1
|
Possible Mechanisms of Subsequent Neoplasia Development in Childhood Cancer Survivors: A Review. Cancers (Basel) 2021; 13:cancers13205064. [PMID: 34680213 PMCID: PMC8533890 DOI: 10.3390/cancers13205064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Advances in medicine have improved outcomes in children diagnosed with cancer, with overall 5-year survival rates for these children now exceeding 80%. Two-thirds of childhood cancer survivors have at least one late effect of cancer therapy, with one-third having serious or even life-threatening effects. One of the most serious late effects is a development of subsequent malignant neoplasms (histologically different cancers, which appear after the treatment for primary cancer), which occur in about 3-10% of survivors and are associated with high mortality. In cancers with a very good prognosis, subsequent malignant neoplasms significantly affect long-term survival. Therefore, there is an effort to reduce particularly hazardous treatments. This review discusses the importance of individual factors (gender, genetic factors, cytostatic drugs, radiotherapy) in the development of subsequent malignant neoplasms and the possibilities of their prediction and prevention in the future.
Collapse
|
2
|
Takahashi K. Germline polymorphisms and the risk of therapy-related myeloid neoplasms. Best Pract Res Clin Haematol 2019; 32:24-30. [DOI: 10.1016/j.beha.2019.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
|
3
|
Demoor-Goldschmidt C, de Vathaire F. Review of risk factors of secondary cancers among cancer survivors. Br J Radiol 2018; 92:20180390. [PMID: 30102558 DOI: 10.1259/bjr.20180390] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Improvements in cancer survival have made the long-term risks from treatments more important, in particular among the children, adolescents and young adults who are more at risk particularly due to a longer life expectancy and a higher sensitivity to treatments. Subsequent malignancies in cancer survivors now constitute 15 to 20% of all cancer diagnoses in the cancer registries. Lots of studies are published to determine risk factors, with some controversial findings. Just data from large cohorts with detailed information on individual treatments and verification of what is called "secondary cancers" can add some knowledge, because their main difficulty is that the number of events for most second cancer sites are low, which impact the statistical results. In this review of the literature, we distinguish second and secondary cancers and discuss the factors contributing to this increased risk of secondary cancers. The article concludes with a summary of current surveillance and screening recommendations.
Collapse
Affiliation(s)
- Charlotte Demoor-Goldschmidt
- CESP University, Paris-Sud, UVSQ, INSERM, Université Paris-Saclay, Villejuif, France.,Cancer and Radiation Team, Gustave Roussy, Villejuif, France.,Pediatric Oncology, Hematology, Immunology, CHU d'Angers, Angers, France
| | - Florent de Vathaire
- CESP University, Paris-Sud, UVSQ, INSERM, Université Paris-Saclay, Villejuif, France.,Cancer and Radiation Team, Gustave Roussy, Villejuif, France
| |
Collapse
|
4
|
Gruszka AM, Valli D, Alcalay M. Understanding the molecular basis of acute myeloid leukemias: where are we now? Int J Hematol Oncol 2017; 6:43-53. [PMID: 30302223 DOI: 10.2217/ijh-2017-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022] Open
Abstract
Although the treatment modalities for acute myeloid leukemia (AML) have not changed much over the past 40 years, distinct progress has been made in deciphering the basic biology underlying the pathogenesis of this group of hematological disorders. Studies show that AML development is a multicause, multistep and multipathway process. Accordingly, AMLs constitute a heterogeneous group of diseases. The thorough understanding of the molecular basis of AML is paving the way for better therapeutic approaches. Multiple novel drugs are being introduced and new, more efficient and less toxic formulations of conventional therapeutics are becoming available. Here, we review the recent advances in the comprehension of the molecular processes that lead to the onset of AML and its translation into clinical practice.
Collapse
Affiliation(s)
- Alicja M Gruszka
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy.,Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy
| | - Debora Valli
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy.,Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy
| | - Myriam Alcalay
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy.,Department of Oncology & Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy.,Department of Experimental Oncology, Istituto Europeo di Oncologia, Via Adamello 16, 20139 Milano, Italy.,Department of Oncology & Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| |
Collapse
|
5
|
Li S, Zheng Y, Tian T, Wang M, Liu X, Liu K, Zhai Y, Dai C, Deng Y, Li S, Dai Z, Lu J. Pooling-analysis on hMLH1 polymorphisms and cancer risk: evidence based on 31,484 cancer cases and 45,494 cancer-free controls. Oncotarget 2017; 8:93063-93078. [PMID: 29190978 PMCID: PMC5696244 DOI: 10.18632/oncotarget.21810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/08/2017] [Indexed: 01/18/2023] Open
Abstract
To elucidate the veritable relationship between three hMLH1 polymorphisms (rs1800734, rs1799977, rs63750447) and cancer risk, we performed this meta-analysis based on overall published data up to May 2017, from PubMed, Web of knowledge, VIP, WanFang and CNKI database, and the references of the original studies or review articles. 57 publications including 31,484 cancer cases and 45,494 cancer-free controls were obtained. The quality assessment of six articles obtained a summarized score less than 6 in terms of the Newcastle-Ottawa Scale (NOS). All statistical analyses were calculated with the software STATA (Version 14.0; Stata Corp, College Station, TX). We found all the three polymorphisms can enhance overall cancer risk, especially in Asians, under different genetic comparisons. In the subgroup analysis by cancer type, we found a moderate association between rs1800734 and the risk of gastric cancer (allele model: OR = 1.14, P = 0.017; homozygote model: OR = 1.33, P = 0.019; dominant model: OR = 1.27, P = 0.024) and lung cancer in recessive model (OR = 1.27, P = 0.024). The G allele of rs1799977 polymorphism was proved to connect with susceptibility of colorectal cancer (allele model: OR = 1.21, P = 0.023; dominate model: OR = 1.32, P <0.0001) and prostate cancer (dominate model: OR = 1.36, P <0.0001). Rs63750447 showed an increased risk of colorectal cancer, endometrial cancer and gastric cancer under all genetic models. These findings provide evidence that hMLH1 polymorphisms may associate with cancer risk, especially in Asians.
Collapse
Affiliation(s)
- Sha Li
- Clinical Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.,Department of Pharmacy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yi Zheng
- Clinical Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.,Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Tian Tian
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Meng Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xinghan Liu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Kang Liu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yajing Zhai
- Clinical Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Cong Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yujiao Deng
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Shanli Li
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Zhijun Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jun Lu
- Clinical Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
6
|
Abou Zahr A, Kavi AM, Mukherjee S, Zeidan AM. Therapy-related myelodysplastic syndromes, or are they? Blood Rev 2016; 31:119-128. [PMID: 27923516 DOI: 10.1016/j.blre.2016.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/14/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022]
Abstract
The incidence of therapy-related myelodysplastic syndromes (t-MDS) is increasing as the number of cancer survivors is increasing. While t-MDS is currently defined descriptively by prior receipt of chemotherapy and/or radiotherapy, some forms of MDS that occur post localized radiation monotherapy, biologically and clinically resemble de novo (d)-MDS more than t-MDS, and therefore may not be truly therapy-related. Although patients with t-MDS, as a group, fare worse than patients with d-MDS, a variation in individual outcomes of patients with t-MDS has increasingly been appreciated. As such, accurate risk stratification is important for counseling of patients and for clinical decision making. Most of the current clinical tools used for prognostication in t-MDS were developed for d-MDS and were not specifically validated in patients with t-MDS. The management of patients with t-MDS remains challenging, highlighting the importance of developing effective prevention strategies as well as newer, targeted, and rationally-designed therapeutic interventions.
Collapse
Affiliation(s)
- Abdallah Abou Zahr
- Section of Hematology/Oncology, Department of Internal Medicine, Mount Sinai Beth Israel, New York City, New York, NY, USA
| | - Ami M Kavi
- Department of Internal Medicine, Mount Sinai Beth Israel, New York City, New York, NY, USA
| | - Sudipto Mukherjee
- Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Morton LM, Onel K, Curtis RE, Hungate EA, Armstrong GT. The rising incidence of second cancers: patterns of occurrence and identification of risk factors for children and adults. Am Soc Clin Oncol Educ Book 2015:e57-67. [PMID: 24857148 DOI: 10.14694/edbook_am.2014.34.e57] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As the population of cancer survivors has increased and continues to age, the occurrence of second cancers has risen dramatically-from 9% of all cancer diagnoses in 1975-1979 to 19% in 2005-2009. The Childhood Cancer Survivor Study, a cohort of more than 14,000 childhood cancer survivors with detailed exposure data and long-term follow-up, has substantially contributed to our understanding of the roles of radiotherapy and chemotherapy in second cancer occurrence. In particular, dose-related risks have been demonstrated for second cancers of the breast, thyroid, central nervous system, gastrointestinal tract, and sarcomas following radiation. Cytotoxic chemotherapy-which has long been known to be leukemogenic-also appears to contribute to risk for a range of other second cancer types. Individuals who develop a second cancer are at particularly high risk for developing additional second cancers. A genome-wide association study of survivors of Hodgkin lymphoma who received radiotherapy identified a locus on chromosome 6q21 as being associated with second cancer risk, demonstrating that recent advances in genomics are likely to prove invaluable for elucidating the contribution of genetic susceptibility to second cancer etiology. Among adults, risk of second cancers varies substantially by type of first and second cancer, patient age, and prevalence of second cancer risk factors, including primary cancer treatments, environmental and lifestyle exposures, and genetic susceptibility. Further research is needed to quantify second cancer risks associated with specific etiologic factors and to identify the patients at highest risk of developing a second cancer to target prevention and screening efforts.
Collapse
Affiliation(s)
- Lindsay M Morton
- From the Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD; Department of Pediatrics, The University of Chicago, Chicago, IL; and Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN
| | - Kenan Onel
- From the Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD; Department of Pediatrics, The University of Chicago, Chicago, IL; and Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN
| | - Rochelle E Curtis
- From the Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD; Department of Pediatrics, The University of Chicago, Chicago, IL; and Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN
| | - Eric A Hungate
- From the Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD; Department of Pediatrics, The University of Chicago, Chicago, IL; and Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN
| | - Gregory T Armstrong
- From the Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD; Department of Pediatrics, The University of Chicago, Chicago, IL; and Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
8
|
|
9
|
Bhatia S. Genetic variation as a modifier of association between therapeutic exposure and subsequent malignant neoplasms in cancer survivors. Cancer 2014; 121:648-63. [PMID: 25355167 DOI: 10.1002/cncr.29096] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 11/08/2022]
Abstract
Subsequent malignant neoplasms (SMNs) are associated with significant morbidity and are a major cause of premature mortality among cancer survivors. Several large studies have demonstrated a strong association between the radiation and/or chemotherapy used to treat primary cancer and the risk of developing SMNs. However, for any given therapeutic exposure, the risk of developing an SMN varies between individuals. Genomic variation can potentially modify the association between therapeutic exposures and SMN risk and may explain the observed interindividual variability. In this review, the author provides a brief overview of the current knowledge regarding the role of genomic variation in the development of therapy-related SMNs and discusses the methodological challenges in undertaking an endeavor to develop a deeper understanding of the molecular underpinnings of therapy-related SMNs, such as an appropriate study design, the identification of an adequately sized study population together with a reliable plan for collecting and maintaining high-quality DNA, clinical validation of the phenotype, and the selection of an appropriate approach or platform for genotyping. Understanding the factors that can modify the risk of treatment-related SMNs is critical to developing targeted intervention strategies and optimizing risk-based health care for cancer survivors.
Collapse
Affiliation(s)
- Smita Bhatia
- Department of Population Sciences, City of Hope, Duarte, California
| |
Collapse
|
10
|
De Langhe S, Mulliez T, Veldeman L, Remouchamps V, van Greveling A, Gilsoul M, De Schepper E, De Ruyck K, De Neve W, Thierens H. Factors modifying the risk for developing acute skin toxicity after whole-breast intensity modulated radiotherapy. BMC Cancer 2014; 14:711. [PMID: 25252713 PMCID: PMC4192342 DOI: 10.1186/1471-2407-14-711] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 09/18/2014] [Indexed: 11/29/2022] Open
Abstract
Background After breast-conserving radiation therapy most patients experience acute skin toxicity to some degree. This may impair patients’ quality of life, cause pain and discomfort. In this study, we investigated treatment and patient-related factors, including genetic polymorphisms, that can modify the risk for severe radiation-induced skin toxicity in breast cancer patients. Methods We studied 377 patients treated at Ghent University Hospital and at ST.-Elisabeth Clinic and Maternity in Namur, with adjuvant intensity modulated radiotherapy (IMRT) after breast-conserving surgery for breast cancer. Women were treated in a prone or supine position with normofractionated (25 × 2 Gy) or hypofractionated (15 × 2.67 Gy) IMRT alone or in combination with other adjuvant therapies. Patient- and treatment-related factors and genetic markers in regulatory regions of radioresponsive genes and in LIG3, MLH1 and XRCC3 genes were considered as variables. Acute dermatitis was scored using the CTCAEv3.0 scoring system. Desquamation was scored separately on a 3-point scale (0-none, 1-dry, 2-moist). Results Two-hundred and twenty patients (58%) developed G2+ dermatitis whereas moist desquamation occurred in 56 patients (15%). Normofractionation (both p < 0.001), high body mass index (BMI) (p = 0.003 and p < 0.001), bra cup size ≥ D (p = 0.001 and p = 0.043) and concurrent hormone therapy (p = 0.001 and p = 0.037) were significantly associated with occurrence of acute dermatitis and moist desquamation, respectively. Additional factors associated with an increased risk of acute dermatitis were the genetic variation in MLH1 rs1800734 (p=0.008), smoking during RT (p = 0.010) and supine IMRT (p = 0.004). Patients receiving trastuzumab showed decreased risk of acute dermatitis (p < 0.001). Conclusions The normofractionation schedule, supine IMRT, concomitant hormone treatment and patient related factors (high BMI, large breast, smoking during treatment and the genetic variation in MLH1 rs1800734) were associated with increased acute skin toxicity in patients receiving radiation therapy after breast-conserving surgery. Trastuzumab seemed to be protective.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hubert Thierens
- Department of Basic Medical Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium.
| |
Collapse
|
11
|
Morton LM, Swerdlow AJ, Schaapveld M, Ramadan S, Hodgson DC, Radford J, van Leeuwen FE. Current knowledge and future research directions in treatment-related second primary malignancies. EJC Suppl 2014; 12:5-17. [PMID: 26217162 PMCID: PMC4250537 DOI: 10.1016/j.ejcsup.2014.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 01/13/2023] Open
Abstract
Currently, 17-19% of all new primary malignancies occur in survivors of cancer, causing substantial morbidity and mortality. Research has shown that cancer treatments are important contributors to second malignant neoplasm (SMN) risk. In this paper we summarise current knowledge with regard to treatment-related SMNs and provide recommendations for future research. We address the risks associated with radiotherapy and systemic treatments, modifying factors of treatment-related risks (genetic susceptibility, lifestyle) and the potential benefits of screening and interventions. Research priorities were identified during a workshop at the 2014 Cancer Survivorship Summit organised by the European Organisation for Research and Treatment of Cancer. Recently, both systemic cancer treatments and radiotherapy approaches have evolved rapidly, with the carcinogenic potential of new treatments being unknown. Also, little knowledge is available about modifying factors of treatment-associated risk, such as genetic variants and lifestyle. Therefore, large prospective studies with biobanking, high quality treatment data (radiation dose-volume, cumulative drug doses), and data on other cancer risk factors are needed. International collaboration will be essential to have adequate statistical power for such investigations. While screening for SMNs is included in several follow-up guidelines for cancer survivors, its effectiveness in this special population has not been demonstrated. Research into the pathogenesis, tumour characteristics and survival of SMNs is essential, as well as the development of interventions to reduce SMN-related morbidity and mortality. Prediction models for SMN risk are needed to inform initial treatment decisions, balancing chances of cure and SMNs and to identify high-risk subgroups of survivors eligible for screening.
Collapse
Affiliation(s)
- Lindsay M. Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Anthony J. Swerdlow
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | - Michael Schaapveld
- Department of Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Safaa Ramadan
- European Organisation for Research and Treatment of Cancer, Brussels, Belgium
| | - David C. Hodgson
- Radiation Medicine Program, Princess Margaret Hospital, University Health Network, and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - John Radford
- The University of Manchester and The Christie National Health Service Foundation Trust, Manchester, United Kingdom
| | - Flora E. van Leeuwen
- Department of Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Casorelli I, Bossa C, Bignami M. DNA damage and repair in human cancer: molecular mechanisms and contribution to therapy-related leukemias. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2636-57. [PMID: 23066388 PMCID: PMC3447578 DOI: 10.3390/ijerph9082636] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/12/2012] [Accepted: 07/02/2012] [Indexed: 12/12/2022]
Abstract
Most antitumour therapies damage tumour cell DNA either directly or indirectly. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum, ataxia-telangiectasia and Fanconi anemia. Notably, DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Unexpectedly, a paradoxical relationship between DNA mismatch repair and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between DNA repair mechanism efficiency and tumour therapy might be more complex. Here, we review the evidence for the contribution of carcinogenic properties of several drugs as well as of alterations in specific mechanisms involved in drug-induced DNA damage response and repair in the pathogenesis of therapy-related cancers.
Collapse
Affiliation(s)
- Ida Casorelli
- Azienda Ospedaliera Sant’Andrea, Via di Grottarossa 1035-1039, Roma 00189, Italy;
| | - Cecilia Bossa
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy;
| | - Margherita Bignami
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy;
- Author to whom correspondence should be addressed; ; Tel.: +39-6-49901-2355; Fax: +39-6-49901-3650
| |
Collapse
|
13
|
Salas C, Niembro A, Lozano V, Gallardo E, Molina B, Sánchez S, Ramos S, Carnevale A, Pérez-Vera P, Rivera Luna R, Frias S. Persistent genomic instability in peripheral blood lymphocytes from Hodgkin lymphoma survivors. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:271-280. [PMID: 22434555 DOI: 10.1002/em.21691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 05/31/2023]
Abstract
Advances in cancer treatment have led to an increase in patient survival. However, exposure to genotoxic chemotherapeutic agents and ionizing radiation may induce persistent genetic damage in cancer survivors. In this study, we detected genomic instability in chromosomes of peripheral blood lymphocytes from Hodgkin lymphoma patients, 2-17 years after MOPP (nitrogen mustard, Oncovin, procarbazine, and prednisone) chemotherapy with or without radiotherapy. Samples were obtained from 11 healthy individuals, 5 pretreatment patients, and 20 posttreatment patients. Cytogenetic analysis with GTG banding was performed on 1,000 lymphocyte metaphases per donor to identify genomic instability, including numerical and structural chromosomal aberrations, at a resolution of 10 Mb across the entire genome. Our results showed that anticancer treatment did not induce significant differences in the frequency of aneuploidy among the three study groups. However, 1 of the 11 healthy individuals, and 13 of the 20 posttreatment patients had a high frequency of chromosomal breaks and gross chromosomal rearrangements. The types of aberrations observed were random and complex, consistent with persistent genomic instability that was induced by cancer treatment. Clonal expansion of cells with chromosomal lesions was observed in one posttreatment patient only. These findings show that anticancer treatments induce persistent genomic instability, but not aneuploidy. Chemotherapy may affect genes with a role in DNA damage surveillance or repair, which in turn allows the accumulation of nontargeted structural chromosomal damage in future generations of cells. This genomic instability may facilitate the development of second malignancies in Hodgkin lymphoma survivors.
Collapse
Affiliation(s)
- C Salas
- Laboratorio de Cultivo de Tejidos, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, México
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Subsequent malignant neoplasms after hematopoietic cell transplantation. Biol Blood Marrow Transplant 2012; 18:S139-50. [PMID: 22226098 DOI: 10.1016/j.bbmt.2011.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Bhatia S. Role of genetic susceptibility in development of treatment-related adverse outcomes in cancer survivors. Cancer Epidemiol Biomarkers Prev 2012; 20:2048-67. [PMID: 21980013 DOI: 10.1158/1055-9965.epi-11-0659] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Clear and unambiguous associations have been established between therapeutic exposures and specific complications. However, considerable interindividual variability is observed in the risk of developing an outcome for a given therapeutic exposure. Genetic predisposition and especially its interaction with therapeutic exposures can potentially exacerbate the toxic effect of treatment on normal tissues and organ systems, and can possibly explain the interindividual variability. This article provides a brief overview of the current knowledge about the role of genomic variation in the development of therapy-related complications. Relatively common outcomes with strong associations with therapeutic exposures, including cardiomyopathy, obesity, osteonecrosis, ototoxicity, and subsequent malignancies are discussed here. To develop a deeper understanding of the molecular underpinnings of therapy-related complications, comprehensive and near-complete collection of clinically annotated samples is critical. Methodologic issues such as study design, definition of the endpoints or phenotypes, identification of appropriate and adequately sized study population together with a reliable plan for collecting and maintaining high-quality DNA, and selection of an appropriate approach or platform for genotyping are also discussed. Understanding the etiopathogenetic pathways that lead to the morbidity is critical to developing targeted prevention and intervention strategies, optimizing risk-based health care of cancer survivors, thus minimizing chronic morbidities and improving quality of life.
Collapse
Affiliation(s)
- Smita Bhatia
- Department of Population Sciences, City of Hope, Duarte, CA 91010-3000, USA.
| |
Collapse
|
16
|
Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: a prospective analysis study. Lancet Oncol 2012; 13:65-77. [PMID: 22169268 DOI: 10.1016/s1470-2045(11)70302-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Several studies have reported associations between radiation toxicity and single nucleotide polymorphisms (SNPs) in candidate genes. Few associations have been tested in independent validation studies. This prospective study aimed to validate reported associations between genotype and radiation toxicity in a large independent dataset. METHODS 92 (of 98 attempted) SNPs in 46 genes were successfully genotyped in 1613 patients: 976 received adjuvant breast radiotherapy in the Cambridge breast IMRT trial (ISRCTN21474421, n=942) or in a prospective study of breast toxicity at the Christie Hospital, Manchester, UK (n=34). A further 637 received radical prostate radiotherapy in the MRC RT01 multicentre trial (ISRCTN47772397, n=224) or in the Conventional or Hypofractionated High Dose Intensity Modulated Radiotherapy for Prostate Cancer (CHHiP) trial (ISRCTN97182923, n=413). Late toxicity was assessed 2 years after radiotherapy with a validated photographic technique (patients with breast cancer only), clinical assessment, and patient questionnaires. Association tests of genotype with overall radiation toxicity score and individual endpoints were undertaken in univariate and multivariable analyses. At a type I error rate adjusted for multiple testing, this study had 99% power to detect a SNP, with minor allele frequency of 0·35, associated with a per allele odds ratio of 2·2. FINDINGS None of the previously reported associations were confirmed by this study, after adjustment for multiple comparisons. The p value distribution of the SNPs tested against overall toxicity score was not different from that expected by chance. INTERPRETATION We did not replicate previously reported late toxicity associations, suggesting that we can essentially exclude the hypothesis that published SNPs individually exert a clinically relevant effect. Continued recruitment of patients into studies within the Radiogenomics Consortium is essential so that sufficiently powered studies can be done and methodological challenges addressed. FUNDING Cancer Research UK, The Royal College of Radiologists, Addenbrooke's Charitable Trust, Breast Cancer Campaign, Cambridge National Institute of Health Research (NIHR) Biomedical Research Centre, Experimental Cancer Medicine Centre, East Midlands Innovation, the National Cancer Institute, Joseph Mitchell Trust, Royal Marsden NHS Foundation Trust, Institute of Cancer Research NIHR Biomedical Research Centre for Cancer.
Collapse
|
17
|
Pan XM, Yang WZ, Xu GH, Bai P, Qin HJ, Zhang LS, Zhai XD, Tang M, Deng W, Zhang L, Gao LB. The association between MLH1 -93 G>A polymorphism of DNA mismatch repair and cancer susceptibility: a meta-analysis. Mutagenesis 2011; 26:667-73. [PMID: 21745804 DOI: 10.1093/mutage/ger032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
DNA mismatch repair, known as a fundamentally biological pathway, plays key roles in maintaining genomic stability, eliminating mismatch bases and preventing both mutagenesis in the short term and cancerogenesis in the long term. Polymorphisms of MLH1 in individuals may have an effect on the DNA repair capacity and therefore on cancer risk. Recently, emerging studies have been done to evaluate the association between MLH1 -93 G/A polymorphism and cancer risk in diverse populations. However, the results remain conflicting rather than conclusive. In this meta-analysis, we assessed reported studies of association between the MLH1 -93 G/A polymorphism and cancer risk including 13 691 cancer cases and 14 068 controls from 17 published studies. A borderline significant association between the MLH1 -93 G/A polymorphism and cancer risk was observed in overall analysis [heterozygote: odds ratio (OR) = 1.15; 95% confidence interval (CI) 1.05-1.26; homozygote: OR = 1.21; 95% CI, 1.04-1.40; dominant model: OR = 1.13; 95% CI 1.01-1.26; recessive model: OR = 1.21; 95% CI 1.07-1.35, respectively]. In subgroup analysis by ethnicity, significantly increased risks were found in Asian population and mixed population but not in Caucasian population. After stratified analysis according to the quality of literature, increased cancer risks were observed in the studies of lower quality but not in the studies of higher quality. Similarly, elevated cancer risks were observed in hospital-based studies but not in population-based studies. These findings showed no persuasive evidence that MLH1 -93 G/A polymorphism was associated with an increased risk of cancer. On the conservative standpoint, well-designed population-based studies with larger sample size in different ethnic groups should be performed to further confirm these results.
Collapse
Affiliation(s)
- Xin-Min Pan
- Department of Forensic Pathology, College of Forensic Medicine, Henan University of Science and Technology, 31 Anhui Road, Jianxi District, Luoyang, Henan 471003, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hematologic adverse events associated with temozolomide. Cancer Chemother Pharmacol 2011; 69:107-13. [DOI: 10.1007/s00280-011-1679-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/08/2011] [Indexed: 10/18/2022]
|
19
|
Godley LA, Cunningham J, Dolan ME, Huang RS, Gurbuxani S, McNerney ME, Larson RA, Leong H, Lussier Y, Onel K, Odenike O, Stock W, White KP, Le Beau MM. An integrated genomic approach to the assessment and treatment of acute myeloid leukemia. Semin Oncol 2011; 38:215-24. [PMID: 21421111 DOI: 10.1053/j.seminoncol.2011.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Traditionally, new scientific advances have been applied quickly to the leukemias based on the ease with which relatively pure samples of malignant cells can be obtained. Currently, our arsenal of approaches used to characterize an individual's acute myeloid leukemia (AML) combines hematopathologic evaluation, flow cytometry, cytogenetic analysis, and molecular studies focused on a few key genes. The advent of high-throughput methods capable of full-genome evaluation presents new options for a revolutionary change in the way we diagnose, characterize, and treat AML. Next-generation DNA sequencing techniques allow full sequencing of a cancer genome or transcriptome, with the hope that this will be affordable for routine clinical care within the decade. Microarray-based testing will define gene and miRNA expression, DNA methylation patterns, chromosomal imbalances, and predisposition to disease and chemosensitivity. The vision for the future entails an integrated and automated approach to these analyses, bringing the possibility of formulating an individualized treatment plan within days of a patient's initial presentation. With these expectations comes the hope that such an approach will lead to decreased toxicities and prolonged survival for patients.
Collapse
Affiliation(s)
- Lucy A Godley
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA. lgodley@medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Whiffin N, Broderick P, Lubbe SJ, Pittman AM, Penegar S, Chandler I, Houlston RS. MLH1-93G > A is a risk factor for MSI colorectal cancer. Carcinogenesis 2011; 32:1157-61. [PMID: 21565826 DOI: 10.1093/carcin/bgr089] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The -93G > A (rs1800734) polymorphism within the core promoter region of the MutL homolog 1 (MLH1) gene has recently been proposed as a low penetrance variant for colorectal cancer (CRC). We evaluated the significance of rs1800734 on CRC risk by genotyping 10 409 CRC cases and 6965 controls. The per allele odds ratio (OR) for all CRC-associated MLH1-93G > A was 1.06 (P = 0.037). Using a subset of 3132 cases with known microsatellite instability (MSI) status, the risk was shown to be confined to microsatellite instability-high (MSI-H) CRC; OR = 1.39 (P = 1.45 × 10(-4)). A meta-analysis of our study and four smaller published studies (totalling 801 cases, 10 890 controls) provided for increased evidence of relationship between MLH1-93G > A and MSI-H CRC risk (P = 3.43 × 10(-12)). The impact of MLH1-93G > A on CRC risk was shown to be independent of the 14 low penetrance loci for CRC identified by recent genome-wide association studies. These data provide further evidence that MLH1-93G > A is a low-penetrance variant for CRC and support the proposition that MLH1-93G > A acts as marker for a somatic event defining a specific CRC subtype.
Collapse
Affiliation(s)
- Nicola Whiffin
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Leucémies aiguës myéloïdes secondaires aux traitements : implication des mécanismes de réparation de l'ADN. Bull Cancer 2011; 98:247-55. [DOI: 10.1684/bdc.2011.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Rajesh P, Litvinchuk AV, Pittman DL, Wyatt MD. The homologous recombination protein RAD51D mediates the processing of 6-thioguanine lesions downstream of mismatch repair. Mol Cancer Res 2011; 9:206-14. [PMID: 21205838 DOI: 10.1158/1541-7786.mcr-10-0451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Thiopurines are extensively used as immunosuppressants and in the treatment of childhood cancers, even though there is concern about therapy-induced leukemias and myelodysplastic syndromes resulting from thiopurine use. Following metabolic activation, thiopurines are incorporated into DNA and invoke mismatch repair (MMR). Recognition of 6-thioguanine (6-thioG) in DNA by key MMR proteins results in cell death rather than repair. There are suggestions that homologous recombination (HR) is involved downstream of MMR following thiopurine treatment, but the precise role of HR is poorly understood. In this study, we demonstrate that cells deficient in RAD51D (a RAD51 paralogue) are extremely sensitive to 6-thioG. This sensitivity is almost completely rescued by the deletion of Mlh1, which suggests that HR is involved in the repair of the 6-thioG-induced recombinogenic lesions generated by MMR. Furthermore, 6-thioG induces chromosome aberrations in the Rad51d-deficient cells. Interestingly, Rad51d-deficient cells show a striking increase in the frequency of triradial and quadriradial chromosomes in response to 6-thioG therapy. The presence of these chromatid exchange-type aberrations indicates that the deficiency in RAD51D-dependent HR results in profound chromosomal damage precipitated by the processing of 6-thioG by MMR. The radials are notable as an important source of chromosomal translocations, which are the most common class of mutations found in hematologic malignancies. This study thus suggests that HR insufficiency could be a potential risk factor for the development of secondary cancers that result from long-term use of thiopurines in patients.
Collapse
Affiliation(s)
- Preeti Rajesh
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia SC 29208, USA
| | | | | | | |
Collapse
|
23
|
Mrkonjic M, Roslin NM, Greenwood CM, Raptis S, Pollett A, Laird PW, Pethe VV, Chiang T, Daftary D, Dicks E, Thibodeau SN, Gallinger S, Parfrey PS, Younghusband HB, Potter JD, Hudson TJ, McLaughlin JR, Green RC, Zanke BW, Newcomb PA, Paterson AD, Bapat B. Specific variants in the MLH1 gene region may drive DNA methylation, loss of protein expression, and MSI-H colorectal cancer. PLoS One 2010; 5:e13314. [PMID: 20967208 PMCID: PMC2954166 DOI: 10.1371/journal.pone.0013314] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 09/15/2010] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND We previously identified an association between a mismatch repair gene, MLH1, promoter SNP (rs1800734) and microsatellite unstable (MSI-H) colorectal cancers (CRCs) in two samples. The current study expanded on this finding as we explored the genetic basis of DNA methylation in this region of chromosome 3. We hypothesized that specific polymorphisms in the MLH1 gene region predispose it to DNA methylation, resulting in the loss of MLH1 gene expression, mismatch-repair function, and consequently to genome-wide microsatellite instability. METHODOLOGY/PRINCIPAL FINDINGS We first tested our hypothesis in one sample from Ontario (901 cases, 1,097 controls) and replicated major findings in two additional samples from Newfoundland and Labrador (479 cases, 336 controls) and from Seattle (591 cases, 629 controls). Logistic regression was used to test for association between SNPs in the region of MLH1 and CRC, MSI-H CRC, MLH1 gene expression in CRC, and DNA methylation in CRC. The association between rs1800734 and MSI-H CRCs, previously reported in Ontario and Newfoundland, was replicated in the Seattle sample. Two additional SNPs, in strong linkage disequilibrium with rs1800734, showed strong associations with MLH1 promoter methylation, loss of MLH1 protein, and MSI-H CRC in all three samples. The logistic regression model of MSI-H CRC that included MLH1-promoter-methylation status and MLH1 immunohistochemistry status fit most parsimoniously in all three samples combined. When rs1800734 was added to this model, its effect was not statistically significant (P-value = 0.72 vs. 2.3×10(-4) when the SNP was examined alone). CONCLUSIONS/SIGNIFICANCE The observed association of rs1800734 with MSI-H CRC occurs through its effect on the MLH1 promoter methylation, MLH1 IHC deficiency, or both.
Collapse
Affiliation(s)
- Miralem Mrkonjic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Nicole M. Roslin
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Celia M. Greenwood
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Stavroula Raptis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Aaron Pollett
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Peter W. Laird
- University of Southern California Epigenome Center, University of Southern California, Los Angeles, California, United States of America
| | - Vaijayanti V. Pethe
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Theodore Chiang
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Darshana Daftary
- Ontario Familial Colorectal Cancer Registry, Cancer Care Ontario, Toronto, Ontario, Canada
| | - Elizabeth Dicks
- Clinical Epidemiology Unit, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Stephen N. Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Steven Gallinger
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Ontario Familial Colorectal Cancer Registry, Cancer Care Ontario, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Patrick S. Parfrey
- Clinical Epidemiology Unit, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | - John D. Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington, United States of America
| | - Thomas J. Hudson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John R. McLaughlin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Ontario Familial Colorectal Cancer Registry, Cancer Care Ontario, Toronto, Ontario, Canada
| | - Roger C. Green
- Discipline of Genetics, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Brent W. Zanke
- Ontario Familial Colorectal Cancer Registry, Cancer Care Ontario, Toronto, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington, United States of America
| | - Andrew D. Paterson
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Bharati Bapat
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
24
|
Incidence and susceptibility to therapy-related myeloid neoplasms. Chem Biol Interact 2009; 184:39-45. [PMID: 20026017 DOI: 10.1016/j.cbi.2009.12.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/09/2009] [Accepted: 12/11/2009] [Indexed: 02/05/2023]
Abstract
Therapy-related myeloid neoplasms (t-MN) include acute myeloid leukemias and myelodysplastic syndromes arising in patients who have been treated with chemotherapy, radiation therapy, immunosuppressive agents or after documented exposure to environmental carcinogen. t-MN are defined according to the primary treatment and the corresponding genetic and molecular lesions. Chromosome(s) 7 and/or 5 monosomies or deletions are typical of alkylating agent-induced AML, while balanced translocations involving chromosome bands 11q23 and 21q22 are associated to preceeding therapy with DNA-topoisomerase II inhibitors. Antimetabolites, and in particular the immunosuppressive agents azathioprine and fludarabine, have also been recently associated to t-MN. Leukemias developing after benzene exposure are similar to t-MN and are characterized by chromosomal aberrations, which have been also observed among otherwise healthy benzene-exposed workers. Individual predisposing factors, including polymorphisms of detoxification and DNA-repair enzymes have been identified. Two genetic variants in key metabolizing enzymes, myeloperoxidase and NAD(P)H:quinone oxidoreductase, have been shown to influence susceptibility to benzene hematotoxicity. Combination of polymorphisms impairing detoxification and DNA repair may significantly increase therapy-related myeloid neoplasm risk. Among hematological malignancies, long-term survivors of Hodgkin's lymphoma are exposed to an increased t-MN risk, particularly when receiving MOPP-based and escalated-BEACOPP regimens, and when alkylators are combined to radiotherapy. Patients with lymphoma are at highest risk if total body irradiation followed by autologous stem cell transplantation is used as rescue or consolidation. The addition of granulocyte-colony stimulating factor (G-CSF) and radiotherapy plays a significant role in t-MN following treatment of childhood acute lymphoblastic leukemia. In solid tumors, treatment for breast cancer and germ-cell tumors has been associated with a 1-5% lifetime risk of t-MN.
Collapse
|
25
|
Hsi ED. Biologic features of Hodgkin lymphoma and the development of biologic prognostic factors in Hodgkin lymphoma: tumor and microenvironment. Leuk Lymphoma 2008; 49:1668-80. [PMID: 18798102 DOI: 10.1080/10428190802163339] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Classical Hodgkin lymphoma is now recognised as a B-cell lymphoma. Improved therapy has increased cure rates dramatically; however, relapse and death still occurs in a minority of patients. Much has been learned about the biology of Hodgkin and Reed Sternberg cells and their interactions with the microenvironment, which has informed studies exploring biologic markers that may improve upon clinical prognostic models. This manuscript reviews recent advances in our understanding of the pathobiology of cHL with an emphasis on biologic prognostic markers.
Collapse
Affiliation(s)
- Eric D Hsi
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
26
|
Allan JM, Shorto J, Adlard J, Bury J, Coggins R, George R, Katory M, Quirke P, Richman S, Scott D, Scott K, Seymour M, Travis LB, Worrillow LJ, Bishop DT, Cox A. MLH1 -93G>A promoter polymorphism and risk of mismatch repair deficient colorectal cancer. Int J Cancer 2008; 123:2456-9. [PMID: 18712731 DOI: 10.1002/ijc.23770] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rare inherited mutations in the mutL homolog 1 (MLH1) DNA mismatch repair gene can confer an increased susceptibility to colorectal cancer (CRC) with high penetrance where disease frequently develops in the proximal colon. The core promoter of MLH1 contains a common single nucleotide polymorphism (SNP) (-93G>A, dbSNP ID:rs1800734) located in a region essential for maximum transcriptional activity. We used logistic regression analysis to examine the association between this variant and risk of CRC in patients in the United Kingdom. All statistical tests were 2 sided. In an analysis of 1,518 patients with CRC, homozygosity for the MLH1 -93A variant was associated with a significantly increased 3-fold risk of CRC negative for MLH1 protein by immunohistochemistry (odds ratio (OR): AA vs GG = 3.30, 95% CI 1.46-7.47, n = 1392, p = 0.004, MLH1 negative vs MLH1 positive CRC) and with a 68% excess of proximal CRC (OR: AA vs GG=1.68, 95% confidence interval (CI) 1.00-2.83, n = 1,518, p = 0.05, proximal vs distal CRC). These findings suggest that the MLH1 -93G>A polymorphism defines a low penetrance risk allele for CRC.
Collapse
Affiliation(s)
- James M Allan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Therapy-related myelodysplastic syndrome and acute myeloid leukemia (t-MDS/t-AML) are thought to be the direct consequence of mutational events induced by chemotherapy, radiation therapy, immunosuppressive therapy, or a combination of these modalities, given for a pre-existing condition. The outcomes for these patients have been poor historically compared to people who develop de novo AML. The spectrum of cytogenetic abnormalities in t-AML is similar to de novo AML, but the frequency of unfavorable cytogenetics, such as a complex karyotype or deletion or loss of chromosomes 5 and/or 7, is considerably higher in t-AML. Survival varies according to cytogenetic risk group in t-AML patients, with better outcomes being observed in those with favorable-risk karyotypes. Treatment recommendations should be based on performance status and karyotype. A deeper understanding of the factors that predispose patients to the development of therapy-related myeloid leukemia would help clinicians monitor patients more carefully after treatment for a primary condition. Ultimately, this knowledge could influence initial treatment strategies with the goal of decreasing the incidence of this serious complication.
Collapse
|
28
|
Fosså S, Loge J, Dahl A. Long-term survivorship after cancer: how far have we come? Ann Oncol 2008; 19 Suppl 5:v25-9. [DOI: 10.1093/annonc/mdn305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
29
|
MDM2 SNP309 and TP53 Arg72Pro interact to alter therapy-related acute myeloid leukemia susceptibility. Blood 2008; 112:741-9. [PMID: 18426989 DOI: 10.1182/blood-2007-11-126508] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p53 tumor suppressor directs the cellular response to many mechanistically distinct DNA-damaging agents and is selected against during the pathogenesis of therapy-related acute myeloid leukemia (t-AML). We hypothesized that constitutional genetic variation in the p53 pathway would affect t-AML risk. Therefore, we tested associations between patients with t-AML (n = 171) and 2 common functional p53-pathway variants, the MDM2 SNP309 and the TP53 codon 72 polymorphism. Although neither polymorphism alone influenced the risk of t-AML, an interactive effect was detected such that MDM2 TT TP53 Arg/Arg double homozygotes, and individuals carrying both a MDM2 G allele and a TP53 Pro allele, were at increased risk of t-AML (P value for interaction is .009). This interactive effect was observed in patients previously treated with chemotherapy but not in patients treated with radiotherapy, and in patients with loss of chromosomes 5 and/or 7, acquired abnormalities associated with prior exposure to alkylator chemotherapy. In addition, there was a trend toward shorter latency to t-AML in MDM2 GG versus TT homozygotes in females but not in males, and in younger but not older patients. These data indicate that the MDM2 and TP53 variants interact to modulate responses to genotoxic therapy and are determinants of risk for t-AML.
Collapse
|