1
|
Peng Y, Liao J, He X, Zhou Y, Zhang L, Jia Y, Yang H. Prevalence of BRCA1 and BRCA2 mutations in ovarian cancer patients from Yunnan Province in southwest China. Eur J Cancer Prev 2024:00008469-990000000-00181. [PMID: 39513675 DOI: 10.1097/cej.0000000000000931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Carriers with germline breast cancer 1/2 gene mutations (BRCAm) are likely to develop ovarian cancer (OC). Therefore, identifying these mutations may enable individualized therapy for OC and preventive measures to reduce OC risk in BRCAm carrier families. Thus, we investigated the prevalence of BRCAm in OC patients from Yunnan Province in Southwest China. In total, 674 unselected OC patients were enrolled and tested for BRCAm via next-generation sequencing. Data on clinicopathological characteristics and personal/family history of cancer were collected. The prevalence rates of pathogenic/likely pathogenic BRCAm were 26.6% overall, 20.8% among BRCA1m carriers, 5.5% among BRCA2m carriers, and 0.3% among carriers of both BRCA1m and BRCA2m. The most common pathogenic mutation in the BRCA1 gene was c.5114T>C (n = 9). The number of BRCAm carriers was significantly greater among patients with serous cancer, a personal tumor history, a family history of hereditary breast and ovarian cancer (HBOC)-related tumors, and bilateral tumors. The most common pathogenic mutation in this cohort was c.5114T>C (n = 9) in BRCA1. The prevalence and spectrum of BRCAm in OC patients from Yunnan Province are different from those in other groups. BRCA status testing is advised for all OC patients, particularly those with a family history of HBOC.
Collapse
Affiliation(s)
| | | | | | - Yongchun Zhou
- Molecular Diagnosis Center of Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan Province, China
| | | | | | | |
Collapse
|
2
|
Zhao B, Li J, Sinha S, Qin Z, Kou SH, Xiao F, Lei H, Chen T, Cao W, Ding X, Wang SM. Pathogenic variants in human DNA damage repair genes mostly arose in recent human history. BMC Cancer 2024; 24:415. [PMID: 38575974 PMCID: PMC10993466 DOI: 10.1186/s12885-024-12160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Genome stability is maintained by the DNA damage repair (DDR) system composed of multiple DNA repair pathways of hundreds of genes. Germline pathogenic variation (PV) in DDR genes damages function of the affected DDR genes, leading to genome instability and high risk of diseases, in particular, cancer. Knowing evolutionary origin of the PVs in human DDR genes is essential to understand the etiology of human diseases. However, answer to the issue remains largely elusive. In this study, we analyzed evolutionary origin for the PVs in human DDR genes. METHODS We identified 169 DDR genes by referring to various databases and identified PVs in the DDR genes of modern humans from ClinVar database. We performed a phylogenetic analysis to analyze the conservation of human DDR PVs in 100 vertebrates through cross-species genomic data comparison using the phyloFit program of the PHAST package and visualized the results using the GraphPad Prism software and the ggplot module. We identified DDR PVs from over 5000 ancient humans developed a database to host the DDR PVs ( https://genemutation.fhs.um.edu.mo/dbDDR-AncientHumans ). Using the PV data, we performed a molecular archeological analysis to compare the DDR PVs between modern humans and ancient humans. We analyzed evolution selection of DDR genes across 20 vertebrates using the CodeML in PAML for phylogenetic analysis. RESULTS Our phylogenic analysis ruled out cross-species conservation as the origin of human DDR PVs. Our archeological approach identified rich DDR PVs shared between modern and ancient humans, which were mostly dated within the last 5000 years. We also observed similar pattern of quantitative PV distribution between modern and ancient humans. We further detected a set of ATM, BRCA2 and CHEK2 PVs shared between human and Neanderthals. CONCLUSIONS Our study reveals that human DDR PVs mostly arose in recent human history. We propose that human high cancer risk caused by DDR PVs can be a by-product of human evolution.
Collapse
Affiliation(s)
- Bojin Zhao
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Jiaheng Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Siddharth Sinha
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Zixin Qin
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Si Hoi Kou
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Fengxia Xiao
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Huijun Lei
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Tianhui Chen
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Wenming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Xiaofan Ding
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| |
Collapse
|
3
|
Wu Z, Zhang Q, Jin Y, Zhang X, Chen Y, Yang C, Tang X, Jiang H, Wang X, Zhou X, Yu F, Wang B, Guan M. Population-based BRCA germline mutation screening in the Han Chinese identifies individuals at risk of BRCA mutation-related cancer: experience from a clinical diagnostic center from greater Shanghai area. BMC Cancer 2024; 24:411. [PMID: 38566028 PMCID: PMC10988807 DOI: 10.1186/s12885-024-12089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Deleterious BRCA1/2 (BRCA) mutation raises the risk for BRCA mutation-related malignancies, including breast, ovarian, prostate, and pancreatic cancer. Germline variation of BRCA exhibits substantial ethnical diversity. However, there is limited research on the Chinese Han population, constraining the development of strategies for BRCA mutation screening in this large ethnic group. METHODS We profile the BRCA mutational spectrum, including single nucleotide variation, insertion/deletion, and large genomic rearrangements in 2,080 apparently healthy Chinese Han individuals and 522 patients with BRCA mutation-related cancer, to determine the BRCA genetic background of the Chinese Han population, especially of the East Han. Incident cancer events were monitored in 1,005 participants from the healthy group, comprising 11 BRCA pathogenic/likely pathogenic (PLP) variant carriers and 994 PLP-free individuals, including 3 LGR carriers. RESULTS Healthy Chinese Han individuals demonstrated a distinct BRCA mutational spectrum compared to cancer patients, with a 0.53% (1 in 189) prevalence of pathogenic/likely pathogenic (PLP) variant, alongside a 3 in 2,080 occurrence of LGR. BRCA1 c. 5470_5477del demonstrated high prevalence (0.44%) in the North Han Chinese and penetrance for breast cancer. None of the 3 LGR carriers developed cancer during the follow-up. We calculated a relative risk of 135.55 (95% CI 25.07 to 732.88) for the development of BRCA mutation-related cancers in the BRCA PLP variant carriers (mean age 42.91 years, median follow-up 10 months) compared to PLP-free individuals (mean age 48.47 years, median follow-up 16 months). CONCLUSION The unique BRCA mutational profile in the Chinese Han highlights the potential for standardized population-based BRCA variant screening to enhance BRCA mutation-related cancer prevention and treatment.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Qingyun Zhang
- Central Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yiting Jin
- Department of General Surgery, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xinju Zhang
- Central Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yanli Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Can Yang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xuemei Tang
- Central Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xiaoyi Wang
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xinli Zhou
- Department of Oncology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Feng Yu
- Health Management Center, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Bing Wang
- Health Management Center, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 200040, Shanghai, China.
- Central Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| |
Collapse
|
4
|
Chian JS, Li J, Wang SM. Evolutionary Origin of Human PALB2 Germline Pathogenic Variants. Int J Mol Sci 2023; 24:11343. [PMID: 37511102 PMCID: PMC10379391 DOI: 10.3390/ijms241411343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
PALB2 (Partner and localizer of BRCA2) is crucial for repairing DNA double-stranded breaks (DSBs) through homologous recombination (HR). Germline pathogenic variation in PALB2 disrupts DNA damage repair and increases the risk of Fanconi Anemia, breast cancer, and ovarian cancer. Determination of the evolutionary origin of human PALB2 variants will promote a deeper understanding of the biological basis of PALB2 germline variation and its roles in human diseases. We tested the evolution origin for 1444 human PALB2 germline variants, including 484 pathogenic and 960 benign variants. We performed a phylogenic analysis by tracing the variants in 100 vertebrates. However, we found no evidence to show that cross-species conservation was the origin of PALB2 germline pathogenic variants, but it is indeed a rich source for PALB2 germline benign variants. We performed a paleoanthropological analysis by tracing the variants in over 5000 ancient humans. We identified 50 pathogenic in 71 ancient humans dated from 32,895 to 689 before the present, of which 90.1% were dated within the recent 10,000 years. PALB2 benign variants were also highly shared with ancient humans. Data from our study reveal that human PALB2 pathogenic variants mostly arose in recent human history.
Collapse
Affiliation(s)
- Jia Sheng Chian
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao
| | - Jiaheng Li
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao
| | - San Ming Wang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao
| |
Collapse
|
5
|
Qin Z, Li J, Tam B, Sinha S, Zhao B, Bhaskaran SP, Huang T, Wu X, Chian JS, Guo M, Kou SH, Lei H, Zhang L, Wang X, Lagniton PNP, Xiao F, Jiang X, Wang SM. Ethnic-specificity, evolution origin and deleteriousness of Asian BRCA variation revealed by over 7500 BRCA variants derived from Asian population. Int J Cancer 2023; 152:1159-1173. [PMID: 36385461 PMCID: PMC10098510 DOI: 10.1002/ijc.34359] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Pathogenic variation in BRCA1 and BRCA2 (BRCA) causes high risk of breast and ovarian cancer, and BRCA variation data are important markers for BRCA-related clinical cancer applications. However, comprehensive BRCA variation data are lacking from the Asian population despite its large population size, heterogenous genetic background and diversified living environment across the Asia continent. We performed a systematic study on BRCA variation in Asian population including extensive data mining, standardization, annotation and characterization. We identified 7587 BRCA variants from 685 592 Asian individuals in 40 Asia countries and regions, including 1762 clinically actionable pathogenic variants and 4915 functionally unknown variants (https://genemutation.fhs.um.edu.mo/Asian-BRCA/). We observed the highly ethnic-specific nature of Asian BRCA variants between Asian and non-Asian populations and within Asian populations, highlighting that the current European descendant population-based BRCA data is inadequate to reflect BRCA variation in the Asian population. We also provided archeological evidence for the evolutionary origin and arising time of Asian BRCA variation. We further provided structural-based evidence for the deleterious variants enriched within the functionally unknown Asian BRCA variants. The data from our study provide a current view of BRCA variation in the Asian population and a rich resource to guide clinical applications of BRCA-related cancer for the Asian population.
Collapse
Affiliation(s)
- Zixin Qin
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Jiaheng Li
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Benjamin Tam
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Siddharth Sinha
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Bojin Zhao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Shanmuga Priya Bhaskaran
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Teng Huang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Xiaobing Wu
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Jia Sheng Chian
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Maoni Guo
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Si Hoi Kou
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Huijun Lei
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Li Zhang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Xiaoyu Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Philip Naderev P Lagniton
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Fengxia Xiao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Xinyang Jiang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
6
|
Wang SM. A global perspective on the ethnic-specific BRCA variation and its implication in clinical application. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:14-20. [PMID: 39036311 PMCID: PMC11256725 DOI: 10.1016/j.jncc.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Pathogenic BRCA1 and BRCA2 (BRCA) variation is the genetic predisposition for high cancer risk affecting mostly breast and ovarian. BRCA variation information is widely used in clinical diagnosis, treatment, and prevention of BRCA-related cancer. The positive selection imposed on human BRCA leads to highly ethnic-specific BRCA variation to adapt different living environment on earth. Most of the human BRCA variants identified so far were from the European descendant populations and used as the standard reference for global human populations, whereas BRCA variation in other ethnic populations remains poorly characterized. This review addresses the origin of ethnic-specific BRCA variation, the importance of ethnic-specific BRCA variation in clinical application, the limitation of current BRCA variation data, and potential solutions to fill the gap.
Collapse
Affiliation(s)
- San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
7
|
Lei H, Zhang M, Zhang L, Hemminki K, Wang XJ, Chen T. Overview on population screening for carriers with germline BRCA mutation in China. Front Oncol 2022; 12:1002360. [PMID: 36439508 PMCID: PMC9682265 DOI: 10.3389/fonc.2022.1002360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2023] Open
Abstract
Carriers with BRCA1/2 germline pathogenic variants are associated with a high risk of breast and ovarian cancers (also pancreatic and prostate cancers). While the spectrum on germline BRCA mutations among the Chinese population shows ethnic specificity, the identification of carriers with germline BRCA mutation before cancer onset is the most effective approach to protect them. This review focused on the current status of BRCA1/2 screening, the surveillance and prevention measures, and discussed the issues and potential impact of BRCA1/2 population screening in China. We conducted literature research on databases PubMed and Google Scholar, as well as Chinese databases CNKI and Wangfang Med Online database (up to 31 March 2022). Latest publications on germline BRCA1/2 prevalence, spectrum, genetic screening as well as carrier counseling, surveillance and prevention were captured where available. While overall 15,256 records were retrieved, 72 publications using germline BRCA1/2 testing were finally retained for further analyses. Germline BRCA1/2 mutations are common in Chinese patients with hereditary breast, ovarian, prostate and pancreatic cancers. Within previous studies, a unique BRCA mutation spectrum in China was revealed. Next-generation sequencing panel was considered as the most common method for BRCA1/2 screening. Regular surveillance and preventive surgeries were tailored to carriers with mutated-BRCA1/2. We recommend that all Chinese diagnosed with breast, ovarian, pancreatic or prostate cancers and also healthy family members, shall undergo BRCA1/2 gene test to provide risk assessment. Subsequently, timely preventive measures for mutation carriers are recommended after authentic genetic counseling.
Collapse
Affiliation(s)
- Huijun Lei
- Department of Cancer Prevention/Zhejiang Cancer Institute, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Min Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luyao Zhang
- Department of Cancer Epidemiology and Prevention, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Kari Hemminki
- Biomedical Center, Faculty of Medicine, Charles University in Pilsen, Pilsen, Czechia
- Division of Cancer Epidemiology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Xiao-jia Wang
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Tianhui Chen
- Department of Cancer Prevention/Zhejiang Cancer Institute, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Zhang Y, Wu H, Yu Z, Li L, Zhang J, Liang X, Huang Q. Germline variants profiling of BRCA1 and BRCA2 in Chinese Hakka breast and ovarian cancer patients. BMC Cancer 2022; 22:842. [PMID: 35918668 PMCID: PMC9347172 DOI: 10.1186/s12885-022-09943-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/25/2022] [Indexed: 12/26/2022] Open
Abstract
Objective To investigate the prevalence and spectrum of BRCA1 and BRCA2 mutations in Chinese Hakka patients with breast and ovarian cancer. Methods A total of 1,664 breast or ovarian cancer patients were enrolled for genetic testing at our hospital. Germline mutations of the BRCA gene were analysed by next-generation sequencing, including the coding regions and exon intron boundary regions. Results The 1,664 patients included 1,415 (85.04%) breast cancer patients and 245 (14.72%) ovarian cancer patients, while four (0.24%) patients had both the breast and ovarian cancers. A total of 151 variants, including 71 BRCA1 variants and 80 BRCA2 variants, were detected in the 234 (14.06%) patients. The 151 variants included 58 pathogenic variants, 8 likely pathogenic variants, and 85 variants of unknown significance (VUS). A total of 56.25% (18/32) and 65.38% (17/26) of pathogenic variants (likely pathogenic variants are not included) were distributed in exon 14 of BRCA1 and exon 11 of BRCA2, respectively. The most common pathogenic variants among this Hakka population are c.2635G > T (p.Glu879*) (n = 7) in the BRCA1 gene and c.5164_5165del (p.Ser1722Tyrfs*4) (n = 7) in the BRCA2 gene among the Hakka population. A hotspot mutation in the Chinese population, the BRCA1 c.5470_5477del variant was not found in this Hakka population. The prevalence and spectrum of variants in the BRCA genes in the Hakka patients are different from that in other ethnic groups. Conclusions The most common pathogenic variant in this population is c.2635G > T in the BRCA1 gene, and c.5164_5165delAG in the BRCA2 gene in this population. The prevalence and spectrum of variants in the BRCA1 and BRCA2 genes in the Hakka patients from southern China are different from those in other ethnic groups. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09943-0.
Collapse
Affiliation(s)
- Yunuo Zhang
- Department of Medical Oncology, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Center for Precision Medicine, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China
| | - Heming Wu
- Center for Precision Medicine, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China.,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Zhikang Yu
- Center for Precision Medicine, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China.,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Liang Li
- Department of Medical Oncology, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Center for Precision Medicine, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China
| | - Jinhong Zhang
- Department of Medical Oncology, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Center for Precision Medicine, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China
| | - Xinhong Liang
- Center for Precision Medicine, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China.,Radiology department, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Qingyan Huang
- Center for Precision Medicine, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China. .,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China. .,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.
| |
Collapse
|
9
|
Li J, Zhao B, Huang T, Qin Z, Wang SM. Human BRCA pathogenic variants were originated during recent human history. Life Sci Alliance 2022; 5:5/5/e202101263. [PMID: 35165121 PMCID: PMC8860097 DOI: 10.26508/lsa.202101263] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/05/2023] Open
Abstract
BRCA1 and BRCA2 (BRCA) play essential roles in maintaining genome stability. BRCA germline pathogenic variants increase cancer risk. However, the evolutionary origin of human BRCA pathogenic variants remains largely elusive. We tested the 2,972 human BRCA1 and 3,652 human BRCA2 pathogenic variants from ClinVar database in 100 vertebrates across eight clades, but failed to find evidence to show cross-species evolution conservation as the origin; we searched the variants in 2,792 ancient human genome data, and identified 28 BRCA1 and 22 BRCA2 pathogenic variants in 44 cases dated from 45,000 to 300 yr ago; we analyzed the haplotype-dated human BRCA pathogenic founder variants, and observed that they were mostly arisen within the past 3,000 yr; we traced ethnic distribution of human BRCA pathogenic variants, and found that the majority were present in single or a few ethnic populations. Based on the data, we propose that human BRCA pathogenic variants were highly likely arisen in recent human history after the latest out-of-Africa migration, and the expansion of modern human population could largely increase the variation spectrum.
Collapse
Affiliation(s)
- Jiaheng Li
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Bojin Zhao
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Teng Huang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zixin Qin
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - San Ming Wang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
10
|
Zhang L, Qin Z, Huang T, Tam B, Ruan Y, Guo M, Wu X, Li J, Zhao B, Chian JS, Wang X, Wang L, Wang SM. Prevalence and spectrum of DNA mismatch repair gene variation in the general Chinese population. J Med Genet 2021; 59:652-661. [PMID: 34172528 PMCID: PMC9252855 DOI: 10.1136/jmedgenet-2021-107886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/06/2021] [Indexed: 01/18/2023]
Abstract
Background Identifying genetic disease-susceptible individuals through population screening is considered as a promising approach for disease prevention. DNA mismatch repair (MMR) genes including MLH1, MSH2, MSH6 and PMS2 play essential roles in maintaining microsatellite stability through DNA mismatch repair, and pathogenic variation in MMR genes causes microsatellite instability and is the genetic predisposition for cancer as represented by the Lynch syndrome. While the prevalence and spectrum of MMR variation has been extensively studied in cancer, it remains largely elusive in the general population. Lack of the knowledge prevents effective prevention for MMR variation–caused cancer. In the current study, we addressed the issue by using the Chinese population as a model. Methods We performed extensive data mining to collect MMR variant data from 18 844 ethnic Chinese individuals and comprehensive analyses for the collected MMR variants to determine its prevalence, spectrum and features of the MMR data in the Chinese population. Results We identified 17 687 distinct MMR variants. We observed substantial differences of MMR variation between the general Chinese population and Chinese patients with cancer, identified highly Chinese-specific MMR variation through comparing MMR data between Chinese and non-Chinese populations, predicted the enrichment of deleterious variants in the unclassified Chinese-specific MMR variants, determined MMR pathogenic prevalence of 0.18% in the general Chinese population and determined that MMR variation in the general Chinese population is evolutionarily neutral. Conclusion Our study provides a comprehensive view of MMR variation in the general Chinese population, a resource for biological study of human MMR variation, and a reference for MMR-related cancer applications.
Collapse
Affiliation(s)
- Li Zhang
- University of Macau, Taipa, Macau, China
| | - Zixin Qin
- University of Macau, Taipa, Macau, China
| | - Teng Huang
- University of Macau, Taipa, Macau, China
| | | | | | - Maoni Guo
- University of Macau, Taipa, Macau, China
| | | | - Jiaheng Li
- University of Macau, Taipa, Macau, China
| | - Bojin Zhao
- University of Macau, Taipa, Macau, China
| | | | | | - Lei Wang
- University of Macau, Taipa, Macau, China
| | | |
Collapse
|
11
|
Chian J, Sinha S, Qin Z, Wang SM. BRCA1 and BRCA2 Variation in Taiwanese General Population and the Cancer Cohort. Front Mol Biosci 2021; 8:685174. [PMID: 34235180 PMCID: PMC8256441 DOI: 10.3389/fmolb.2021.685174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/28/2021] [Indexed: 01/08/2023] Open
Abstract
BRCA1 and BRCA2 (BRCA) play essential roles in maintaining genome stability. Rapidly evolving human BRCA generates oncogenic variants causing high cancer risk. BRCA variation is ethnic-specific in reflecting adaptation and/or effects of genetic drift. Taiwanese population of 23.8 million is an admixture of multiple ethnic origins; Taiwan's subtropical and tropical climate and geographically islandic location provide a unique natural environment. Therefore, Taiwanese population provides a unique model to study human BRCA variation. Through collecting, standardizing, annotating, and classifying publicly available BRCA variants derived from Taiwanese general population and the cancer cohort, we identified 335 BRCA variants, of which 164 were from 1,517 non-cancer individuals, 126 from 2,665 cancer individuals, and 45 from both types of individuals. We compared the variant data with those from other ethnic populations such as mainland Chinese, Macau Chinese, Japanese, Korean, Indian, and non-Asians. We observed that the sharing rates with other Asian ethnic populations were correlated with its genetic relationship. Over 60% of the 335 Taiwanese BRCA variants were VUS, unclassified variants, or novel variants, reflecting the ethnic-specific features of Taiwanese BRCA variation. While it remains challenging to classify these variants, our structural and in silico analyses predicted their enrichment of BRCA deleterious variants. We further determined the 3.8% prevalence of BRCA pathogenic variants in the Taiwanese breast cancer cohort, and determined 0.53% prevalence of the BRCA pathogenic variants in Taiwanese general population, with the estimated 126,140 BRCA pathogenic variant carriers. We identified BRCA2 c.5164_5165delAG at BRCA2 BRC6 motif as a potential founder mutation in Taiwanese population. Our study on BRCA variation in Taiwanese and other East Asian populations demonstrates that ethnic specificity is a common phenomenon for BRCA variation in East Asian population; the data generated from the study provide a reference for clinical applications in BRCA-related cancer in Taiwanese population.
Collapse
Affiliation(s)
- Jiasheng Chian
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Siddharth Sinha
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zixin Qin
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|