massachusetts, USA
| | | |
Collapse
|
2
|
Olgun N, Arayici ME, Kızmazoglu D, Cecen RE. Assessment of Chemo-Immunotherapy Regimens in Patients with Refractory or Relapsed Neuroblastoma: A Systematic Review with Meta-Analysis of Critical Oncological Outcomes. J Clin Med 2025; 14:934. [PMID: 39941606 PMCID: PMC11818460 DOI: 10.3390/jcm14030934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Neuroblastoma is a highly aggressive pediatric cancer, particularly in children with refractory or relapsed disease, where survival outcomes remain poor despite advancements in treatment. Combining anti-GD2 antibodies, such as dinutixumab beta, dinutixumab, and naxitanab, with conventional chemotherapy has emerged as a promising approach to improve clinical outcomes in this high-risk population. This chemo-immunotherapy regimen meta-analysis aimed to investigate the efficacy of these combination regimens by analyzing objective response rate (ORR), overall survival (OS), and event-free survival (EFS) outcomes across multiple studies. Methods: A systematic review and meta-analysis were conducted following PRISMA guidelines. PubMed, Web of Science, and Scopus databases were searched, yielding studies comprising the related reports. Both randomized controlled trials and non-randomized studies were included. The primary outcome of interest was ORR, and the secondary outcome of interest was EFS. A random-effects model using the DerSimonian-Laird method and Knapp-Hartung-Sidik-Jonkman adjustments was employed to pool effect sizes, and heterogeneity was assessed using I2 statistics. Results: A total of ten reports from eight studies were deemed eligible and included in the meta-analysis. The pooled ORR across the studies was 0.45 (95% CI: 0.35-0.54, p < 0.001), indicating that approximately 45% of patients showed a favorable treatment response, with moderate heterogeneity (I2 = 52.78%). The pooled analysis showed an OS of 75% (95% CI: 53-96, p < 0.001), and the pooled EFS effect size was 0.59 (95% CI: 0.45-0.73, p < 0.001), despite substantial heterogeneity (I2 = 60.54%). Conclusions: anti-GD2 antibodies combined with conventional chemotherapy may significantly improve response rates and event-free survival in children with refractory or relapsed neuroblastoma. Future research should focus on identifying predictive biomarkers to tailor therapies to individual patients, enhancing both efficacy and safety in this vulnerable population.
Collapse
Affiliation(s)
- Nur Olgun
- Department of Pediatric Oncology, Institute of Oncology, Dokuz Eylul University, İzmir 35340, Turkey; (D.K.); (R.E.C.)
- Acıbadem Kent Hospital, Karsiyaka, İzmir 35630, Turkey
| | - Mehmet Emin Arayici
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Dokuz Eylul University, İzmir 35340, Turkey;
- Department of Public Health, Faculty of Medicine, Dokuz Eylul University, İzmir 35340, Turkey
| | - Deniz Kızmazoglu
- Department of Pediatric Oncology, Institute of Oncology, Dokuz Eylul University, İzmir 35340, Turkey; (D.K.); (R.E.C.)
| | - Refik Emre Cecen
- Department of Pediatric Oncology, Institute of Oncology, Dokuz Eylul University, İzmir 35340, Turkey; (D.K.); (R.E.C.)
| |
Collapse
|
3
|
Zhang X, You W, Wang Y, Dejenie R, Wang C, Huang Y, Li J. Prospects of anti-GD2 immunotherapy for retinoblastoma. Front Immunol 2024; 15:1499700. [PMID: 39620227 PMCID: PMC11604707 DOI: 10.3389/fimmu.2024.1499700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/21/2024] [Indexed: 12/11/2024] Open
Abstract
Retinoblastoma is the most common type of eye tumor in infants and children. Current treatments for retinoblastoma include intravenous chemotherapy, intra-arterial chemotherapy, intravitreal chemotherapy, cryotherapy, radiotherapy, and surgery. However, these treatments come accompanied by adverse effects such as the toxic side effects of chemotherapeutic drugs, post-operative complications including blindness after surgery, or other complications caused by radiotherapy. Immunotherapy is more promising for its low toxicity on normal cells and effectively improves the quality of life of patients. Disialoganglioside (GD2), a sphingolipid expressed on the surface of retinoblastoma, is a potential therapeutic target for retinoblastoma. We summarized immunotherapeutic approaches for both preclinical studies and clinical trials of GD2. An anti-GD2 monoclonal antibody (Dinutuximab), which has been approved for the treatment of high-risk neuroblastomas, has shown promising efficacy in improving patients' prognosis. Additionally, chimeric antigen receptors (CAR)-T therapy, GD2 vaccines and nanoparticles are also potential therapeutics. Finally, we discuss the prospects and current limitations of these immunotherapeutic approaches for treating retinoblastoma, as well as how to address these problems.
Collapse
Affiliation(s)
- Xinlong Zhang
- Affiliated Hospital of Shandong Second Medical University,School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Wulin You
- Department of Orthopedics, Wuxi Hospital Affiliated of Nanjing University of Chinese Medicine, Wuxi, China
- Medical Center, University of Chicago, Chicago, IL, United States
| | - Yuntao Wang
- Affiliated Hospital of Shandong Second Medical University,School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Rebeka Dejenie
- Medical Center, University of Chicago, Chicago, IL, United States
- School of Medicine, University of California, Davis, Davis, CA, United States
| | - Chenhao Wang
- Department of Orthopedics, Wuxi Hospital Affiliated of Nanjing University of Chinese Medicine, Wuxi, China
| | - Yan Huang
- Affiliated Hospital of Shandong Second Medical University,School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Jingjing Li
- Affiliated Hospital of Shandong Second Medical University,School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Medical Center, University of Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Mohseni R, Mahdavi Sharif P, Behfar M, Shojaei S, Shoae-Hassani A, Jafari L, Khosravi A, Nikfetrat Z, Hamidieh AA. Phase I study of safety and efficacy of allogeneic natural killer cell therapy in relapsed/refractory neuroblastomas post autologous hematopoietic stem cell transplantation. Sci Rep 2024; 14:20971. [PMID: 39251669 PMCID: PMC11385932 DOI: 10.1038/s41598-024-70958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Despite low incidence, neuroblastoma, an immunologically cold tumor, is the most common extracranial solid neoplasm in pediatrics. In relapsed/refractory cases, the benefits of autologous hematopoietic stem cell transplantation (auto-HSCT) and other therapies are limited. Natural killer (NK) cells apply cytotoxicity against tumor cells independently of antigen-presenting cells and the adaptive immune system. The primary endpoint of this trial was to assess the safety of the injection of allogenic, ex vivo-expanded and primed NK cells in relapsed/refractory neuroblastoma patients after auto-HSCT. The secondary endpoint included the efficacy of this intervention in controlling tumors. NK cells were isolated and primed ex vivo (by adding interleukin [IL]-2, IL-15, and IL-21) in a GMP-compliant CliniMACS system and administered to four patients with relapsed/refractory MYCN-positive neuroblastoma. NK cell injections (1 and 5 × 107 cells/kg in the first and second injections, respectively) were safe, and no acute or sub-acute adverse events were observed. During the follow-up period, one complete response (CR) and one partial response (PR) were observed, while two cases exhibited progressive disease (PD). In follow-up evaluations, two died due to disease progression, including the case with a PR. The patient with CR had regular growth at the 31-month follow-up, and another patient with PD is still alive and receiving chemotherapies 20 months after therapy. This therapy is an appealing and feasible approach for managing refractory neuroblastomas post-HSCT. Further studies are needed to explore its efficacy with higher doses and more frequent administrations for high-risk neuroblastomas and other immunologically cold tumors.Trial registration number: irct.behdasht.gov.ir (Iranian Registry of Clinical Trials, No. IRCT20201202049568N1).
Collapse
Affiliation(s)
- Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Pouya Mahdavi Sharif
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Sahar Shojaei
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Alireza Shoae-Hassani
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Jafari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Abbas Khosravi
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Zeynab Nikfetrat
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran.
| |
Collapse
|
5
|
Polychronopoulos PA, Bedoya-Reina OC, Johnsen JI. The Neuroblastoma Microenvironment, Heterogeneity and Immunotherapeutic Approaches. Cancers (Basel) 2024; 16:1863. [PMID: 38791942 PMCID: PMC11119056 DOI: 10.3390/cancers16101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroblastoma is a peripheral nervous system tumor that almost exclusively occurs in young children. Although intensified treatment modalities have led to increased patient survival, the prognosis for patients with high-risk disease is still around 50%, signifying neuroblastoma as a leading cause of cancer-related deaths in children. Neuroblastoma is an embryonal tumor and is shaped by its origin from cells within the neural crest. Hence, neuroblastoma usually presents with a low mutational burden and is, in the majority of cases, driven by epigenetically deregulated transcription networks. The recent development of Omic techniques has given us detailed knowledge of neuroblastoma evolution, heterogeneity, and plasticity, as well as intra- and intercellular molecular communication networks within the neuroblastoma microenvironment. Here, we discuss the potential of these recent discoveries with emphasis on new treatment modalities, including immunotherapies which hold promise for better future treatment regimens.
Collapse
Affiliation(s)
- Panagiotis Alkinoos Polychronopoulos
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
| | - Oscar C. Bedoya-Reina
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
| |
Collapse
|
6
|
Stip MC, Teeuwen L, Dierselhuis MP, Leusen JHW, Krijgsman D. Targeting the myeloid microenvironment in neuroblastoma. J Exp Clin Cancer Res 2023; 42:337. [PMID: 38087370 PMCID: PMC10716967 DOI: 10.1186/s13046-023-02913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Myeloid cells (granulocytes and monocytes/macrophages) play an important role in neuroblastoma. By inducing a complex immunosuppressive network, myeloid cells pose a challenge for the adaptive immune system to eliminate tumor cells, especially in high-risk neuroblastoma. This review first summarizes the pro- and anti-tumorigenic functions of myeloid cells, including granulocytes, monocytes, macrophages, and myeloid-derived suppressor cells (MDSC) during the development and progression of neuroblastoma. Secondly, we discuss how myeloid cells are engaged in the current treatment regimen and explore novel strategies to target these cells in neuroblastoma. These strategies include: (1) engaging myeloid cells as effector cells, (2) ablating myeloid cells or blocking the recruitment of myeloid cells to the tumor microenvironment and (3) reprogramming myeloid cells. Here we describe that despite their immunosuppressive traits, tumor-associated myeloid cells can still be engaged as effector cells, which is clear in anti-GD2 immunotherapy. However, their full potential is not yet reached, and myeloid cell engagement can be enhanced, for example by targeting the CD47/SIRPα axis. Though depletion of myeloid cells or blocking myeloid cell infiltration has been proven effective, this strategy also depletes possible effector cells for immunotherapy from the tumor microenvironment. Therefore, reprogramming of suppressive myeloid cells might be the optimal strategy, which reverses immunosuppressive traits, preserves myeloid cells as effectors of immunotherapy, and subsequently reactivates tumor-infiltrating T cells.
Collapse
Affiliation(s)
- Marjolein C Stip
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Loes Teeuwen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | | | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Bagatell R, DuBois SG, Naranjo A, Belle J, Goldsmith KC, Park JR, Irwin MS. Children's Oncology Group's 2023 blueprint for research: Neuroblastoma. Pediatr Blood Cancer 2023; 70 Suppl 6:e30572. [PMID: 37458162 PMCID: PMC10587593 DOI: 10.1002/pbc.30572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor in children and is known for its clinical heterogeneity. A greater understanding of the biology of this disease has led to both improved risk stratification and new approaches to therapy. Outcomes for children with low and intermediate risk disease are excellent overall, and efforts to decrease therapy for such patients have been largely successful. Although survival has improved over time for patients with high-risk disease and treatments evaluated in the relapse setting are now being moved into earlier phases of treatment, much work remains to improve survival and decrease therapy-related toxicities. Studies of highly annotated biobanked samples continue to lead to important insights regarding neuroblastoma biology. Such studies, along with correlative biology studies incorporated into therapeutic trials, are expected to continue to provide insights that lead to new and more effective therapies. A focus on translational science is accompanied by an emphasis on new agent development, optimized risk stratification, and international collaboration to address questions relevant to molecularly defined subsets of patients. In addition, the COG Neuroblastoma Committee is committed to addressing the patient/family experience, mitigating late effects of therapy, and studying social determinants of health in patients with neuroblastoma.
Collapse
Affiliation(s)
- Rochelle Bagatell
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Steven G DuBois
- Department of Pediatrics, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Arlene Naranjo
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Jen Belle
- Children's Oncology Group, Monrovia, California, USA
| | - Kelly C Goldsmith
- Department of Pediatrics, Children's Healthcare of Atlanta Inc Aflac Cancer and Blood Disorders Center, Atlanta, Georgia, USA
| | - Julie R Park
- Department of Oncology, St Jude Children's Research Hospital Department of Oncology, Memphis, Tennessee, USA
| | - Meredith S Irwin
- Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|