1
|
Wren GH, Davies W. Cardiac arrhythmia in individuals with steroid sulfatase deficiency (X-linked ichthyosis): candidate anatomical and biochemical pathways. Essays Biochem 2024; 68:423-429. [PMID: 38571328 PMCID: PMC11625857 DOI: 10.1042/ebc20230098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Circulating steroids, including sex hormones, can affect cardiac development and function. In mammals, steroid sulfatase (STS) is the enzyme solely responsible for cleaving sulfate groups from various steroid molecules, thereby altering their activity and water solubility. Recent studies have indicated that Xp22.31 genetic deletions encompassing STS (associated with the rare dermatological condition X-linked ichthyosis), and common variants within the STS gene, are associated with a markedly elevated risk of cardiac arrhythmias, notably atrial fibrillation/flutter. Here, we consider emerging basic science and clinical findings which implicate structural heart abnormalities (notably septal defects) as a mediator of this heightened risk, and propose candidate cellular and biochemical mechanisms. Finally, we consider how the biological link between STS activity and heart structure/function might be investigated further and the clinical implications of work in this area.
Collapse
Affiliation(s)
| | - William Davies
- School of Psychology, Cardiff University, Cardiff, U.K
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, U.K
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, U.K
| |
Collapse
|
2
|
Bochem A, Boersma LVA, van der Crabben SN. Patients with (familial) atrial fibrillation: take off the sweater. Neth Heart J 2024; 32:335-336. [PMID: 39150468 PMCID: PMC11335975 DOI: 10.1007/s12471-024-01891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Affiliation(s)
- Andrea Bochem
- Department of Cardiology, St. Antonius Ziekenhuis, Nieuwegein, The Netherlands
| | - Lucas V A Boersma
- Department of Cardiology, St. Antonius Ziekenhuis, Nieuwegein, The Netherlands
| | | |
Collapse
|
3
|
Wren GH, Flanagan J, Underwood JFG, Thompson AR, Humby T, Davies W. Memory, mood and associated neuroanatomy in individuals with steroid sulphatase deficiency (X-linked ichthyosis). GENES, BRAIN, AND BEHAVIOR 2024; 23:e12893. [PMID: 38704684 PMCID: PMC11070068 DOI: 10.1111/gbb.12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024]
Abstract
Steroid sulphatase (STS) cleaves sulphate groups from steroid hormones, and steroid (sulphate) levels correlate with mood and age-related cognitive decline. In animals, STS inhibition or deletion of the associated gene, enhances memory/neuroprotection and alters hippocampal neurochemistry. Little is known about the consequences of constitutive STS deficiency on memory-related processes in humans. We investigated self-reported memory performance (Multifactorial Memory Questionnaire), word-picture recall and recent mood (Kessler Psychological Distress Scale, K10) in adult males with STS deficiency diagnosed with the dermatological condition X-linked ichthyosis (XLI; n = 41) and in adult female carriers of XLI-associated genetic variants (n = 79); we compared results to those obtained from matched control subjects [diagnosed with ichthyosis vulgaris (IV, n = 98) or recruited from the general population (n = 250)]. Using the UK Biobank, we compared mood/memory-related neuroanatomy in carriers of genetic deletions encompassing STS (n = 28) and non-carriers (n = 34,522). We found poorer word-picture recall and lower perceived memory abilities in males with XLI and female carriers compared with control groups. XLI-associated variant carriers and individuals with IV reported more adverse mood symptoms, reduced memory contentment and greater use of memory aids, compared with general population controls. Mood and memory findings appeared largely independent. Neuroanatomical analysis only indicated a nominally-significantly larger molecular layer in the right hippocampal body of deletion carriers relative to non-carriers. In humans, constitutive STS deficiency appears associated with mood-independent impairments in memory but not with large effects on underlying brain structure; the mediating psychobiological mechanisms might be explored further in individuals with XLI and in new mammalian models lacking STS developmentally.
Collapse
Affiliation(s)
| | - Jessica Flanagan
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and GenomicsSchool of Medicine, Cardiff UniversityCardiffUK
| | - Jack F. G. Underwood
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and GenomicsSchool of Medicine, Cardiff UniversityCardiffUK
- Neuroscience and Mental Health Innovation InstituteCardiff UniversityCardiffUK
| | - Andrew R. Thompson
- School of PsychologyCardiff UniversityCardiffUK
- South Wales Clinical Psychology Doctoral ProgrammeCardiff and Vale University Health BoardCardiffUK
| | | | - William Davies
- School of PsychologyCardiff UniversityCardiffUK
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and GenomicsSchool of Medicine, Cardiff UniversityCardiffUK
- Neuroscience and Mental Health Innovation InstituteCardiff UniversityCardiffUK
| |
Collapse
|
4
|
Fioretti T, Martora F, De Maggio I, Ambrosio A, Piscopo C, Vallone S, Amato F, Passaro D, Acquaviva F, Gaudiello F, Di Girolamo D, Maiolo V, Zarrilli F, Esposito S, Vitiello G, Auricchio L, Sammarco E, Brasi DD, Petillo R, Gambale A, Cattaneo F, Ammendola R, Nappa P, Esposito G. Comprehensive Molecular Analysis of Disease-Related Genes as First-Tier Test for Early Diagnosis, Classification, and Management of Patients Affected by Nonsyndromic Ichthyosis. Biomedicines 2024; 12:1112. [PMID: 38791074 PMCID: PMC11117922 DOI: 10.3390/biomedicines12051112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Inherited ichthyoses are a group of clinically and genetically heterogeneous rare disorders of skin keratinization with overlapping phenotypes. The clinical picture and family history are crucial to formulating the diagnostic hypothesis, but only the identification of the genetic defect allows the correct classification. In the attempt to molecularly classify 17 unrelated Italian patients referred with congenital nonsyndromic ichthyosis, we performed massively parallel sequencing of over 50 ichthyosis-related genes. Genetic data of 300 Italian unaffected subjects were also analyzed to evaluate frequencies of putative disease-causing alleles in our population. For all patients, we identified the molecular cause of the disease. Eight patients were affected by autosomal recessive congenital ichthyosis associated with ALOX12B, NIPAL4, and TGM1 mutations. Three patients had biallelic loss-of-function variants in FLG, whereas 6/11 males were affected by X-linked ichthyosis. Among the 24 different disease-causing alleles we identified, 8 carried novel variants, including a synonymous TGM1 variant that resulted in a splicing defect. Moreover, we generated a priority list of the ichthyosis-related genes that showed a significant number of rare and novel variants in our population. In conclusion, our comprehensive molecular analysis resulted in an effective first-tier test for the early classification of ichthyosis patients. It also expands the genetic, mutational, and phenotypic spectra of inherited ichthyosis and provides new insight into the current understanding of etiologies and epidemiology of this group of rare disorders.
Collapse
Affiliation(s)
- Tiziana Fioretti
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
| | - Fabrizio Martora
- Section of Dermatology, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.); (F.G.); (L.A.); (P.N.)
| | - Ilaria De Maggio
- Medical and Laboratory Genetics Unit, AORN A. Cardarelli, 80131 Naples, Italy; (I.D.M.); (C.P.); (R.P.)
| | - Adelaide Ambrosio
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
| | - Carmelo Piscopo
- Medical and Laboratory Genetics Unit, AORN A. Cardarelli, 80131 Naples, Italy; (I.D.M.); (C.P.); (R.P.)
| | - Sabrina Vallone
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Felice Amato
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Diego Passaro
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Fabio Acquaviva
- Medical Genetics Unit, Department of General and Emergency Paediatrics, AORN Santobono-Pausilipon, 80122 Naples, Italy; (F.A.); (D.D.B.)
| | - Francesca Gaudiello
- Section of Dermatology, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.); (F.G.); (L.A.); (P.N.)
| | - Daniela Di Girolamo
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy;
| | - Valeria Maiolo
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Federica Zarrilli
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Speranza Esposito
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Giuseppina Vitiello
- Medical Genetics Unit, Integrated Care Department of Laboratory and Transfusion Medicine, Federico II Hospital, 80131 Naples, Italy; (G.V.); (A.G.)
| | - Luigi Auricchio
- Section of Dermatology, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.); (F.G.); (L.A.); (P.N.)
| | - Elena Sammarco
- Pediatric Dermatology Unit, Department of Dermo-Immuno-Rheumatology Paediatrics, AORN Santobono-Pausilipon, 80122 Naples, Italy;
| | - Daniele De Brasi
- Medical Genetics Unit, Department of General and Emergency Paediatrics, AORN Santobono-Pausilipon, 80122 Naples, Italy; (F.A.); (D.D.B.)
| | - Roberta Petillo
- Medical and Laboratory Genetics Unit, AORN A. Cardarelli, 80131 Naples, Italy; (I.D.M.); (C.P.); (R.P.)
| | - Antonella Gambale
- Medical Genetics Unit, Integrated Care Department of Laboratory and Transfusion Medicine, Federico II Hospital, 80131 Naples, Italy; (G.V.); (A.G.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Paola Nappa
- Section of Dermatology, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.); (F.G.); (L.A.); (P.N.)
| | - Gabriella Esposito
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| |
Collapse
|
5
|
Wang J, Feng Y, Liu B, Xie W. Estrogen sulfotransferase and sulfatase in steroid homeostasis, metabolic disease, and cancer. Steroids 2024; 201:109335. [PMID: 37951289 PMCID: PMC10842091 DOI: 10.1016/j.steroids.2023.109335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Sulfation and desulfation of steroids are opposing processes that regulate the activation, metabolism, excretion, and storage of steroids, which account for steroid homeostasis. Steroid sulfation and desulfation are catalyzed by cytosolic sulfotransferase and steroid sulfatase, respectively. By modifying and regulating steroids, cytosolic sulfotransferase (SULT) and steroid sulfatase (STS) are also involved in the pathophysiology of steroid-related diseases, such as hormonal dysregulation, metabolic disease, and cancer. The estrogen sulfotransferase (EST, or SULT1E1) is a typical member of the steroid SULTs. This review is aimed to summarize the roles of SULT1E1 and STS in steroid homeostasis and steroid-related diseases.
Collapse
Affiliation(s)
- Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ye Feng
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Brian Liu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
6
|
Park J, Cho YG, Kim JK, Kim HH. STS and PUDP Deletion Identified by Targeted Panel Sequencing with CNV Analysis in X-Linked Ichthyosis: A Case Report and Literature Review. Genes (Basel) 2023; 14:1925. [PMID: 37895274 PMCID: PMC10606178 DOI: 10.3390/genes14101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
X-linked recessive ichthyosis (XLI) is clinically characterized by dark brown, widespread dryness with polygonal scales. We describe the identification of STS and PUDP deletions using targeted panel sequencing combined with copy-number variation (CNV) analysis in XLI. A 9-month-old infant was admitted for genetic counseling. Since the second day after birth, the infant's skin tended to be dry and polygonal scales had accumulated over the abdomen and upper extremities. The infant's maternal uncle and brother (who had also exhibited similar skin symptoms from birth) presented with polygonal scales on their trunks. CNV analysis revealed a hemizygous deletion spanning 719.3 Kb on chromosome Xp22 (chrX:7,108,996-7,828,312), which included a segment of the STS gene and exhibited a Z ratio of -2 in the proband. Multiplex ligation-dependent probe amplification (MLPA) confirmed this interstitial Xp22.31 deletion. Our report underscores the importance of implementing CNV screening techniques, including sequencing data analysis and gene dosage assays such as MLPA, to detect substantial deletions that encompass the STS gene region of Xq22 in individuals suspected of having XLI.
Collapse
Affiliation(s)
- Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea; (J.P.); (Y.G.C.)
| | - Yong Gon Cho
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea; (J.P.); (Y.G.C.)
| | - Jin Kyu Kim
- Department of Pediatrics, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
| | - Hyun Ho Kim
- Department of Pediatrics, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
7
|
Wren G, Baker E, Underwood J, Humby T, Thompson A, Kirov G, Escott-Price V, Davies W. Characterising heart rhythm abnormalities associated with Xp22.31 deletion. J Med Genet 2023; 60:636-643. [PMID: 36379544 PMCID: PMC10359567 DOI: 10.1136/jmg-2022-108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Genetic deletions at Xp22.31 are associated with the skin condition X linked ichthyosis (XLI), and with a substantially increased risk of atrial fibrillation/flutter (AF), in males. AF is associated with elevated thrombosis, heart failure, stroke and dementia risk. METHODS Through: (a) examining deletion carriers with a diagnosis of AF in UK Biobank, (b) undertaking an online survey regarding abnormal heart rhythms (AHRs) in men/boys with XLI and female carriers of XLI-associated deletions and (c) screening for association between common genetic variants within Xp22.31 and idiopathic AF-related conditions in UK Biobank, we have investigated how AHRs manifest in deletion carriers, and have identified associated risk factors/comorbidities and candidate gene(s). Finally, we examined attitudes towards heart screening in deletion carriers. RESULTS We show that AHRs may affect up to 35% of deletion carriers (compared with <20% of age-matched non-carriers), show no consistent pattern of onset but may be precipitated by stress, and typically resolve quickly and respond well to intervention. Gastrointestinal (GI) conditions and asthma/anaemia were the most strongly associated comorbidities in male and female deletion carriers with AHR, respectively. Genetic analysis indicated significant enrichment of common AF risk variants around STS (7 065 298-7 272 682 bp in GRCh37/hg19 genome build) in males, and of common GI disorder and asthma/anaemia risk variants around PNPLA4 (7 866 804-7 895 780 bp) in males and females, respectively. Deletion carriers were overwhelmingly in favour of cardiac screening implementation. CONCLUSION Our data suggest AHRs are frequently associated with Xp22.31 deletion, and highlight subgroups of deletion carriers that may be prioritised for screening. Examining cardiac function further in deletion carriers, and in model systems lacking steroid sulfatase, may clarify AF pathophysiology.
Collapse
Affiliation(s)
- Georgina Wren
- School of Psychology, Cardiff University, Cardiff, UK
| | - Emily Baker
- Dementia Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Jack Underwood
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - Trevor Humby
- School of Psychology, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - Andrew Thompson
- School of Psychology, Cardiff University, Cardiff, UK
- Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Valentina Escott-Price
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - William Davies
- School of Psychology, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
McGeoghan F, Camera E, Maiellaro M, Menon M, Huang M, Dewan P, Ziaj S, Caley MP, Donaldson M, Enright AJ, O’Toole EA. RNA sequencing and lipidomics uncovers novel pathomechanisms in recessive X-linked ichthyosis. Front Mol Biosci 2023; 10:1176802. [PMID: 37363400 PMCID: PMC10285781 DOI: 10.3389/fmolb.2023.1176802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Recessive X-linked ichthyosis (RXLI), a genetic disorder caused by deletion or point mutations of the steroid sulfatase (STS) gene, is the second most common form of ichthyosis. It is a disorder of keratinocyte cholesterol sulfate retention and the mechanism of extracutaneous phenotypes such as corneal opacities and attention deficit hyperactivity disorder are poorly understood. To understand the pathomechanisms of RXLI, the transcriptome of differentiated primary keratinocytes with STS knockdown was sequenced. The results were validated in a stable knockdown model of STS, to confirm STS specificity, and in RXLI skin. The results show that there was significantly reduced expression of genes related to epidermal differentiation and lipid metabolism, including ceramide and sphingolipid synthesis. In addition, there was significant downregulation of aldehyde dehydrogenase family members and the oxytocin receptor which have been linked to corneal transparency and behavioural disorders respectively, both of which are extracutaneous phenotypes of RXLI. These data provide a greater understanding of the causative mechanisms of RXLI's cutaneous phenotype, and show that the keratinocyte transcriptome and lipidomics can give novel insights into the phenotype of patients with RXLI.
Collapse
Affiliation(s)
- Farrell McGeoghan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Miriam Maiellaro
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Manasi Menon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mei Huang
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Priya Dewan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Stela Ziaj
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Matthew P. Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Anton J. Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edel A. O’Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
9
|
Wu Y, Wu D, Lan Y, Lan S, Li D, Zheng Z, Wang H, Ma L. Case report: Sex-specific characteristics of epilepsy phenotypes associated with Xp22.31 deletion: a case report and review. Front Genet 2023; 14:1025390. [PMID: 37347056 PMCID: PMC10280017 DOI: 10.3389/fgene.2023.1025390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Deletion in the Xp22.31 region is increasingly suggested to be involved in the etiology of epilepsy. Little is known regarding the genomic and clinical delineations of X-linked epilepsy in the Chinese population or the sex-stratified difference in epilepsy characteristics associated with deletions in the Xp22.31 region. In this study, we reported two siblings with a 1.69 Mb maternally inherited microdeletion at Xp22.31 involving the genes VCX3A, HDHD1, STS, VCX, VCX2, and PNPLA4 presenting with easily controlled focal epilepsy and language delay with mild ichthyosis in a Chinese family with a traceable 4-generation history of skin ichthyosis. Both brain magnetic resonance imaging results were normal, while EEG revealed epileptic abnormalities. We further performed an exhaustive literature search, documenting 25 patients with epilepsy with gene defects in Xp22.31, and summarized the epilepsy heterogeneities between sexes. Males harboring the Xp22.31 deletion mainly manifested with child-onset, easily controlled focal epilepsy accompanied by X-linked ichthyosis; the deletions were mostly X-linked recessive, with copy number variants (CNVs) in the classic region of deletion (863.38 kb-2 Mb). In contrast, epilepsy in females tended to be earlier-onset, and relatively refractory, with pathogenic CNV sizes varying over a larger range (859 kb-56.36 Mb); the alterations were infrequently inherited and almost combined with additional CNVs. A candidate region encompassing STS, HDHD1, and MIR4767 was the likely pathogenic epilepsy-associated region. This study filled in the knowledge gap regarding the genomic and clinical delineations of X-linked recessive epilepsy in the Chinese population and extends the understanding of the sex-specific characteristics of Xp22.31 deletion in regard to epilepsy.
Collapse
Affiliation(s)
- Yi Wu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Dan Wu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Yulong Lan
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shaocong Lan
- Department of clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Duo Li
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zexin Zheng
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hongwu Wang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lian Ma
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
- Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University (The Women and Children’s Hospital of Guangzhou Medical University), Guangzhou, China
| |
Collapse
|
10
|
Harnett C, Al-Jubouri M, Meah N. Delayed diagnosis of a scaling genodermatosis. BMJ Case Rep 2023; 16:e253838. [PMID: 37197832 PMCID: PMC10193083 DOI: 10.1136/bcr-2022-253838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Affiliation(s)
- Clare Harnett
- Dermatology, St Helens and Knowsley Teaching Hospitals NHS Trust, St Helens, UK
| | - Mohammad Al-Jubouri
- Chemical Pathology, St Helens and Knowsley Teaching Hospitals NHS Trust, St Helens, UK
| | - Nekma Meah
- Dermatology, St Helens and Knowsley Teaching Hospitals NHS Trust, St Helens, UK
| |
Collapse
|
11
|
Hu H, Huang Y, Hou R, Xu H, Liu Y, Liao X, Xu J, Jiang L, Wang D. Xp22.31 copy number variations in 87 fetuses: refined genotype-phenotype correlations by prenatal and postnatal follow-up. BMC Med Genomics 2023; 16:69. [PMID: 37013593 PMCID: PMC10069036 DOI: 10.1186/s12920-023-01493-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Xp22.31 deletion and duplication have been described in various studies, but different laboratories interpret pathogenicity differently. OBJECTIVES Our study aimed to refine the genotype-phenotype associations between Xp22.31 copy number variants in fetuses, with the aim of providing data support to genetic counseling. METHODS We retrospectively analyzed karyotyping and single nucleotide polymorphism array results from 87 fetuses and their family members. Phenotypic data were obtained through follow-up visits. RESULTS The percentage of fetuses carrying the Xp22.31 deletions (9 females, 12 males) was 24.1% (n = 21), while duplications (38 females, 28 males) accounted for 75.9% (n = 66). Here, we noted that the typical region (from 6.4 to 8.1 Mb, hg19) was detected in the highest ratio, either in the fetuses with deletions (76.2%, 16 of 21) or duplications (69.7%, 46 of 66). In female deletion carriers, termination of pregnancy was chosen for two fetuses, and the remaining seven were born without distinct phenotypic abnormalities. In male deletion carriers, termination of pregnancy was chosen for four fetuses, and the remaining eight of them displayed ichthyosis without neurodevelopmental anomalies. In two of these cases, the chromosomal imbalance was inherited from the maternal grandfathers, who also only had ichthyosis phenotypes. Among the 66 duplication carriers, two cases were lost at follow-up, and pregnancy was terminated for eight cases. There were no other clinical findings in the rest of the 56 fetuses, including two with Xp22.31 tetrasomy, for either male or female carriers. CONCLUSION Our observations provide support for genetic counseling in male and female carriers of Xp22.31 copy number variants. Most of them are asymptomatic in male deletion carriers, except for skin findings. Our study is consistent with the view that the Xp22.31 duplication may be a benign variant in both sexes.
Collapse
Affiliation(s)
- Huamei Hu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yulin Huang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Renke Hou
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huanhuan Xu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yalan Liu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xueqian Liao
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Juchun Xu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lupin Jiang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Dan Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
12
|
Genetic Heterogeneity of X-Linked Ichthyosis in the Republic of North Ossetia-Alania, Case Series Report. Int J Mol Sci 2023; 24:ijms24054515. [PMID: 36901946 PMCID: PMC10003119 DOI: 10.3390/ijms24054515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
North Caucasus has always been a residence of a lot of different authentic ethnic groups speaking different languages and still living their traditional lifestyle. The diversity appeared to be reflected in the accumulation of different mutations causing common inherited disorders. X-linked ichthyosis represents the second most common form of genodermatoses after ichthyosis vulgaris. Eight patients from three unrelated families of different ethnic origin, Kumyk, Turkish Meskhetians, and Ossetian, with X-linked ichthyosis from the North Caucasian Republic of North Ossetia-Alania were examined. NGS technology was implied for searching for disease-causing variants in one of the index patients. Known pathogenic hemizygous deletion in the short arm of chromosome X encompassing the STS gene was defined in the Kumyk family. A further analysis allowed us to establish that likely the same deletion was a cause of ichthyosis in a family belonging to the Turkish Meskhetians ethnic group. In the Ossetian family, a likely pathogenic nucleotide substitution in the STS gene was defined; it segregated with the disease in the family. We molecularly confirmed XLI in eight patients from three examined families. Though in two families, Kumyk and Turkish Meskhetian, we revealed similar hemizygous deletions in the short arm of chromosome X, but their common origin was not likely. Forensic STR markers of the alleles carrying the deletion were defined to be different. However, here, common alleles haplotype is hard to track for a high local recombination rate. We supposed the deletion could arise as a de novo event in a recombination hot spot in the described and in other populations with a recurrent character. Defined here are the different molecular genetic causes of X-linked ichthyosis in families of different ethnic origins sharing the same residence place in the Republic of North Ossetia-Alania which could point to the existing reproductive barriers even inside close neighborhoods.
Collapse
|
13
|
Hyblova M, Gnip A, Kucharik M, Budis J, Sekelska M, Minarik G. Maternal Copy Number Imbalances in Non-Invasive Prenatal Testing: Do They Matter? Diagnostics (Basel) 2022; 12:diagnostics12123056. [PMID: 36553064 PMCID: PMC9777446 DOI: 10.3390/diagnostics12123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Non-invasive prenatal testing (NIPT) has become a routine practice in screening for common aneuploidies of chromosomes 21, 18, and 13 and gonosomes X and Y in fetuses worldwide since 2015 and has even expanded to include smaller subchromosomal events. In fact, the fetal fraction represents only a small proportion of cell-free DNA on a predominant background of maternal DNA. Unlike fetal findings that have to be confirmed using invasive testing, it has been well documented that NIPT provides information on maternal mosaicism, occult malignancies, and hidden health conditions due to copy number variations (CNVs) with diagnostic resolution. Although large duplications or deletions associated with certain medical conditions or syndromes are usually well recognized and easy to interpret, very little is known about small, relatively common copy number variations on the order of a few hundred kilobases and their potential impact on human health. We analyzed data from 6422 NIPT patient samples with a CNV detection resolution of 200 kb for the maternal genome and identified 942 distinct CNVs; 328 occurred repeatedly. We defined them as multiple occurring variants (MOVs). We scrutinized the most common ones, compared them with frequencies in the gnomAD SVs v2.1, dbVar, and DGV population databases, and analyzed them with an emphasis on genomic content and potential association with specific phenotypes.
Collapse
Affiliation(s)
- Michaela Hyblova
- Medirex Group Academy n.o., Novozamocka 67, 949 05 Nitra, Slovakia
- Trisomy Test s.r.o., Novozamocka 67, 949 05 Nitra, Slovakia
- Correspondence:
| | - Andrej Gnip
- Medirex a.s., Galvaniho 17/C, 820 16 Bratislava, Slovakia
| | | | - Jaroslav Budis
- Geneton s.r.o., Ilkovicova 8, 841 04 Bratislava, Slovakia
| | - Martina Sekelska
- Medirex Group Academy n.o., Novozamocka 67, 949 05 Nitra, Slovakia
- Trisomy Test s.r.o., Novozamocka 67, 949 05 Nitra, Slovakia
| | - Gabriel Minarik
- Medirex Group Academy n.o., Novozamocka 67, 949 05 Nitra, Slovakia
- Trisomy Test s.r.o., Novozamocka 67, 949 05 Nitra, Slovakia
| |
Collapse
|
14
|
Tang X, Wang Z, Yang S, Chen M, Zhang Y, Zhang F, Tan J, Yin T, Wang L. Maternal Xp22.31 copy-number variations detected in non-invasive prenatal screening effectively guide the prenatal diagnosis of X-linked ichthyosis. Front Genet 2022; 13:934952. [PMID: 36118896 PMCID: PMC9471005 DOI: 10.3389/fgene.2022.934952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background and aims: X-linked ichthyosis (XLI) is a common recessive genetic disease caused by the deletion of steroid sulfatase (STS) in Xp22.31. Maternal copy-number deletions in Xp22.31 (covering STS) can be considered an incidental benefit of genome-wide cell-free DNA profiling. Here, we explored the accuracy and clinical value of maternal deletions in Xp22.31 during non-invasive prenatal screening (NIPS). Materials and methods: We evaluated 13,156 pregnant women who completed NIPS. The maternal deletions in Xp22.31 revealed by NIPS were confirmed with maternal white blood cells by chromosome microarray analysis (CMA) or copy-number variation sequencing (CNV-seq). Suspected positive women pregnant with male fetuses were informed and provided with prenatal genetic counseling. Results: Nineteen maternal deletions in Xp22.31 covering STS were detected by NIPS, which were all confirmed, ranging in size from 0.61 to 1.77 Mb. Among them, eleven women with deletions in male fetuses accepted prenatal diagnoses, and finally nine cases of XLI were diagnosed. The nine XLI males had differing degrees of skin abnormalities, and of them, some male members of ten families had symptoms associated with XLI. Conclusion: NIPS has the potential to detect clinically significant maternal X chromosomal CNVs causing XLI, which can guide the prenatal diagnosis of X-linked ichthyosis and reflect the family history, so as to enhance pregnancy management as well as children and family members’ health management.
Collapse
|
15
|
Brcic L, Wren GH, Underwood JFG, Kirov G, Davies W. Comorbid Medical Issues in X-Linked Ichthyosis. JID INNOVATIONS 2022; 2:100109. [PMID: 35330591 PMCID: PMC8938907 DOI: 10.1016/j.xjidi.2022.100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Lucija Brcic
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Georgina H Wren
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jack F G Underwood
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - William Davies
- School of Psychology, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
16
|
Wren G, Davies W. Sex-linked genetic mechanisms and atrial fibrillation risk. Eur J Med Genet 2022; 65:104459. [PMID: 35189376 DOI: 10.1016/j.ejmg.2022.104459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/11/2022] [Accepted: 02/16/2022] [Indexed: 01/14/2023]
Abstract
Atrial fibrillation (AF) is a cardiac condition characterised by an irregular heartbeat, atrial pathology and an elevated downstream risk of thrombosis and heart failure, as well as neurological sequelae including stroke and dementia. The prevalence and presentation of, risk factors for, and therapeutic responses to, AF differ by sex, and this sex bias may be partially explained in terms of genetics. Here, we consider four sex-linked genetic mechanisms that may influence sex-biased phenotypes related to AF and provide examples of each: X-linked gene dosage, X-linked genomic imprinting, sex-biased autosomal gene expression, and male-limited Y-linked gene expression. We highlight novel candidate risk genes and pathways that warrant further investigation in clinical and preclinical studies. Understanding the biological basis of sex differences in AF should allow better prediction of disease risk, identification of novel risk/protective factors, and the development of more effective sex-tailored interventions.
Collapse
Affiliation(s)
| | - William Davies
- School of Psychology, Cardiff University, UK; School of Medicine, Cardiff University, UK.
| |
Collapse
|
17
|
Vitku J, Hill M, Kolatorova L, Kubala Havrdova E, Kancheva R. Steroid Sulfation in Neurodegenerative Diseases. Front Mol Biosci 2022; 9:839887. [PMID: 35281259 PMCID: PMC8904904 DOI: 10.3389/fmolb.2022.839887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Steroid sulfation and desulfation participates in the regulation of steroid bioactivity, metabolism and transport. The authors focused on sulfation and desulfation balance in three neurodegenerative diseases: Alzheimer´s disease (AD), Parkinson´s disease (PD), and multiple sclerosis (MS). Circulating steroid conjugates dominate their unconjugated counterparts, but unconjugated steroids outweigh their conjugated counterparts in the brain. Apart from the neurosteroid synthesis in the central nervous system (CNS), most brain steroids cross the blood-brain barrier (BBB) from the periphery and then may be further metabolized. Therefore, steroid levels in the periphery partly reflect the situation in the brain. The CNS steroids subsequently influence the neuronal excitability and have neuroprotective, neuroexcitatory, antidepressant and memory enhancing effects. They also exert anti-inflammatory and immunoprotective actions. Like the unconjugated steroids, the sulfated ones modulate various ligand-gated ion channels. Conjugation by sulfotransferases increases steroid water solubility and facilitates steroid transport. Steroid sulfates, having greater half-lives than their unconjugated counterparts, also serve as a steroid stock pool. Sulfotransferases are ubiquitous enzymes providing massive steroid sulfation in adrenal zona reticularis and zona fasciculata.. Steroid sulfatase hydrolyzing the steroid conjugates is exceedingly expressed in placenta but is ubiquitous in low amounts including brain capillaries of BBB which can rapidly hydrolyze the steroid sulfates coming across the BBB from the periphery. Lower dehydroepiandrosterone sulfate (DHEAS) plasma levels and reduced sulfotransferase activity are considered as risk factors in AD patients. The shifted balance towards unconjugated steroids can participate in the pathophysiology of PD and anti-inflammatory effects of DHEAS may counteract the MS.
Collapse
Affiliation(s)
- Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
- *Correspondence: Jana Vitku,
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| | - Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Radmila Kancheva
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czechia
| |
Collapse
|
18
|
Schierz IAM, Giuffrè M, Cimador M, D'Alessandro MM, Serra G, Favata F, Antona V, Piro E, Corsello G. Hypertrophic pyloric stenosis masked by kidney failure in a male infant with a contiguous gene deletion syndrome at Xp22.31 involving the steroid sulfatase gene: case report. Ital J Pediatr 2022; 48:19. [PMID: 35115028 PMCID: PMC8812169 DOI: 10.1186/s13052-022-01218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/18/2022] [Indexed: 11/27/2022] Open
Abstract
Background Contiguous gene deletion syndrome at Xp22.3 resulting in nullisomy in males or Turner syndrome patients typically encompasses the steroid sulfatase gene (STS) and contiguously located other genes expanding the phenotype. In large deletions, that encompass also the Kallmann syndrome 1 gene (KAL1), occasionally infantile hypertrophic pyloric stenosis (IHPS) and congenital anomalies of the kidney and urinary tract (CAKUT) have been reported. Patient presentation We report on a male newborn with family history in maternal uncle of renal abnormalities and short stature still without ichthyosiform dermatosis. The baby presented CAKUT with kidney failure and progressive vomiting. Renal bicarbonate loss masked hypochloremic and hypokalemic metabolic alkalosis classically present in IHPS and delayed its diagnosis. Antropyloric ultrasound examination and cystourethrography were diagnostic. After Fredet-Ramstedt extramucosal pyloromyotomy feeding and growing was regular and he was discharged home. Comparative whole-genome hybridization detected a maternal inherited interstitial deletion of 1.56 Mb on Xp22.31(6,552,712_8,115,153) × 0 involving the STS gene, but not the KAL1 gene. Conclusions Aberrant cholesterol sulfate storage due to STS deletion as the underlying pathomechanism is not limited to oculocutaneous phenotypes but could also lead to co-occurrence of both IHPS and kidney abnormalities, as we report. Thus, although these two latter pathologies have a high incidence in the neonatal age, their simultaneous association in our patient is resembling not a chance but a real correlation expanding the clinical spectrum associated with Xp22.31 deletions.
Collapse
Affiliation(s)
- Ingrid Anne Mandy Schierz
- Neonatal Intensive Care Unit, Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P. Giaccone", Via Alfonso Giordano n. 3, 90127, Palermo, Italy.
| | - Mario Giuffrè
- Neonatal Intensive Care Unit, Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P. Giaccone", Via Alfonso Giordano n. 3, 90127, Palermo, Italy
| | - Marcello Cimador
- Pediatric Surgery Unit, Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P. Giaccone", Palermo, Italy
| | | | - Gregorio Serra
- Neonatal Intensive Care Unit, Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P. Giaccone", Via Alfonso Giordano n. 3, 90127, Palermo, Italy
| | - Federico Favata
- Neonatal Intensive Care Unit, Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P. Giaccone", Via Alfonso Giordano n. 3, 90127, Palermo, Italy
| | - Vincenzo Antona
- Neonatal Intensive Care Unit, Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P. Giaccone", Via Alfonso Giordano n. 3, 90127, Palermo, Italy
| | - Ettore Piro
- Neonatal Intensive Care Unit, Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P. Giaccone", Via Alfonso Giordano n. 3, 90127, Palermo, Italy
| | - Giovanni Corsello
- Neonatal Intensive Care Unit, Department of Health Promotion, Mother-Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P. Giaccone", Via Alfonso Giordano n. 3, 90127, Palermo, Italy
| |
Collapse
|
19
|
Wren GH, Humby T, Thompson AR, Davies W. Mood symptoms, neurodevelopmental traits, and their contributory factors in X-linked ichthyosis, ichthyosis vulgaris and psoriasis. Clin Exp Dermatol 2022; 47:1097-1108. [PMID: 35104372 PMCID: PMC9314151 DOI: 10.1111/ced.15116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/28/2022]
Abstract
Background High rates of adverse mood/neurodevelopmental traits are seen in multiple dermatological conditions, and can significantly affect patient quality of life. Understanding the sex‐specific nature, magnitude, impact and basis of such traits in lesser‐studied conditions like ichthyosis, is important for developing effective interventions. Aim To quantify and compare relevant psychological traits in men with X‐linked ichthyosis (XLI, n = 54) or in XLI carrier women (n = 83) and in patients with ichthyosis vulgaris (IV, men n = 23, women n = 59) or psoriasis (men n = 30, women n = 122), and to identify factors self‐reported to contribute most towards depressive, anxious and irritable phenotypes. Methods Participants recruited via relevant charities or social media completed an online survey of established questionnaires. Data were analysed by sex and skin condition, and compared with general population data. Results Compared with the general population, there was a higher rate of lifetime prevalence of mood disorder diagnoses across all groups and of neurodevelopmental disorder diagnoses in the XLI groups. The groups exhibited similarly significant elevations in recent mood symptoms (Cohen d statistic 0.95–1.28, P < 0.001) and neurodevelopmental traits (d = 0.31–0.91, P < 0.05) compared with general population controls, and self‐reported moderate effects on quality of life and stigmatization. There were strong positive associations between neurodevelopmental traits and recent mood symptoms (r > 0.47, P < 0.01), and between feelings of stigmatization and quality of life, particularly in men. Numerous factors were identified as contributing significantly to mood symptoms in a condition or sex‐specific, or condition or sex‐independent, manner. Conclusion We found that individuals with XLI, IV or psoriasis show higher levels of mood disorder diagnoses and symptoms than matched general population controls, and that the prevalence and severity of these is similar across conditions. We also identified a number of factors potentially conferring either general or condition‐specific risk of adverse mood symptoms in the three skin conditions, which could be targeted clinically and/or through education programmes. In clinical practice, recognizing mood/neurodevelopmental problems in ichthyosis and psoriasis, and addressing the predisposing factors identified by this study should benefit the mental health of affected individuals.
Collapse
Affiliation(s)
| | - Trevor Humby
- School of Psychology, Cardiff University, Cardiff, UK
| | - Andrew R Thompson
- School of Psychology, Cardiff University, Cardiff, UK.,South Wales Clinical Psychology Doctoral Programme, Cardiff, Vale University Health Board, Cardiff, UK
| | - William Davies
- School of Psychology, Cardiff University, Cardiff, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
20
|
Boyd KP, Asumda FZ, Hand JL. Update on Clinically Relevant Genetic Testing in Pediatric Dermatology. Dermatol Clin 2021; 40:1-8. [PMID: 34799030 DOI: 10.1016/j.det.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clinical genetic testing enables the detection of specific gene mutations and variants that predispose individuals and their family members to disease. In recent years, tremendous strides have been made in the variety of clinically useful tests. Targeted testing for specific mutations that cause well-known syndromes enables the efficient diagnosis of genetic diseases with cutaneous manifestations. Testing for specific genes, however, may not always reveal a diagnosis. Expanded options are available. This review outlines the major types of available technology with a focus on those tests most useful for pediatric dermatologists.
Collapse
Affiliation(s)
- Kevin P Boyd
- Department of Dermatology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA
| | - Faizal Z Asumda
- Department of Clinical Genomics, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA
| | - Jennifer L Hand
- Department of Dermatology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
21
|
Gubb SJA, Brcic L, Underwood JFG, Kendall KM, Caseras X, Kirov G, Davies W. Medical and neurobehavioural phenotypes in male and female carriers of Xp22.31 duplications in the UK Biobank. Hum Mol Genet 2021; 29:2872-2881. [PMID: 32766777 PMCID: PMC7566349 DOI: 10.1093/hmg/ddaa174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Deletions spanning the STS (steroid sulfatase) gene at Xp22.31 are associated with X-linked ichthyosis, corneal opacities, testicular maldescent, cardiac arrhythmia, and higher rates of developmental and mood disorders/traits, possibly related to the smaller volume of some basal ganglia structures. The consequences of duplication of the same genomic region have not been systematically assessed in large or adult samples, although evidence from case reports/series has indicated high rates of developmental phenotypes. We compared multiple measures of physical and mental health, cognition and neuroanatomy in male (n = 414) and female (n = 938) carriers of 0.8–2.5 Mb duplications spanning STS, and non-carrier male (n = 192, 826) and female (n = 227, 235) controls from the UK Biobank (recruited aged 40–69 from the UK general population). Clinical and self-reported diagnoses indicated a higher prevalence of inguinal hernia and mania/bipolar disorder respectively in male duplication carriers, and a higher prevalence of gastro-oesophageal reflux disease and blistering/desquamating skin disorder respectively in female duplication carriers; duplication carriers also exhibited reductions in several depression-related measures, and greater happiness. Cognitive function and academic achievement did not differ between comparison groups. Neuroanatomical analysis suggested greater lateral ventricle and putamen volume in duplication carriers. In conclusion, Xp22.31 duplications appear largely benign, but could slightly increase the likelihood of specific phenotypes (although results were only nominally-significant). In contrast to deletions, duplications might protect against depressive symptoms, possibly via higher STS expression/activity (resulting in elevated endogenous free steroid levels), and through contributing towards an enlarged putamen volume. These results should enable better genetic counselling of individuals with Xp22.31 microduplications.
Collapse
Affiliation(s)
- Samuel J A Gubb
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Lucija Brcic
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Jack F G Underwood
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Kimberley M Kendall
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Xavier Caseras
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - George Kirov
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - William Davies
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom.,School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
22
|
Davies W. The contribution of Xp22.31 gene dosage to Turner and Klinefelter syndromes and sex-biased phenotypes. Eur J Med Genet 2021; 64:104169. [PMID: 33610733 DOI: 10.1016/j.ejmg.2021.104169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 11/27/2022]
Abstract
Turner syndrome (TS) is a rare developmental condition in females caused by complete, or partial, loss of the second sex chromosome; it is associated with a number of phenotypes including short stature, ovarian failure and infertility, as well as neurobehavioural and cognitive manifestations. In contrast, Klinefelter syndrome (KS) arises from an excess of X chromosome material in males (typical karyotype is 47,XXY); like TS, KS is associated with infertility and hormonal imbalance, and behavioural/neurocognitive differences from gonadal sex-matched counterparts. Lower dosage of genes that escape X-inactivation may partially explain TS phenotypes, whilst overdosage of these genes may contribute towards KS-related symptoms. Here, I discuss new findings from individuals with deletions or duplications limited to Xp22.31 (a region escaping X-inactivation), and consider the extent to which altered gene dosage within this small interval (and of the steroid sulfatase (STS) gene in particular) may influence the phenotypic profiles of TS and KS. The expression of X-escapees can be higher in female than male tissues; I conclude by considering how lower Xp22.31 gene dosage in males may increase their likelihood of exhibiting particular phenotypes relative to females. Understanding the genetic contribution to specific phenotypes in rare disorders such as TS and KS, and to more common sex-biased phenotypes, will be important for developing more effective, and more personalised, therapeutic approaches.
Collapse
Affiliation(s)
- William Davies
- School of Psychology, Cardiff University, Cardiff, UK; Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.
| |
Collapse
|
23
|
Thippeswamy H, Davies W. A new molecular risk pathway for postpartum mood disorders: clues from steroid sulfatase-deficient individuals. Arch Womens Ment Health 2021; 24:391-401. [PMID: 33219387 PMCID: PMC8116278 DOI: 10.1007/s00737-020-01093-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
Postpartum mood disorders develop shortly after childbirth in a significant proportion of women. These conditions are associated with a range of symptoms including abnormally high or low mood, irritability, cognitive disorganisation, disrupted sleep, hallucinations/delusions, and occasionally suicidal or infanticidal ideation; if not treated promptly, they can substantially impact upon the mother's health, mother-infant bonding, and family dynamics. The biological precipitants of such disorders remain unclear, although large changes in maternal immune and hormonal physiology following childbirth are likely to play a role. Pharmacological therapies for postpartum mood disorders can be effective, but may be associated with side effects, concerns relating to breastfeeding, and teratogenicity risks when used prophylactically. Furthermore, most of the drugs that are used to treat postpartum mood disorders are the same ones that are used to treat mood episodes during non-postpartum periods. A better understanding of the biological factors predisposing to postpartum mood disorders would allow for rational drug development, and the identification of predictive biomarkers to ensure that 'at risk' mothers receive earlier and more effective clinical management. We describe new findings relating to the role of the enzyme steroid sulfatase in maternal postpartum behavioural processes, and discuss how these point to a novel molecular risk pathway underlying postpartum mood disorders. Specifically, we suggest that aberrant steroid hormone-dependent regulation of neuronal calcium influx via extracellular matrix proteins and membrane receptors involved in responding to the cell's microenvironment might be important. Testing of this hypothesis might identify novel therapeutic targets and predictive biomarkers.
Collapse
Affiliation(s)
- Harish Thippeswamy
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - William Davies
- Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK. .,School of Psychology, Cardiff University, Tower Building, 70, Park Place, Cardiff, CF10 3AT, UK. .,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.
| |
Collapse
|