1
|
Crawford AH, Hildyard JCW, Rushing SAM, Wells DJ, Diez-Leon M, Piercy RJ. Validation of DE50-MD dogs as a model for the brain phenotype of Duchenne muscular dystrophy. Dis Model Mech 2022; 15:dmm049291. [PMID: 35019137 PMCID: PMC8906169 DOI: 10.1242/dmm.049291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), a fatal musculoskeletal disease, is associated with neurodevelopmental disorders and cognitive impairment caused by brain dystrophin deficiency. Dog models of DMD represent key translational tools to study dystrophin biology and to develop novel therapeutics. However, characterisation of dystrophin expression and function in the canine brain is lacking. We studied the DE50-MD canine model of DMD that has a missense mutation in the donor splice site of exon 50. Using a battery of cognitive tests, we detected a neurocognitive phenotype in DE50-MD dogs, including reduced attention, problem solving and exploration of novel objects. Through a combination of capillary immunoelectrophoresis, immunolabelling, quantitative PCR and RNAScope in situ hybridisation, we show that regional dystrophin expression in the adult canine brain reflects that of humans, and that the DE50-MD dog lacks full-length dystrophin (Dp427) protein expression but retains expression of the two shorter brain-expressed isoforms, Dp140 and Dp71. Thus, the DE50-MD dog is a translationally relevant pre-clinical model to study the consequences of Dp427 deficiency in the brain and to develop therapeutic strategies for the neurological sequelae of DMD.
Collapse
Affiliation(s)
- Abbe H. Crawford
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London NW1 0TU, UK
| | - John C. W. Hildyard
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London NW1 0TU, UK
| | - Sophie A. M. Rushing
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London NW1 0TU, UK
| | - Dominic J. Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Maria Diez-Leon
- Pathobiology and Population Sciences, Royal Veterinary College, London AL9 7TA, UK
| | - Richard J. Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London NW1 0TU, UK
| |
Collapse
|
2
|
Wells DJ. What is the level of dystrophin expression required for effective therapy of Duchenne muscular dystrophy? J Muscle Res Cell Motil 2019; 40:141-150. [PMID: 31289969 DOI: 10.1007/s10974-019-09535-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle wasting disease. The disease is due to mutations in the DMD gene that encodes for a large intracellular protein called dystrophin. Dystrophin plays a critical role in linking the internal cytoskeleton of the striated muscle cell with the extracellular matrix as well as having cell signalling functions. In its absence muscle contraction is associated with cycles of damage, repair, inflammation and fibrosis with eventual loss of muscle and replacement with fat. Experiments in animal models of DMD have generated a number of different approaches to the induction of dystrophin including viral vector mediated delivery of a recombinant dystrophin gene, antisense oligonucleotide mediated exon-skipping to restore the open reading frame in the dystrophin mRNA, read-through of premature stop mutations, genome modification using CRISPR-Cas9 or cell based transfer of a functional dystrophin gene. In all cases, it will be important to understand how much dystrophin expression is required for a clinically effective therapy and this review examines the data from humans and animal models to estimate the percentage of endogenous dystrophin that is likely to have significant clinical benefit. While there are a number of important caveats to consider, including the appropriate outcome measures, this review suggests that approximately 20% of endogenous levels uniformly distributed within the skeletal muscles and the heart may be sufficient to largely prevent disease progression.
Collapse
Affiliation(s)
- Dominic J Wells
- Neuromuscular Diseases Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
3
|
Schnell FJ, Frank D, Fletcher S, Johnsen RD, Wilton SD. Challenges of Interpreting Dystrophin Content by Western Blot. ACTA ACUST UNITED AC 2019. [DOI: 10.17925/usn.2019.15.1.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Duchenne muscular dystrophy community has recently seen the first approved therapy for the restoration of dystrophin, based on its ability to increase levels of dystrophin protein, as determined by western blot. The approval, along with the initiation of clinical trials evaluating other dystrophin-restoring therapies, highlights the importance of accurate dystrophin quantitation. Nonoptimized western blot methods can reflect inaccurate results, especially in the quantitation of low dystrophin levels. A few key changes to standards and data analysis parameters can result in a low level of dystrophin (<0.5% of a healthy biopsy) being inaccurately interpreted as >20% of the levels reported in healthy human muscle. A review of the dystrophin western blot data on Duchenne and Becker muscular dystrophy biopsies is conducted, along with a thorough investigation of methodologies to quantify dystrophin.
Collapse
|
4
|
Duan D. Dystrophin Gene Replacement and Gene Repair Therapy for Duchenne Muscular Dystrophy in 2016: An Interview. HUM GENE THER CL DEV 2016; 27:9-18. [PMID: 27003751 DOI: 10.1089/humc.2016.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After years of relentless efforts, gene therapy has now begun to deliver its therapeutic promise in several diseases. A number of gene therapy products have received regulatory approval in Europe and Asia. Duchenne muscular dystrophy (DMD) is an X-linked inherited lethal muscle disease. It is caused by mutations in the dystrophin gene. Replacing and/or repairing the mutated dystrophin gene holds great promises to treated DMD at the genetic level. Last several years have evidenced significant developments in preclinical experimentations in murine and canine models of DMD. There has been a strong interest in moving these promising findings to clinical trials. In light of rapid progress in this field, the Parent Project Muscular Dystrophy (PPMD) recently interviewed me on the current status of DMD gene therapy and readiness for clinical trials. Here I summarized the interview with PPMD.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology & Department of Neurology, School of Medicine, and Department of Bioengineering, The University of Missouri , Columbia, Missouri
| |
Collapse
|
5
|
Altamirano F, Valladares D, Henríquez-Olguín C, Casas M, López JR, Allen PD, Jaimovich E. Nifedipine treatment reduces resting calcium concentration, oxidative and apoptotic gene expression, and improves muscle function in dystrophic mdx mice. PLoS One 2013; 8:e81222. [PMID: 24349043 PMCID: PMC3857175 DOI: 10.1371/journal.pone.0081222] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/09/2013] [Indexed: 11/18/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with extracellular ATP signaling. Acute exposure to nifedipine (10 µM) decreased [Ca(2+)]r, NF-κB activity and iNOS expression in mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg for 1 week. This treatment lowered the [Ca(2+)]r measured in vivo in the mdx vastus lateralis. We demonstrated that extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB) fibers and can be significantly reduced after 1 week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that completely degrades extracellular ATP to AMP, reduced [Ca(2+)]r to a similar extent as was seen in FDB fibers after 1-week of nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/nitrosative (iNOS and gp91(phox)/p47(phox) NOX2 subunits) and pro-apoptotic (Bax) genes in mdx diaphragm muscles and lowered serum creatine kinase (CK) levels. In addition, nifedipine treatment increased muscle strength assessed by the inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca(2+)]r in mdx skeletal muscle cells. The results in this work open new perspectives towards possible targets for pharmacological approaches to treat DMD.
Collapse
Affiliation(s)
- Francisco Altamirano
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Denisse Valladares
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Henríquez-Olguín
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mariana Casas
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jose R. López
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paul D. Allen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Enrique Jaimovich
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
6
|
The muscular dystrophies. Neurogenetics 2012. [DOI: 10.1017/cbo9781139087711.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Barresi R. From proteins to genes: immunoanalysis in the diagnosis of muscular dystrophies. Skelet Muscle 2011; 1:24. [PMID: 21798100 PMCID: PMC3156647 DOI: 10.1186/2044-5040-1-24] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/24/2011] [Indexed: 12/23/2022] Open
Abstract
Muscular dystrophies are a large heterogeneous group of inherited diseases that cause progressive muscle weakness and permanent muscle damage. Very few muscular dystrophies show sufficient specific clinical features to allow a definite diagnosis. Because of the currently limited capacity to screen for numerous genes simultaneously, muscle biopsy is a time and cost-effective test for many of these disorders. Protein analysis interpreted in correlation with the clinical phenotype is a useful way of directing genetic testing in many types of muscular dystrophies. Immunohistochemistry and western blot are complementary techniques used to gather quantitative and qualitative information on the expression of proteins involved in this group of diseases. Immunoanalysis has a major diagnostic application mostly in recessive conditions where the absence of labelling for a particular protein is likely to indicate a defect in that gene. However, abnormalities in protein expression can vary from absence to very subtle reduction. It is good practice to test muscle biopsies with antibodies for several proteins simultaneously and to interpret the results in context. Indeed, there is a degree of direct or functional association between many of these proteins that is reflected by the presence of specific secondary abnormalities that are of value, especially when the diagnosis is not straightforward.
Collapse
Affiliation(s)
- Rita Barresi
- NCG Diagnostic & Advisory Service for Rare Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, Richardson Road, Newcastle upon Tyne, UK.
| |
Collapse
|
8
|
Olby NJ, Sharp NJH, Nghiem PE, Keene BW, DeFrancesco TC, Sidley JA, Kornegay JN, Schatzberg SJ. Clinical progression of X-linked muscular dystrophy in two German Shorthaired Pointers. J Am Vet Med Assoc 2011; 238:207-12. [PMID: 21235374 DOI: 10.2460/javma.238.2.207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CASE DESCRIPTION 2 full-sibling male German Shorthaired Pointer (GSHP) puppies (dogs 1 and 2) with X-linked muscular dystrophy and deletion of the dystrophin gene (gene symbol, DMD) each had poor growth, skeletal muscle atrophy, pelvic limb weakness, episodic collapse, and episodes of coughing. CLINICAL FINDINGS Initial examination revealed stunted growth, brachygnathism, trismus, and diffuse neuromuscular signs in each puppy; clinical signs were more severe in dog 2 than in dog 1. Immunohistochemical analysis revealed a lack of dystrophin protein in both dogs. During the next 3 years, each dog developed hyperinflation of the lungs, hypertrophy of the cervical musculature, and hypertrophy of the lateral head of the triceps brachii muscle. TREATMENT AND OUTCOME Monitoring and supportive care were provided at follow-up visits during an approximately 7-year period. No other specific treatment was provided. Neuromuscular signs in both dogs remained stable after 3 years of age, with dog 2 consistently more severely affected than dog 1. The dogs had multiple episodes of aspiration pneumonia; dogs 1 and 2 were euthanatized at 84 and 93 months of age, respectively. CLINICAL RELEVANCE The clinical course of disease in these dogs was monitored for a longer period than has been monitored in previous reports of dystrophin-deficient dogs. The clinical progression of muscular dystrophy in the 2 GSHPs was compared with that for other breeds and species with dystrophin-deficient conditions, and the potential basis for the phenotypic variation observed between these littermates, along with potential therapeutic ramifications for dogs and humans, was evaluated.
Collapse
Affiliation(s)
- Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 2009; 9:77-93. [PMID: 19945913 DOI: 10.1016/s1474-4422(09)70271-6] [Citation(s) in RCA: 1289] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive disease that affects 1 in 3600-6000 live male births. Although guidelines are available for various aspects of DMD, comprehensive clinical care recommendations do not exist. The US Centers for Disease Control and Prevention selected 84 clinicians to develop care recommendations using the RAND Corporation-University of California Los Angeles Appropriateness Method. The DMD Care Considerations Working Group evaluated assessments and interventions used in the management of diagnostics, gastroenterology and nutrition, rehabilitation, and neuromuscular, psychosocial, cardiovascular, respiratory, orthopaedic, and surgical aspects of DMD. These recommendations, presented in two parts, are intended for the wide range of practitioners who care for individuals with DMD. They provide a framework for recognising the multisystem primary manifestations and secondary complications of DMD and for providing coordinated multidisciplinary care. In part 1 of this Review, we describe the methods used to generate the recommendations, and the overall perspective on care, pharmacological treatment, and psychosocial management.
Collapse
|
10
|
Saengpattrachai M, Ray PN, Hawkins CE, Berzen A, Banwell BL. Grandpa and I have dystrophinopathy?: approach to asymptomatic hyperCKemia. Pediatr Neurol 2006; 35:145-9. [PMID: 16876015 DOI: 10.1016/j.pediatrneurol.2006.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 11/28/2005] [Accepted: 01/03/2006] [Indexed: 11/20/2022]
Abstract
This report describes three males from a single kinship, ages 7, 8, and 67 years with clinically asymptomatic dystrophinopathy. The index case was an 8-year-old male evaluated for asymptomatic but persistently elevated serum creatine kinase levels. Muscle biopsy demonstrated a mild myopathy, without necrotic fibers. Immunostaining for dystrophin revealed a slight reduction in sarcolemmal reactivity for the amino terminus of dystrophin. Dystrophin gene analysis revealed a deletion of exon 45 to exon 51. Genetic analysis identified two other affected males (age 7 years and 67 years), as well as four female carriers in the same family. The 7-year-old male had mildly increased creatine kinase levels with normal muscle strength. The 67-year-old grandfather had normal neuromuscular examination and serum creatine kinase levels. Asymptomatic dystrophinopathy in late adulthood is exceptionally rare, and highlights the importance of consideration of dystrophin mutation analysis in patients with hyperCKemia, even in the absence of muscle weakness.
Collapse
Affiliation(s)
- Montri Saengpattrachai
- Division Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
11
|
Fall AM, Johnsen R, Honeyman K, Iversen P, Fletcher S, Wilton SD. Induction of revertant fibres in the mdx mouse using antisense oligonucleotides. GENETIC VACCINES AND THERAPY 2006; 4:3. [PMID: 16719929 PMCID: PMC1481566 DOI: 10.1186/1479-0556-4-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 05/24/2006] [Indexed: 11/28/2022]
Abstract
Background Duchenne muscular dystrophy is a fatal genetic disorder caused by dystrophin gene mutations that result in premature termination of translation and the absence of functional protein. Despite the primary dystrophin gene lesion, immunostaining studies have shown that at least 50% of DMD patients, mdx mice and a canine model of DMD have rare dystrophin-positive or 'revertant' fibres. Fine epitope mapping has shown that the majority of transcripts responsible for revertant fibres exclude multiple exons, one of which includes the dystrophin mutation. Methods The mdx mouse model of muscular dystrophy has a nonsense mutation in exon 23 of the dystrophin gene. We have shown that antisense oligonucleotides (AOs) can induce the removal of this exon, resulting in an in-frame mRNA transcript encoding a shortened but functional dystrophin protein. To emulate one exonic combination associated with revertant fibres, we target multiple exons for removal by the application of a group of AOs combined as a "cocktail". Results Exons 19–25 were consistently excluded from the dystrophin gene transcript using a cocktail of AOs. This corresponds to an alternatively processed gene transcript that has been sporadically detected in untreated dystrophic mouse muscle, and is presumed to give rise to a revertant dystrophin isoform. The transcript and the resultant correctly localised smaller protein were confirmed by RT-PCR, immunohistochemistry and western blot analysis. Conclusion This work demonstrates the feasibility of AO cocktails to by-pass dystrophin mutation hotspots through multi-exon skipping. Multi-exon skipping could be important in expediting an exon skipping therapy to treat DMD, so that the same AO formulations may be applied to several different mutations within particular domains of the dystrophin gene.
Collapse
Affiliation(s)
- Abbie M Fall
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, 6009, Western Australia
| | - Russell Johnsen
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, 6009, Western Australia
| | - Kaite Honeyman
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, 6009, Western Australia
| | | | - Susan Fletcher
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, 6009, Western Australia
| | - Stephen D Wilton
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Perth, 6009, Western Australia
| |
Collapse
|
12
|
Tuffery-Giraud S, Saquet C, Thorel D, Disset A, Rivier F, Malcolm S, Claustres M. Mutation spectrum leading to an attenuated phenotype in dystrophinopathies. Eur J Hum Genet 2005; 13:1254-60. [PMID: 16077730 DOI: 10.1038/sj.ejhg.5201478] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although Becker muscular dystrophy (BMD; MIM 300376) is mainly caused by gross deletions of the dystrophin gene, the nature of the mutations involved in the remaining cases is of importance because of the milder clinical course of Becker. We have extensively characterized the mRNA changes associated with five novel point mutations giving rise to a Becker phenotype, which confirm that Becker arises largely due to alterations in splicing. In two cases the milder phenotype arises because of exon skipping, leading to an in-frame deletion (c.1603-2A>C and c.4250T>A). In further two cases intronic mutations (c.4519-5C>G and c.961-5925A>C) result in complex splicing changes, but with some residual normal transcripts. The last case, c.10412T>A (p.Leu3471X), results in a truncated transcript missing only part of the COOH terminal of the protein, suggesting that this region is not crucial for dystrophin function. The detection of a low amount of dystrophin in this patient could be attributable to a reduced efficiency of nonsense-mediated decay. The results emphasize that mRNA analysis is important in defining Becker mutations and will be of value in assessing various gene therapy strategies.
Collapse
Affiliation(s)
- Sylvie Tuffery-Giraud
- Laboratoire de Génétique Moleculaire et Chromosomique, CHU de Montpellier, Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Al-Shekhlee A, Katirji B. Sensory Mononeuropathy Multiplex in Chronic Graft versus Host Disease. J Clin Neuromuscul Dis 2001; 2:184-186. [PMID: 19078633 DOI: 10.1097/00131402-200106000-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Graft versus host disease (GVHD) is a frequent complication of bone marrow transplantation (BMT). Peripheral neuropathies in association with chronic GVHD are uncommon. We report a patient with BHT for chronic myeloid leukemia, and chronic GVHD with severe sclerodermatitis resulting in bilateral medial antebrachial and saphenous sensory mononeuropathies.
Collapse
Affiliation(s)
- A Al-Shekhlee
- From the Department of Neurology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio
| | | |
Collapse
|
14
|
Saotome M, Yoshitomi Y, Kojima S, Kuramochi M. Dilated cardiomyopathy of Becker-type muscular dystrophy with exon 4 deletion--a case report. Angiology 2001; 52:343-7. [PMID: 11386386 DOI: 10.1177/000331970105200508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The authors report a 47-year-old man with Becker-type muscular dystrophy presenting with dilated cardiomyopathy. Left ventriculography showed diffuse severe hypokinesia: left ventricular end-diastolic volume index 193 mL/m2, left ventricular end-systolic volume index 143 mL/m2, and left ventricular ejection fraction 26%. Skeletal muscle biopsy demonstrated a dystrophic process. Genetic analysis revealed a deletion of exon 4. There was a difference in immunostaining pattern between skeletal muscles and cardiac muscles. Severe cardiac dysfunction in this case may be associated with the damage in dystrophin-deficient fibers.
Collapse
Affiliation(s)
- M Saotome
- Division of Cardiology, Tohsei National Hospital, Shizuoka, Japan
| | | | | | | |
Collapse
|
15
|
Chopard A, Pons F, Charpiot P, Marini JF. Quantitative analysis of relative protein contents by Western blotting: comparison of three members of the dystrophin-glycoprotein complex in slow and fast rat skeletal muscle. Electrophoresis 2000; 21:517-22. [PMID: 10726751 DOI: 10.1002/(sici)1522-2683(20000201)21:3<517::aid-elps517>3.0.co;2-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have developed a method for accurate quantitative analysis and statistical comparison of the relative contents of the dystrophin-glycoprotein complex (DGC) in skeletal muscle. This method was applied to compare DGC contents in slow (soleus) and in fast (extensor digitorum longus, EDL) rat skeletal muscles. The quantitative analysis combines a modified bicinchoninic acid (BCA) assay with Western blotting and enhanced chemiluminescence (ECL). This combination allows the use of high levels of detergents and reducing reagents essential for extracting DGC. In addition, the evaluation of the total amount of proteins in each sample makes it possible to have a reference and to accurately compare relative protein levels without using a specific standard. With a large gradient gel, we could concomitantly compare two groups (n = 9) and quantify all protein contents differing highly in their molecular masses (from 35 kDa to 427 kDa). Each experiment was triplicated and normalized; the two muscles were compared using the Mann-Whitney test (P<0.001) to establish their protein content. The DGC relative levels for the slow muscle soleus and the fast muscle EDL differed significantly: dystrophin, beta-dystroglycan, and gamma-sarcoglycan levels were 130%, 110% and 120% higher in the soleus, respectively. The differences observed in the expression level of cytoskeletal associated protein (dystrophin) and transmembranous anchorage components may correspond to a physiological response of the muscle fibers to duration, magnitude, and frequency of the imposed mechanical loading.
Collapse
Affiliation(s)
- A Chopard
- Laboratoire de Physiologie Cellulaire et Moléculaire des Systèmes Intégrés, Faculté des Sciences, Nice, France.
| | | | | | | |
Collapse
|
16
|
Abstract
The purpose of this review is to analyze the clinical applications of a remarkable series of advances made in molecular genetics, primarily with regard to Becker muscular dystrophy. A new classification is required to clarify such syndromes as Duchenne and Becker muscular dystrophy. Dystrophinopathies can be seen in patients with early onset and a severe course (Duchenne muscular dystrophy), patients with later onset and milder weakness (Becker muscular dystrophy), patients with myalgia and cramp syndrome, and patients with dilated cardiomyopathies. Dystrophin testing in muscle is the most sensitive test for identification of dystrophinopathy patients, although gene deletion studies can make the diagnosis in most cases.
Collapse
Affiliation(s)
- F J Samaha
- Department of Neurology, University of Cincinnati Medical Center, OH 45267, USA
| | | |
Collapse
|
17
|
Jensen H, Warburg M, Sjö O, Schwartz M. Duchenne muscular dystrophy: negative electroretinograms and normal dark adaptation. Reappraisal of assignment of X linked incomplete congenital stationary night blindness. J Med Genet 1995; 32:348-51. [PMID: 7616540 PMCID: PMC1050428 DOI: 10.1136/jmg.32.5.348] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Aland Island eye disease (AIED) and X linked congenital stationary night blindness (CSNB) have been mapped to Xp11.3. Patients have been described with deletions of the Duchenne muscular dystrophy (DMD) gene who also had a negative electroretinogram (ERG) similar to that seen in patients with CSNB and AIED. This seems to confirm that some cases of AIED and CSNB map to Xp21. We examined 16 boys with DMD/BMD (Becker muscular dystrophy) of whom 10 had negative ERGs, eight of them having deletions downstream from exon 44. Normal dark adaptation thresholds were observed in all patients and there were no anomalous visual functions. Hence, CSNB cannot be assigned to Xp21 and negative ERG in DMD/BMD is not associated with eye disease. Six boys with DMD/BMD had normal ERGs. We speculate that a retinal or glial dystrophin may be truncated or absent in the boys with negative ERGs.
Collapse
Affiliation(s)
- H Jensen
- Division of Paediatric Ophthalmology and Handicaps, Gentofte Hospital, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
18
|
Nigro G, Comi LI, Politano L, Limongelli FM, Nigro V, De Rimini ML, Giugliano MA, Petretta VR, Passamano L, Restucci B. Evaluation of the cardiomyopathy in Becker muscular dystrophy. Muscle Nerve 1995; 18:283-91. [PMID: 7870105 DOI: 10.1002/mus.880180304] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To evaluate the features and the course of cardiomyopathy in Becker muscular dystrophy, 68 patients--identified by clinical assessment and by reduced dystrophin labeling and/or DNA analysis--were followed in the years 1976-1993, for periods ranging from 3 to 18 years (mean 8). Patients periodically underwent clinical, electrocardiographic, echocardiographic, nuclear, and radiological assessments. Preclinical cardiac involvement was found in 67.4% of patients under 16 years of age, decreasing to 30% in patients older than 40. Clinically evident cardiomyopathy was found in 15% of patients under 16 years of age, increasing to 73% in patients older than 40. A real, dilated cardiomyopathy is the most frequent type of myocardial involvement after the age of 20. Results show that the severity of cardiac involvement can be unrelated to the severity of skeletal muscle damage and confirm that cardiac dysfunction is a primary feature of Becker muscular dystrophy.
Collapse
Affiliation(s)
- G Nigro
- Department of Clinical and Experimental Medicine, Second Naples University, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dunckley MG, Piper TA, Dickson G. Toward a gene therapy for duchenne muscular dystrophy. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/mrdd.1410010113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Oldfors A, Eriksson BO, Kyllerman M, Martinsson T, Wahlström J. Dilated cardiomyopathy and the dystrophin gene: an illustrated review. Heart 1994; 72:344-8. [PMID: 7833192 PMCID: PMC1025544 DOI: 10.1136/hrt.72.4.344] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cardiomyopathy is often found in patients with Duchenne and Becker muscular dystrophy, which are X linked muscle diseases caused by mutations in the dystrophin gene. Dystrophin defects present in many different ways and cases of mild Becker muscular dystrophy have been described in which cardiomyopathy was severe. Female carriers of Duchenne muscular dystrophy can develop symptomatic skeletal myopathy alone or combined with dilated cardiomyopathy. They can also develop dilated cardiomyopathy alone. X linked dilated cardiomyopathy has been found in association with dystrophin defects. The relation between the molecular defects and the cardiac phenotypes has not yet been established. New mutations in the dystrophin gene are common and such mutations cause one third of the cases with Duchenne and Becker muscular dystrophy. This means that sporadic cases of cardiomyopathy caused by dystrophin defects are likely. This paper reports such a case in a boy of 14 who died of dilated cardiomyopathy. Before the cardiac investigation, which was performed one month before he died, he had not complained of muscular weakness. He had minor signs of limb girdle myopathy and slightly increased concentrations of serum creatine kinase. He was found to have an unusual deletion in the dystrophin gene.
Collapse
Affiliation(s)
- A Oldfors
- Department of Pathology, Gothenburg University, Sahlgren Hospital, Sweden
| | | | | | | | | |
Collapse
|
21
|
Abstract
Over the last few years it has become clear that a proportion of biopsies from patients with Duchenne muscular dystrophy (DMD) contain fibres which show dystrophin-positive immunolabelling. We have collected evidence to demonstrate that low level restoration of the reading frame must have been taking place and that a BMD-like protein was being synthesized in DMD muscle. We have also found a relationship between the abundance of dystrophin (determined by densitometric analysis of blots) and the age at which boys lose the ability to walk independently. Thus, even the low levels of dystrophin in DMD patients may have a functional significance. We now suggest that exon skipping, whereby an existing frame-shifting deletion is modified and extended to an in-frame mutation, may be responsible for the limited rescue of dystrophin synthesis in the muscle from many DMD patients.
Collapse
Affiliation(s)
- L V Nicholson
- Muscular Dystrophy Group Research Laboratories, Newcastle General Hospital, Newcastle upon Tyne, U.K
| |
Collapse
|