Singh R, Gardner RJM, Crossland KM, Scheffer IE, Berkovic SF. Chromosomal abnormalities and epilepsy: a review for clinicians and gene hunters.
Epilepsia 2002;
43:127-40. [PMID:
11903458 DOI:
10.1046/j.1528-1157.2002.19498.x]
[Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE
We analyzed databases on chromosomal anomalies and epilepsy to identify chromosomal regions where abnormalities are associated with clinically recognizable epilepsy syndromes. The expectation was that these regions could then be offered as targets in the search for epilepsy genes.
METHODS
The cytogenetic program of the Oxford Medical Database, and the PubMed database were used to identify chromosomal aberrations associated with seizures and/or EEG abnormalities. The literature on selected small anomalies thus identified was reviewed from a clinical and electroencephalographic viewpoint, to classify the seizures and syndromes according to the current International League Against Epilepsy (ILAE) classification.
RESULTS
There were 400 different chromosomal imbalances described with seizures or EEG abnormalities. Eight chromosomal disorders had a high association with epilepsy. These comprised: the Wolf-Hirschhorn (4p-) syndrome, Miller-Dieker syndrome (del 17p13.3), Angelman syndrome (del 15q11-q13), the inversion duplication 15 syndrome, terminal deletions of chromosome 1q and 1p, and ring chromosomes 14 and 20. Many other segments had a weaker association with seizures. The poor quality of description of the epileptology in many reports thwarted an attempt to make precise karyotype-phenotype correlations.
CONCLUSIONS
We identified certain chromosomal regions where aberrations had an evident association with seizures, and these regions may be useful targets for gene hunters. New correlations with specific epilepsy syndromes were not revealed. Clinicians should continue to search for small chromosomal abnormalities associated with specific epilepsy syndromes that could provide important clues for finding epilepsy genes, and the epileptology should be rigorously characterized.
Collapse