1
|
Li AL, He JQ, Zeng L, Hu YQ, Wang M, Long JY, Chang SH, Jin JY, Xiang R. Case report: Identification of novel fibrillin-2 variants impacting disulfide bond and causing congenital contractural arachnodactyly. Front Genet 2023; 14:1035887. [PMID: 36936417 PMCID: PMC10020613 DOI: 10.3389/fgene.2023.1035887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Congenital contractural arachnodactyly (CCA) is an autosomal dominant connective tissue disorder with clinical features of arthrogryposis, arachnodactyly, crumpled ears, scoliosis, and muscular hypoplasia. The heterozygous pathogenic variants in FBN2 have been shown to cause CCA. Fibrillin-2 is related to the elasticity of the tissue and has been demonstrated to play an important role in the constitution of extracellular microfibrils in elastic fibers, providing strength and flexibility to the connective tissue that sustains the body's joints and organs. Methods: We recruited two Chinese families with arachnodactyly and bilateral arthrogryposis of the fingers. Whole-exome sequencing (WES) and co-segregation analysis were employed to identify their genetic etiologies. Three-dimensional protein models were used to analyze the pathogenic mechanism of the identified variants. Results: We have reported two CCA families and identified two novel missense variants in FBN2 (NM_001999.3: c.4093T>C, p.C1365R and c.2384G>T, p.C795F). The structural models of the mutant FBN2 protein in rats exhibited that both the variants could break disulfide bonds. Conclusion: We detected two FBN2 variants in two families with CCA. Our description expands the genetic profile of CCA and emphasizes the pathogenicity of disulfide bond disruption in FBN2.
Collapse
Affiliation(s)
- An-Lei Li
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
- School of Life Sciences, Central South University, Changsha, China
| | - Ji-Qiang He
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Lei Zeng
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Yi-Qiao Hu
- School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Min Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Jie-Yi Long
- School of Life Sciences, Central South University, Changsha, China
| | - Si-Hua Chang
- School of Life Sciences, Central South University, Changsha, China
| | - Jie-Yuan Jin
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Jie-Yuan Jin, ; Rong Xiang,
| | - Rong Xiang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
- School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Jie-Yuan Jin, ; Rong Xiang,
| |
Collapse
|
2
|
Pathophysiology, Diagnosis, Treatment, and Genetics of Carpal Tunnel Syndrome: A Review. Cell Mol Neurobiol 2022:10.1007/s10571-022-01297-2. [PMID: 36217059 DOI: 10.1007/s10571-022-01297-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022]
Abstract
Carpal tunnel syndrome (CTS) is a common peripheral canalicular nerve entrapment syndrome in the upper extremities. The compression of or injury to the median nerve at the wrist as it passes through a space-limited osteofibrous carpal canal can cause CTS, resulting in hand pain and impaired function. The present paper reviews the literature on the prevalence, pathology, diagnosis, treatment, and risk factors of CTS in conjunction with the role of genetic factors in CTS etiology. CTS diagnosis is primarily linked with clinical symptoms; still, it is simplified by sophisticated approaches such as magnetic resonance imaging and ultrasonography. CTS symptoms can be ameliorated through conservative and surgical strategies. The exact CTS pathophysiology needs clarification. Genetic predispositions to CTS are augmented by various variants within genes; however, CTS etiology could include risk factors such as wrist movements, injury, and specific conditions (e.g., age, body mass index, sex, and cardiovascular conditions). The high prevalence of CTS diminishes the quality of life of its sufferers and imposes costs on health systems, hence the significance of research and clinical trials to elucidate CTS pathogenesis and develop novel therapeutic targets.
Collapse
|
3
|
Peeters S, De Kinderen P, Meester JAN, Verstraeten A, Loeys BL. The fibrillinopathies: new insights with focus on the paradigm of opposing phenotypes for both FBN1 and FBN2. Hum Mutat 2022; 43:815-831. [PMID: 35419902 PMCID: PMC9322447 DOI: 10.1002/humu.24383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
Abstract
Different pathogenic variants in the fibrillin‐1 gene (FBN1) cause Marfan syndrome and acromelic dysplasias. Whereas the musculoskeletal features of Marfan syndrome involve tall stature, arachnodactyly, joint hypermobility, and muscle hypoplasia, acromelic dysplasia patients present with short stature, brachydactyly, stiff joints, and hypermuscularity. Similarly, pathogenic variants in the fibrillin‐2 gene (FBN2) cause either a Marfanoid congenital contractural arachnodactyly or a FBN2‐related acromelic dysplasia that most prominently presents with brachydactyly. The phenotypic and molecular resemblances between both the FBN1 and FBN2‐related disorders suggest that reciprocal pathomechanistic lessons can be learned. In this review, we provide an updated overview and comparison of the phenotypic and mutational spectra of both the “tall” and “short” fibrillinopathies. The future parallel functional study of both FBN1/2‐related disorders will reveal new insights into how pathogenic fibrillin variants differently affect the fibrillin microfibril network and/or growth factor homeostasis in clinically opposite syndromes. This knowledge may eventually be translated into new therapeutic approaches by targeting or modulating the fibrillin microfibril network and/or the signaling pathways under its control.
Collapse
Affiliation(s)
- Silke Peeters
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Pauline De Kinderen
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Josephina A N Meester
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Aline Verstraeten
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Bart L Loeys
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium.,Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Pottie L, Adamo CS, Beyens A, Lütke S, Tapaneeyaphan P, De Clercq A, Salmon PL, De Rycke R, Gezdirici A, Gulec EY, Khan N, Urquhart JE, Newman WG, Metcalfe K, Efthymiou S, Maroofian R, Anwar N, Maqbool S, Rahman F, Altweijri I, Alsaleh M, Abdullah SM, Al-Owain M, Hashem M, Houlden H, Alkuraya FS, Sips P, Sengle G, Callewaert B. Bi-allelic premature truncating variants in LTBP1 cause cutis laxa syndrome. Am J Hum Genet 2021; 108:1095-1114. [PMID: 33991472 PMCID: PMC8206382 DOI: 10.1016/j.ajhg.2021.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/22/2021] [Indexed: 02/02/2023] Open
Abstract
Latent transforming growth factor β (TGFβ)-binding proteins (LTBPs) are microfibril-associated proteins essential for anchoring TGFβ in the extracellular matrix (ECM) as well as for correct assembly of ECM components. Variants in LTBP2, LTBP3, and LTBP4 have been identified in several autosomal recessive Mendelian disorders with skeletal abnormalities with or without impaired development of elastin-rich tissues. Thus far, the human phenotype associated with LTBP1 deficiency has remained enigmatic. In this study, we report homozygous premature truncating LTBP1 variants in eight affected individuals from four unrelated consanguineous families. Affected individuals present with connective tissue features (cutis laxa and inguinal hernia), craniofacial dysmorphology, variable heart defects, and prominent skeletal features (craniosynostosis, short stature, brachydactyly, and syndactyly). In vitro studies on proband-derived dermal fibroblasts indicate distinct molecular mechanisms depending on the position of the variant in LTBP1. C-terminal variants lead to an altered LTBP1 loosely anchored in the microfibrillar network and cause increased ECM deposition in cultured fibroblasts associated with excessive TGFβ growth factor activation and signaling. In contrast, N-terminal truncation results in a loss of LTBP1 that does not alter TGFβ levels or ECM assembly. In vivo validation with two independent zebrafish lines carrying mutations in ltbp1 induce abnormal collagen fibrillogenesis in skin and intervertebral ligaments and ectopic bone formation on the vertebrae. In addition, one of the mutant zebrafish lines shows voluminous and hypo-mineralized vertebrae. Overall, our findings in humans and zebrafish show that LTBP1 function is crucial for skin and bone ECM assembly and homeostasis.
Collapse
Affiliation(s)
- Lore Pottie
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Christin S Adamo
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Aude Beyens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium; Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Steffen Lütke
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Piyanoot Tapaneeyaphan
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Adelbert De Clercq
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | | | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium; VIB Center for Inflammation Research, Ghent 9052, Belgium; Ghent University Expertise Centre for Transmission Electron Microscopy and VIB Bioimaging Core, Ghent 9052, Belgium
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Health Sciences University, Istanbul 34303, Turkey
| | - Naz Khan
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Jill E Urquhart
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Kay Metcalfe
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Najwa Anwar
- Development and Behavioral Pediatrics Department, Institute of Child Health and The Children Hospital, Lahore 54000, Pakistan
| | - Shazia Maqbool
- Development and Behavioral Pediatrics Department, Institute of Child Health and The Children Hospital, Lahore 54000, Pakistan
| | - Fatima Rahman
- Development and Behavioral Pediatrics Department, Institute of Child Health and The Children Hospital, Lahore 54000, Pakistan
| | - Ikhlass Altweijri
- Department of Neurosurgery, King Khalid University Hospital, Riyadh 11211, Saudi Arabia
| | - Monerah Alsaleh
- Heart Centre, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sawsan Mohamed Abdullah
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mohammad Al-Owain
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Mais Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Patrick Sips
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Street 21, Cologne 50931, Germany; Cologne Center for Musculoskeletal Biomechanics, Cologne 50931, Germany
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|