1
|
Soontrapa P, Seven NA, Liewluck T, Cui G, Mer G, Milone M. Adolescent-onset multisystem proteinopathy due to a novel VCP variant. Neuromuscul Disord 2024; 34:89-94. [PMID: 38159460 DOI: 10.1016/j.nmd.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Valosin-containing protein (VCP) pathogenic variants are the most common cause of multisystem proteinopathy presenting with inclusion body myopathy, amyotrophic lateral sclerosis/frontotemporal dementia, and Paget disease of bone in isolation or in combination. We report a patient manifesting with adolescent-onset myopathy caused by a novel heterozygous VCP variant (c.467G > T, p.Gly156Val). The myopathy manifested asymmetrically in lower limbs and extended to proximal, axial, and upper limb muscles, with loss of ambulation at age 35. Creatine kinase value was normal. Alkaline phosphatase was elevated. Electromyography detected mixed low amplitude, short duration and high amplitude, long duration motor unit potentials. Muscle biopsy showed features of inclusion body myopathy, which in combination with newly diagnosed Paget disease of bone, supported the VCP variant pathogenicity. In conclusion, VCP-multisystem proteinopathy is not only a disease of adulthood but can have a pediatric onset and should be considered in differential diagnosis of neuromuscular weakness in the pediatric population.
Collapse
Affiliation(s)
- Pannathat Soontrapa
- Department of Neurology, Division of Neuromuscular Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Medicine, Division of Neurology, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nathan A Seven
- Department of Neurology, Division of Neuromuscular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Teerin Liewluck
- Department of Neurology, Division of Neuromuscular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Margherita Milone
- Department of Neurology, Division of Neuromuscular Medicine, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
2
|
Asadauskaitė G, Vilimienė R, Augustinavičius V, Burnytė B. Case report of a family with hereditary inclusion body myopathy with VCP gene variant and literature review. Front Neurol 2023; 14:1290960. [PMID: 38146440 PMCID: PMC10749511 DOI: 10.3389/fneur.2023.1290960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/17/2023] [Indexed: 12/27/2023] Open
Abstract
Background Missense VCP gene variants lead to a disruption in protein homeostasis causing a spectrum of progressive degenerative diseases. Myopathy is the most frequent manifestation characterized by slowly progressing weakness of proximal and distal limb muscles. We present a family with myopathy due to c.277C > T variant in VCP gene. Case presentation The patient's phenotype includes symmetrical muscle wasting and weakness in the proximal parts of the limbs and axial muscles, a wide based gait, lordotic posture, positive Gowers' sign, mild calf enlargement, impaired mobility, elevated CK, and myopathy in proximal limb muscles. Whole body MRI revealed fatty replacement, predominantly affecting right vastus intermedius and medialis, gastrocnemius and soleus in calf, abdomen wall and lumbar muscles. Next-generation sequencing analysis revealed a pathogenic heterozygous variant c.277C > T (p.(Arg93Cys)) in exon 3 of the VCP gene. Segregation analysis showed that the detected variant is inherited from the affected father who developed symptoms at 60. Conclusion The patients described experienced muscle wasting and weakness in the proximal and distal parts of the limbs which is a common finding in VCP related disease. Nevertheless, the patient has distinguishing features, such as high CK levels, early onset of the disease, and rapid mobility decline.
Collapse
Affiliation(s)
| | - Ramunė Vilimienė
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
| | - Vytautas Augustinavičius
- Center of Radiology and Nuclear Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Birutė Burnytė
- Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
3
|
Esteller D, Schiava M, Verdú-Díaz J, Villar-Quiles RN, Dibowski B, Venturelli N, Laforet P, Alonso-Pérez J, Olive M, Domínguez-González C, Paradas C, Vélez B, Kostera-Pruszczyk A, Kierdaszuk B, Rodolico C, Claeys K, Pál E, Malfatti E, Souvannanorath S, Alonso-Jiménez A, de Ridder W, De Smet E, Papadimas G, Papadopoulos C, Xirou S, Luo S, Muelas N, Vilchez JJ, Ramos-Fransi A, Monforte M, Tasca G, Udd B, Palmio J, Sri S, Krause S, Schoser B, Fernández-Torrón R, López de Munain A, Pegoraro E, Farrugia ME, Vorgerd M, Manousakis G, Chanson JB, Nadaj-Pakleza A, Cetin H, Badrising U, Warman-Chardon J, Bevilacqua J, Earle N, Campero M, Díaz J, Ikenaga C, Lloyd TE, Nishino I, Nishimori Y, Saito Y, Oya Y, Takahashi Y, Nishikawa A, Sasaki R, Marini-Bettolo C, Guglieri M, Straub V, Stojkovic T, Carlier RY, Díaz-Manera J. Analysis of muscle magnetic resonance imaging of a large cohort of patient with VCP-mediated disease reveals characteristic features useful for diagnosis. J Neurol 2023; 270:5849-5865. [PMID: 37603075 PMCID: PMC10632218 DOI: 10.1007/s00415-023-11862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND The diagnosis of patients with mutations in the VCP gene can be complicated due to their broad phenotypic spectrum including myopathy, motor neuron disease and peripheral neuropathy. Muscle MRI guides the diagnosis in neuromuscular diseases (NMDs); however, comprehensive muscle MRI features for VCP patients have not been reported so far. METHODS We collected muscle MRIs of 80 of the 255 patients who participated in the "VCP International Study" and reviewed the T1-weighted (T1w) and short tau inversion recovery (STIR) sequences. We identified a series of potential diagnostic MRI based characteristics useful for the diagnosis of VCP disease and validated them in 1089 MRIs from patients with other genetically confirmed NMDs. RESULTS Fat replacement of at least one muscle was identified in all symptomatic patients. The most common finding was the existence of patchy areas of fat replacement. Although there was a wide variability of muscles affected, we observed a common pattern characterized by the involvement of periscapular, paraspinal, gluteal and quadriceps muscles. STIR signal was enhanced in 67% of the patients, either in the muscle itself or in the surrounding fascia. We identified 10 diagnostic characteristics based on the pattern identified that allowed us to distinguish VCP disease from other neuromuscular diseases with high accuracy. CONCLUSIONS Patients with mutations in the VCP gene had common features on muscle MRI that are helpful for diagnosis purposes, including the presence of patchy fat replacement and a prominent involvement of the periscapular, paraspinal, abdominal and thigh muscles.
Collapse
Affiliation(s)
- Diana Esteller
- Neurology Department, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Marianela Schiava
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - José Verdú-Díaz
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Rocío-Nur Villar-Quiles
- APHP, Centre de Référence des Maladies Neuromusculaires, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Boris Dibowski
- Department of Radiology, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Start Imaging, Raymond Poincaré Teaching Hospital, Garches, France
| | - Nadia Venturelli
- Department of Radiology, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Start Imaging, Raymond Poincaré Teaching Hospital, Garches, France
| | - Pascal Laforet
- Département de Neurologie Hôpital Raymond-Poincaré Garches France Inserm U1179, Garches, France
| | - Jorge Alonso-Pérez
- Servicio de Neurología. Hospital Virgen de la Candelaria, Tenerife, Spain
- Neuromuscular Diseases Unit, Neurology Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Montse Olive
- Neuromuscular Diseases Unit, Neurology Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Domínguez-González
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Enfermedades Neuromusculares, Servicio de Neurología, Instituto de Investigación imas12, Hospital 12 de Octubre, Madrid, Spain
| | - Carmen Paradas
- Unidad de Enfermedades Neuromusculares, Servicio de Neurología, Hospital Virgen del Rocio, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Beatriz Vélez
- Unidad de Enfermedades Neuromusculares, Servicio de Neurología, Hospital Virgen del Rocio, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Anna Kostera-Pruszczyk
- Department of Neurology, Medical University of Warsaw, ERN EURO NMD, Warsaw, Poland
- Neuromuscular Reference Centre, ERN-EURO-NMD, Warsaw, Poland
| | - Biruta Kierdaszuk
- Department of Neurology, Medical University of Warsaw, ERN EURO NMD, Warsaw, Poland
- Neuromuscular Reference Centre, ERN-EURO-NMD, Warsaw, Poland
| | - Carmelo Rodolico
- UOC di Neurologia e Malattie Neuromuscolari, AOU Policlinico "G. Martino", Rome, Italy
| | - Kristl Claeys
- Neurologie, Neuromusculair Referentiecentrum, Universitaire Ziekenhuizen, Leuven, Belgium
| | - Endre Pál
- Neurology Department, University of Pécs, Pécs, Hungary
| | - Edoardo Malfatti
- Université Paris Est, U955 INSERM, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, EURO-NMD, 94010, Creteil, France
| | - Sarah Souvannanorath
- Université Paris Est, U955 INSERM, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, EURO-NMD, 94010, Creteil, France
| | | | - Willem de Ridder
- Neurology Department, Universitary Hospital Antwerpen, Edegem, Belgium
| | - Eline De Smet
- Neurology Department, Universitary Hospital Antwerpen, Edegem, Belgium
| | - George Papadimas
- Department of Neurology, Eginition Hospital, Medical School, NKUA, ERN, EURO NMD, Athens, Greece
| | | | - Sofia Xirou
- Department of Neurology, Eginition Hospital, Medical School, NKUA, ERN, EURO NMD, Athens, Greece
| | - Sushan Luo
- Neurology Department, Huashan Hospital, Fudan University, Shangai, China
| | - Nuria Muelas
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Juan J Vilchez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Alba Ramos-Fransi
- Unitat de Malalties Neuromusculars, Servei de Neurologia, Hospital Germans Tries I Pujol, Badalona, Spain
| | - Mauro Monforte
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Bjarne Udd
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
- Folkhalsan Genetic Institute, Helsinki University, Helsinki, Finland
| | - Johanna Palmio
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
- Folkhalsan Genetic Institute, Helsinki University, Helsinki, Finland
| | - Srtuhi Sri
- Sree Chitra Tirunal Insitute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Sabine Krause
- Department of Neurology, Friedrich-Baur-Institute, LMU Clinics, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU Clinics, Munich, Germany
| | - Roberto Fernández-Torrón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Neurology Department, Biodonostia Health Research Institute, Donostia, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Neurology Department, Biodonostia Health Research Institute, Donostia, Spain
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padua, Italy
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, Scotland, UK
| | - Mathias Vorgerd
- Heimer Institut for Muscle Research, Klinikum Bergmannsheil Ruhr, University Bochum, Bochum, Germany
| | | | - Jean Baptiste Chanson
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France and ERN-EURO-NMD, Neurology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Aleksandra Nadaj-Pakleza
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France and ERN-EURO-NMD, Neurology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Hakan Cetin
- Neurology Department, Medical University of Vienna, Vienna, Austria
| | | | | | - Jorge Bevilacqua
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Nicholas Earle
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Mario Campero
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Jorge Díaz
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology, Tokyo, Japan
| | - Yukako Nishimori
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology, Tokyo, Japan
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology, Tokyo, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, NCNP, Tokyo, Japan
| | - Yoshiaki Takahashi
- Department of Neurology, Kagawa Prefectural Central Hospital, Kagawa, Japan
| | | | - Ryo Sasaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom
| | - Tanya Stojkovic
- APHP, Centre de Référence des Maladies Neuromusculaires, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Robert Y Carlier
- Department of Radiology, Assistance Publique-Hôpitaux de Paris (AP-HP), DMU Start Imaging, Raymond Poincaré Teaching Hospital, Garches, France
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, United Kingdom.
- Neuromuscular Diseases Unit, Neurology Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Esteller D, Morrow J, Alonso-Pérez J, Reyes D, Carbayo A, Bisogni G, Cateruccia M, Monforte M, Tasca G, Alangary A, Marini-Bettolo C, Sabatelli M, Laura M, Ramdharry G, Bolaño-Díaz C, Turon-Sans J, Töpf A, Guglieri M, Rossor AM, Olive M, Bertini E, Straub V, Reilly MM, Rojas-García R, Díaz-Manera J. Muscle magnetic resonance imaging of a large cohort of distal hereditary motor neuropathies reveals characteristic features useful for diagnosis. Neuromuscul Disord 2023; 33:744-753. [PMID: 37704504 DOI: 10.1016/j.nmd.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Distal motor neuropathies (dHMN) are an heterogenous group of diseases characterized by progressive muscle weakness affecting predominantly the distal muscles of the lower and upper limbs. Our aim was to study the imaging features and pattern of muscle involvement in muscle magnetic resonance imaging (MRI) in dHMN patients of suspected genetic origin (dHMN). We conducted a retrospective study collecting clinical, genetic and muscle imaging data. Muscle MRI included T1-weighted and T2 weighted Short Tau Inversion Recovery images (STIR-T2w) sequences. Muscle replacement by fat was quantified using the Mercuri score. Identification of selective patterns of involvement was performed using hierarchical clustering. Eighty-four patients with diagnosis of dHMN were studied. Fat replacement was predominant in the distal lower leg muscles (82/84 cases), although also affected thigh and pelvis muscles. Asymmetric involvement was present in 29% of patients. The superficial posterior compartment of the leg, including the soleus and gastrocnemius muscles, was the most affected area (77/84). We observed a reticular pattern of fatty replacement progressing towards what is commonly known as "muscle islands" in 79.8%. Hyperintensities in STIR-T2w were observed in 78.6% patients mainly in distal leg muscles. Besides features common to all individuals, we identified and describe a pattern of muscle fat replacement characteristic of BICD2, HSPB1 and DYNC1H1 patients. We conclude that muscle MRI of patients with suspected dHMN reveals common features helpful in diagnosis process.
Collapse
Affiliation(s)
- Diana Esteller
- Neurology Department Hospital Clinic de Barcelona Universitat de Barcelona, Barcelona Spain
| | - Jasper Morrow
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Jorge Alonso-Pérez
- Neuromuscular Disease Unit Neurology Department Hospital Universitario Nuestra Señora de Candelaria Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC) Tenerife Spain
| | - David Reyes
- Neuromuscular Disorders Unit, Motor Neuron Diseases Clinic, Neurology Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona IIB Sant Pau Barcelona Spain
| | - Alvaro Carbayo
- Neuromuscular Disorders Unit, Motor Neuron Diseases Clinic, Neurology Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona IIB Sant Pau Barcelona Spain
| | | | - Michela Cateruccia
- Unit of Muscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Childrens' Research Hospital, Rome, Italy
| | - Mauro Monforte
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Aljwhara Alangary
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Mario Sabatelli
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Matilde Laura
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Gita Ramdharry
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Carla Bolaño-Díaz
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Janina Turon-Sans
- Neuromuscular Disorders Unit, Motor Neuron Diseases Clinic, Neurology Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona IIB Sant Pau Barcelona Spain
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Michella Guglieri
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Alexander M Rossor
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Montse Olive
- Neuromuscular Disorders Unit, Motor Neuron Diseases Clinic, Neurology Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona IIB Sant Pau Barcelona Spain
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Childrens' Research Hospital, Rome, Italy
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Ricard Rojas-García
- Neuromuscular Disorders Unit, Motor Neuron Diseases Clinic, Neurology Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona IIB Sant Pau Barcelona Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) Barcelona Spain.
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) Barcelona Spain; Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| |
Collapse
|
5
|
Boock V, Roy B, Pfeffer G, Kimonis V. Therapeutic developments for valosin-containing protein mediated multisystem proteinopathy. Curr Opin Neurol 2023; 36:432-440. [PMID: 37678339 DOI: 10.1097/wco.0000000000001184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE OF REVIEW Missense mutations in valosin-containing protein (VCP) can lead to a multisystem proteinopathy 1 (MSP1) with any combination of limb-girdle distribution inclusion body myopathy (IBM) (present in about 90% of cases), Paget's disease of bone, and frontotemporal dementia (IBMPFD). VCP mutations lead to gain of function activity with widespread disarray in cellular function, with enhanced ATPase activity, increased binding with its cofactors, and reduced mitofusin levels. RECENT FINDINGS This review highlights novel therapeutic approaches in VCP-MSP in in-vitro and in-vivo models. Furthermore, we also discuss therapies targeting mitochondrial dysfunction, autophagy, TDP-43 pathways, and gene therapies in other diseases with similar pathway involvement which can also be applicable in VCP-MSP. SUMMARY Being a rare disease, it is challenging to perform large-scale randomized control trials (RCTs) in VCP-MSP. However, it is important to recognize potential therapeutic targets, and assess their safety and efficacy in preclinical models, to initiate RCTs for potential therapies in this debilitating disease.
Collapse
Affiliation(s)
- Victoria Boock
- Department of Pediatrics, University of California - Irvine School of Medicine, Orange, California
| | - Bhaskar Roy
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Virginia Kimonis
- Department of Pediatrics, University of California - Irvine School of Medicine, Orange, California
- Department of Neurology
- Department of Pathology, University of California - Irvine School of Medicine, Orange, California, USA
| |
Collapse
|
6
|
Roy B, Peck A, Evangelista T, Pfeffer G, Wang L, Diaz‐Manera J, Korb M, Wicklund MP, Milone M, Freimer M, Kushlaf H, Villar‐Quiles R, Stojkovic T, Needham M, Palmio J, Lloyd TE, Keung B, Mozaffar T, Weihl CC, Kimonis V. Provisional practice recommendation for the management of myopathy in VCP-associated multisystem proteinopathy. Ann Clin Transl Neurol 2023; 10:686-695. [PMID: 37026610 PMCID: PMC10187720 DOI: 10.1002/acn3.51760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Valosin-containing protein (VCP)-associated multisystem proteinopathy (MSP) is a rare genetic disorder with abnormalities in the autophagy pathway leading to various combinations of myopathy, bone diseases, and neurodegeneration. Ninety percent of patients with VCP-associated MSP have myopathy, but there is no consensus-based guideline. The goal of this working group was to develop a best practice set of provisional recommendations for VCP myopathy which can be easily implemented across the globe. As an initiative by Cure VCP Disease Inc., a patient advocacy organization, an online survey was initially conducted to identify the practice gaps in VCP myopathy. All prior published literature on VCP myopathy was reviewed to better understand the different aspects of management of VCP myopathy, and several working group sessions were conducted involving international experts to develop this provisional recommendation. VCP myopathy has a heterogeneous clinical phenotype and should be considered in patients with limb-girdle muscular dystrophy phenotype, or any myopathy with an autosomal dominant pattern of inheritance. Genetic testing is the only definitive way to diagnose VCP myopathy, and single-variant testing in the case of a known familial VCP variant, or multi-gene panel sequencing in undifferentiated cases can be considered. Muscle biopsy is important in cases of diagnostic uncertainty or lack of a definitive pathogenic genetic variant since rimmed vacuoles (present in ~40% cases) are considered a hallmark of VCP myopathy. Electrodiagnostic studies and magnetic resonance imaging can also help rule out disease mimics. Standardized management of VCP myopathy will optimize patient care and help future research initiatives.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of NeurologyYale School of MedicineNew HavenConnecticutUSA
| | | | - Teresinha Evangelista
- GH Pitié‐Salpêtrière, Sorbonne Université‐Inserm UMRS97, Institut de MyologieParisFrance
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical NeurosciencesUniversity of Calgary Cumming School of MedicineCalgaryAlbertaCanada
| | - Leo Wang
- Department of NeurologyUniversity of WashingtonSeattleWashingtonUSA
| | - Jordi Diaz‐Manera
- John Walton Muscular Dystrophy Research CentreNewcastle UniversityNewcastle upon TyneUK
| | - Manisha Korb
- Department of NeurologyUniversity of California—Irvine School of MedicineOrangeCaliforniaUSA
| | | | | | - Miriam Freimer
- Department of NeurologyOhio State UniversityColumbusOhioUSA
| | - Hani Kushlaf
- Department of Neurology and Rehabilitation MedicineUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Rocio‐Nur Villar‐Quiles
- APHP, Reference Center for Neuromuscular Disorders, Center of Research in MyologySorbonne Université‐Inserm UMRS974, Pitié‐Salpêtrière HospitalParisFrance
| | - Tanya Stojkovic
- APHP, Reference Center for Neuromuscular Disorders, Center of Research in MyologySorbonne Université‐Inserm UMRS974, Pitié‐Salpêtrière HospitalParisFrance
| | - Merrilee Needham
- University of Notre Dame, Murdoch University and Fiona Stanley HospitalPerthAustralia
| | - Johanna Palmio
- Neuromuscular Research CenterTampere University HospitalTampereFinland
| | - Thomas E. Lloyd
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMassachusettsUSA
- Department of Neuroscience and PathologyJohns Hopkins University School of MedicineBaltimoreMassachusettsUSA
| | - Benison Keung
- Department of NeurologyYale School of MedicineNew HavenConnecticutUSA
| | - Tahseen Mozaffar
- Department of NeurologyUniversity of California—Irvine School of MedicineOrangeCaliforniaUSA
| | - Conrad Chris Weihl
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Virginia Kimonis
- Department of NeurologyUniversity of California—Irvine School of MedicineOrangeCaliforniaUSA
- Department of PediatricsUniversity of California—Irvine School of MedicineOrangeCaliforniaUSA
| |
Collapse
|
7
|
Halani HA, Saini PK, Chavan P, Mansukhani KA, Khadilkar SV. Rapidly Progressive ALS with Atypical Parkinsonism: An Unusual Case of Multisystem Proteinopathy from India. Ann Indian Acad Neurol 2023; 26:85-86. [PMID: 37034040 PMCID: PMC10081550 DOI: 10.4103/aian.aian_819_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Hiral A. Halani
- Department of Neurology, Bombay Hospital and Medical Research Center, Mumbai, Maharashtra, India
| | - Pankaj K. Saini
- Department of Neurology, J.L.N. Medical College, Ajmer, Rajasthan, India
| | - Priyanka Chavan
- Department of Clinical Neurophysiology (ENMG &EP), Bombay Hospital and Medical Research Center, Mumbai, Maharashtra, India
| | - Khushnuma A. Mansukhani
- Department of Clinical Neurophysiology (ENMG &EP), Bombay Hospital and Medical Research Center, Mumbai, Maharashtra, India
| | - Satish V. Khadilkar
- Department of Neurology, Bombay Hospital and Medical Research Center, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Schiava M, Ikenaga C, Villar-Quiles RN, Caballero-Ávila M, Topf A, Nishino I, Kimonis V, Udd B, Schoser B, Zanoteli E, Souza PVS, Tasca G, Lloyd T, Lopez-de Munain A, Paradas C, Pegoraro E, Nadaj-Pakleza A, De Bleecker J, Badrising U, Alonso-Jiménez A, Kostera-Pruszczyk A, Miralles F, Shin JH, Bevilacqua JA, Olivé M, Vorgerd M, Kley R, Brady S, Williams T, Domínguez-González C, Papadimas GK, Warman-Chardon J, Claeys KG, de Visser M, Muelas N, LaForet P, Malfatti E, Alfano LN, Nair SS, Manousakis G, Kushlaf HA, Harms MB, Nance C, Ramos-Fransi A, Rodolico C, Hewamadduma C, Cetin H, García-García J, Pál E, Farrugia ME, Lamont PJ, Quinn C, Nedkova-Hristova V, Peric S, Luo S, Oldfors A, Taylor K, Ralston S, Stojkovic T, Weihl C, Diaz-Manera J. Genotype-phenotype correlations in valosin-containing protein disease: a retrospective muticentre study. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-328921. [PMID: 35896379 PMCID: PMC9880250 DOI: 10.1136/jnnp-2022-328921] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/28/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Valosin-containing protein (VCP) disease, caused by mutations in the VCP gene, results in myopathy, Paget's disease of bone (PBD) and frontotemporal dementia (FTD). Natural history and genotype-phenotype correlation data are limited. This study characterises patients with mutations in VCP gene and investigates genotype-phenotype correlations. METHODS Descriptive retrospective international study collecting clinical and genetic data of patients with mutations in the VCP gene. RESULTS Two hundred and fifty-five patients (70.0% males) were included in the study. Mean age was 56.8±9.6 years and mean age of onset 45.6±9.3 years. Mean diagnostic delay was 7.7±6 years. Symmetric lower limb weakness was reported in 50% at onset progressing to generalised muscle weakness. Other common symptoms were ventilatory insufficiency 40.3%, PDB 28.2%, dysautonomia 21.4% and FTD 14.3%. Fifty-seven genetic variants were identified, 18 of these no previously reported. c.464G>A (p.Arg155His) was the most frequent variant, identified in the 28%. Full time wheelchair users accounted for 19.1% with a median time from disease onset to been wheelchair user of 8.5 years. Variant c.463C>T (p.Arg155Cys) showed an earlier onset (37.8±7.6 year) and a higher frequency of axial and upper limb weakness, scapular winging and cognitive impairment. Forced vital capacity (FVC) below 50% was as risk factor for being full-time wheelchair user, while FVC <70% and being a full-time wheelchair user were associated with death. CONCLUSION This study expands the knowledge on the phenotypic presentation, natural history, genotype-phenotype correlations and risk factors for disease progression of VCP disease and is useful to improve the care provided to patient with this complex disease.
Collapse
Affiliation(s)
- Marianela Schiava
- John Walton Muscular Dystrophy Research Centre, Newcastle University, and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rocío Nur Villar-Quiles
- APHP, Centre de référence des maladies neuromusculaires, Institut de Myologie, Sorbonne Université, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marta Caballero-Ávila
- Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ana Topf
- Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle University, Newcastle upon Tyne, UK
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Virginia Kimonis
- Department of Pediatrics Division of Genetics and Genomic Medicine, University of California-Irvine Medical Center Children’s Hospital of Orange County, Orange, California, USA
| | - Bjarne Udd
- Tampere Neuromuscular Center, Tampere University Hospital, Tampere, Finland
- Folkhalsan Genetic Institute, Helsinki University, Helsinki, Finland
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute Ludwig Maximilian University Clinics, Munich, Germany
| | - Edmar Zanoteli
- Department of Neurology, School of Medicine, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome, Italy
| | - Thomas Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adolfo Lopez-de Munain
- Biodonostia Neurosciences Area Group of Neuromuscular Diseases Biodonostia-Osakidetza Basque Health Service, San Sebastian, Spain
| | - Carmen Paradas
- Neurology Department, Neuromuscular Disorders Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Biomedicina de Sevilla, Sevilla, Spain
- Center for Biomedical Network Research on Neurodegenerative Disorders (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Aleksandra Nadaj-Pakleza
- Department of Neurology, Centre de Reference des Maldies Neuromusculaires Nord-Est-Ile de France, University Hospital of Strasbourg, Strasbourg, France
| | - Jan De Bleecker
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Umesh Badrising
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alicia Alonso-Jiménez
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Universiteit Antwerpen, Instituut Born Bunge, Antwerpen, Belgium
| | - Anna Kostera-Pruszczyk
- Department of Neurology, Medical University of Warsaw, European Reference Network ERN-NMD, Warsaw, Poland
| | - Francesc Miralles
- Department of Neurology, Unitat de Patologia Neuromuscular i Gabinet d’electrodiagnòstic, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Jin-Hong Shin
- Laboratory of Molecular Neurology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Jorge Alfredo Bevilacqua
- Unidad Neuromuscular, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
- Departamento de Neurología y Neurocirugía Clínica, Clínica Dávila, Santiago Chile, Chile
| | - Montse Olivé
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Deaprtment of Neurology, Neuromuscular Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Matthias Vorgerd
- Heimer Institut for Muscle Research, Klinikum Bergmannsheil, Ruhr University, Bochum, Germany
| | - Rudi Kley
- Department of Neurology and Clinical Neurophysiology, St Marien-Hospital Borken, Borken, Germany
| | - Stefen Brady
- Neurology Department, John Radcliffe Hospital, Oxford, UK
| | - Timothy Williams
- Newcastle Motor Neurone Disease Care Centre, Royal Victoria Infirmary, Newcastle, UK
| | - Cristina Domínguez-González
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Neurology Service, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - George K Papadimas
- First Department of Neurology, Medical School, Eginition Hospital and National and Kapodistrian University of Athens, Athens, Greece
| | - Jodi Warman-Chardon
- Department of Medicine, Ottawa Neuromuscular Centre, Ottawa Hospital, Ottawa, Ontario, Canada
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- KU Leuven Laboratory for Muscle Diseases and Neuropathies, Leuven, Belgium
| | - Marianne de Visser
- Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands
| | - Nuria Muelas
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- Neuromuscular Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Pascal LaForet
- Neurology department, Raymond-Poincaré hospital, APHP, UVSQ, Paris-Saclay University, Paris, France
| | - Edoardo Malfatti
- APHP, Neuromuscular Reference Center Nord-Est-Ile-de-France, Henri Mondor Hospital, Université Paris Est, U955, INSERM, Créteil, IMRB, Paris, France
| | - Lindsay N Alfano
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Sruthi S Nair
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Georgios Manousakis
- Department of Neurology, University of Minnesota Hospital, Minneapolis, Minnesota, USA
| | - Hani A Kushlaf
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Matthew B Harms
- NewYork Presbyterian Columbia University Irving Medical Centre, New York, New York, USA
| | - Christopher Nance
- Department of Neurology, Carver College of Medicine at the University of Iowa, Iowa, Iowa, USA
| | - Alba Ramos-Fransi
- Neuromuscular Unit, Neurology Department, Hospital Germas Trias i Pujol, Badalona, Spain
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Channa Hewamadduma
- Sheffield Institute for translational neurosciences (SITRAN), Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Jorge García-García
- Neurology Department, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Endre Pál
- Department of Neurology, University of Pécs, Pécs, Hungary
| | - Maria Elena Farrugia
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Phillipa J Lamont
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Colin Quinn
- Neuromuscular Division, Neurology Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Stojan Peric
- Neurology Clinic, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sushan Luo
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Anders Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Stuart Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Tanya Stojkovic
- APHP, Centre de référence des maladies neuromusculaires, Institut de Myologie, Sorbonne Université, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Conrad Weihl
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University, and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | |
Collapse
|
9
|
Pfeffer G, Lee G, Pontifex CS, Fanganiello RD, Peck A, Weihl CC, Kimonis V. Multisystem Proteinopathy Due to VCP Mutations: A Review of Clinical Heterogeneity and Genetic Diagnosis. Genes (Basel) 2022; 13:963. [PMID: 35741724 PMCID: PMC9222868 DOI: 10.3390/genes13060963] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
In this work, we review clinical features and genetic diagnosis of diseases caused by mutations in the gene encoding valosin-containing protein (VCP/p97), the functionally diverse AAA-ATPase. VCP is crucial to a multitude of cellular functions including protein quality control, stress granule formation and clearance, and genomic integrity functions, among others. Pathogenic mutations in VCP cause multisystem proteinopathy (VCP-MSP), an autosomal dominant, adult-onset disorder causing dysfunction in several tissue types. It can result in complex neurodegenerative conditions including inclusion body myopathy, frontotemporal dementia, amyotrophic lateral sclerosis, or combinations of these. There is also an association with other neurodegenerative phenotypes such as Alzheimer-type dementia and Parkinsonism. Non-neurological presentations include Paget disease of bone and may also include cardiac dysfunction. We provide a detailed discussion of genotype-phenotype correlations, recommendations for genetic diagnosis, and genetic counselling implications of VCP-MSP.
Collapse
Affiliation(s)
- Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Grace Lee
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California Irvine Medical Center, Orange, CA 92868, USA; (G.L.); (V.K.)
| | - Carly S. Pontifex
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Roberto D. Fanganiello
- Oral Ecology Research Group, Faculty of Dental Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Allison Peck
- Cure VCP Disease, Inc., Americus, GA 31709, USA;
| | - Conrad C. Weihl
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Virginia Kimonis
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California Irvine Medical Center, Orange, CA 92868, USA; (G.L.); (V.K.)
| |
Collapse
|
10
|
Ferrari V, Cristofani R, Tedesco B, Crippa V, Chierichetti M, Casarotto E, Cozzi M, Mina F, Piccolella M, Galbiati M, Rusmini P, Poletti A. Valosin Containing Protein (VCP): A Multistep Regulator of Autophagy. Int J Mol Sci 2022; 23:1939. [PMID: 35216053 PMCID: PMC8878954 DOI: 10.3390/ijms23041939] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Valosin containing protein (VCP) has emerged as a central protein in the regulation of the protein quality control (PQC) system. VCP mutations are causative of multisystem proteinopathies, which include neurodegenerative diseases (NDs), and share various signs of altered proteostasis, mainly associated with autophagy malfunctioning. Autophagy is a complex multistep degradative system essential for the maintenance of cell viability, especially in post-mitotic cells as neurons and differentiated skeletal muscle cells. Interestingly, many studies concerning NDs have focused on autophagy impairment as a pathological mechanism or autophagy activity boosting to rescue the pathological phenotype. The role of VCP in autophagy has been widely debated, but recent findings have defined new mechanisms associated with VCP activity in the regulation of autophagy, showing that VCP is involved in different steps of this pathway. Here we will discuss the multiple activity of VCP in the autophagic pathway underlying its leading role either in physiological or pathological conditions. A better understanding of VCP complexes and mechanisms in regulating autophagy could define the altered mechanisms by which VCP directly or indirectly causes or modulates different human diseases and revealing possible new therapeutic approaches for NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Barbara Tedesco
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS—Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy;
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (V.F.); (R.C.); (V.C.); (M.C.); (E.C.); (M.C.); (F.M.); (M.P.); (M.G.); (P.R.)
| |
Collapse
|
11
|
Korb M, Peck A, Alfano LN, Berger KI, James MK, Ghoshal N, Healzer E, Henchcliffe C, Khan S, Mammen PPA, Patel S, Pfeffer G, Ralston SH, Roy B, Seeley WW, Swenson A, Mozaffar T, Weihl C, Kimonis V, Fanganiello R, Lee G, Mahoney RP, Diaz-Manera J, Evangelista T, Freimer M, Lloyd TE, Keung B, Kushlaf H, Milone M, Needham M, Palmio J, Stojkovic T, Villar-Quiles RN, Wang LH, Wicklund MP, Singer FR, Jones M, Miller BL, Ahmad Sajjadi S, Obenaus A, Geschwind MD, Al-Chalabi A, Wymer J, Chen N, Kompoliti K, Wang SC, Boissoneault CA, Cruz-Coble B, Garand KL, Rinholen AJ, Tabor-Gray L, Rosenfeld J, Guo M, Peck N. Development of a standard of care for patients with valosin-containing protein associated multisystem proteinopathy. Orphanet J Rare Dis 2022; 17:23. [PMID: 35093159 PMCID: PMC8800193 DOI: 10.1186/s13023-022-02172-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/16/2022] [Indexed: 02/08/2023] Open
Abstract
Valosin-containing protein (VCP) associated multisystem proteinopathy (MSP) is a rare inherited disorder that may result in multisystem involvement of varying phenotypes including inclusion body myopathy, Paget’s disease of bone (PDB), frontotemporal dementia (FTD), parkinsonism, and amyotrophic lateral sclerosis (ALS), among others. An international multidisciplinary consortium of 40+ experts in neuromuscular disease, dementia, movement disorders, psychology, cardiology, pulmonology, physical therapy, occupational therapy, speech and language pathology, nutrition, genetics, integrative medicine, and endocrinology were convened by the patient advocacy organization, Cure VCP Disease, in December 2020 to develop a standard of care for this heterogeneous and under-diagnosed disease. To achieve this goal, working groups collaborated to generate expert consensus recommendations in 10 key areas: genetic diagnosis, myopathy, FTD, PDB, ALS, Charcot Marie Tooth disease (CMT), parkinsonism, cardiomyopathy, pulmonology, supportive therapies, nutrition and supplements, and mental health. In April 2021, facilitated discussion of each working group’s conclusions with consensus building techniques enabled final agreement on the proposed standard of care for VCP patients. Timely referral to a specialty neuromuscular center is recommended to aid in efficient diagnosis of VCP MSP via single-gene testing in the case of a known familial VCP variant, or multi-gene panel sequencing in undifferentiated cases. Additionally, regular and ongoing multidisciplinary team follow up is essential for proactive screening and management of secondary complications. The goal of our consortium is to raise awareness of VCP MSP, expedite the time to accurate diagnosis, define gaps and inequities in patient care, initiate appropriate pharmacotherapies and supportive therapies for optimal management, and elevate the recommended best practices guidelines for multidisciplinary care internationally.
Collapse
|
12
|
Jia FF, Drew AP, Nicholson GA, Corbett A, Kumar KR. Facioscapulohumeral muscular dystrophy type 2: an update on the clinical, genetic, and molecular findings. Neuromuscul Disord 2021; 31:1101-1112. [PMID: 34711481 DOI: 10.1016/j.nmd.2021.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a common genetic disease of the skeletal muscle with a characteristic pattern of weakness. Facioscapulohumeral muscular dystrophy type 2 (FSHD2) accounts for approximately 5% of all cases of FSHD and describes patients without a D4Z4 repeat contraction on chromosome 4. Phenotypically FSHD2 shows virtually no difference from FSHD1 and both forms of FSHD arise via a common downstream mechanism of epigenetic derepression of the transcription factor DUX4 in skeletal muscle cells. This results in expression of DUX4 and target genes leading to skeletal muscle toxicity. Over the past decade, major progress has been made in our understanding of the genetic and epigenetic architecture that underlies FSHD2 pathogenesis, as well as the clinical manifestations and disease progression. These include the finding that FSHD2 is a digenic disease and that mutations in the genes SMCHD1, DNMT3B, and more recently LRIF1, can cause FSHD2. FSHD2 is complex and it is important that clinicians keep abreast of recent developments; this review aims to serve as an update of the clinical, genetic, and molecular research into this condition.
Collapse
Affiliation(s)
- Fangzhi Frank Jia
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia.
| | - Alexander P Drew
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.
| | - Garth Alexander Nicholson
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| | - Alastair Corbett
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| | - Kishore Raj Kumar
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia; Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.
| |
Collapse
|
13
|
Leinonen H, Cheng C, Pitkänen M, Sander CL, Zhang J, Saeid S, Turunen T, Shmara A, Weiss L, Ta L, Ton T, Koskelainen A, Vargas JD, Kimonis V, Palczewski K. A p97/Valosin-Containing Protein Inhibitor Drug CB-5083 Has a Potent but Reversible Off-Target Effect on Phosphodiesterase-6. J Pharmacol Exp Ther 2021; 378:31-41. [PMID: 33931547 PMCID: PMC8456514 DOI: 10.1124/jpet.120.000486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/29/2021] [Indexed: 12/16/2022] Open
Abstract
CB-5083 is an inhibitor of p97/valosin-containing protein (VCP), for which phase I trials for cancer were terminated because of adverse effects on vision, such as photophobia and dyschromatopsia. Lower dose CB-5083 could combat inclusion body myopathy with early-onset Paget disease and frontotemporal dementia or multisystem proteinopathy caused by gain-of-function mutations in VCP. We hypothesized that the visual impairment in the cancer trial was due to CB-5083's inhibition of phosphodiesterase (PDE)-6, which mediates signal transduction in photoreceptors. To test our hypothesis, we used in vivo and ex vivo electroretinography (ERG) in mice and a PDE6 activity assay of bovine rod outer segment (ROS) extracts. Additionally, histology and optical coherence tomography were used to assess CB-5083's long-term ocular toxicity. A single administration of CB-5083 led to robust ERG signal deterioration, specifically in photoresponse kinetics. Similar recordings with known PDE inhibitors sildenafil, tadalafil, vardenafil, and zaprinast showed that only vardenafil had as strong an effect on the ERG signal in vivo as did CB-5083. In the biochemical assay, CB-5083 inhibited PDE6 activity with a potency higher than sildenafil but lower than that of vardenafil. Ex vivo ERG revealed a PDE6 inhibition constant of 80 nM for CB-5083, which is 7-fold smaller than that for sildenafil. Finally, we showed that the inhibitory effect of CB-5083 on visual function is reversible, and its chronic administration does not cause permanent retinal anomalies in aged VCP-disease model mice. Our results warrant re-evaluation of CB-5083 as a clinical therapeutic agent. We recommend preclinical ERG recordings as a routine drug safety screen. SIGNIFICANCE STATEMENT: This report supports the use of a valosin-containing protein (VCP) inhibitor drug, CB-5083, for the treatment of neuromuscular VCP disease despite CB-5083's initial clinical failure for cancer treatment due to side effects on vision. The data show that CB-5083 displays a dose-dependent but reversible inhibitory action on phosphodiesterase-6, an essential enzyme in retinal photoreceptor function, but no long-term consequences on retinal function or structure.
Collapse
Affiliation(s)
- Henri Leinonen
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Cheng Cheng
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Marja Pitkänen
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Christopher L Sander
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Jianye Zhang
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Sama Saeid
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Teemu Turunen
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Alyaa Shmara
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Lan Weiss
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Lac Ta
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Timothy Ton
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Ari Koskelainen
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Jesse D Vargas
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Virginia Kimonis
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| |
Collapse
|
14
|
Matsubara T, Izumi Y, Oda M, Takahashi M, Maruyama H, Miyamoto R, Watanabe C, Tachiyama Y, Morino H, Kawakami H, Saito Y, Murayama S. An autopsy report of a familial amyotrophic lateral sclerosis case carrying VCP Arg487His mutation with a unique TDP-43 proteinopathy. Neuropathology 2021; 41:118-126. [PMID: 33415820 DOI: 10.1111/neup.12710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
We here report an autopsy case of familial amyotrophic lateral sclerosis (ALS) with p.Arg487His mutation in the valosin-containing protein (VCP) gene (VCP), in which upper motor neurons (UMNs) were predominantly involved. Moreover, our patient developed symptoms of frontotemporal dementia later in life and pathologically exhibited numerous phosphorylated transactivation response DNA-binding protein of 43 kDa (p-TDP-43)-positive neuronal cytoplasmic inclusions and short dystrophic neurites with a few lentiform neuronal intranuclear inclusions, sharing the features of frontotemporal lobar degeneration with TDP-43 pathology type A pattern. A review of previous reports of ALS with VCP mutations suggests that our case is unique in terms of its UMN-predominant lesion pattern and distribution of p-TDP-43 pathology. Thus, this case report effectively expands the clinical and pathological phenotype of ALS in patients with a VCP mutation.
Collapse
Affiliation(s)
- Tomoyasu Matsubara
- Department of Neurology, Mifukai Vihara Hananosato Hospital, Hiroshima, Japan.,Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuishin Izumi
- Department of Neurology, Mifukai Vihara Hananosato Hospital, Hiroshima, Japan.,Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masaya Oda
- Department of Neurology, Mifukai Vihara Hananosato Hospital, Hiroshima, Japan
| | | | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ryosuke Miyamoto
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Chigusa Watanabe
- Department of Neurology, National Hospital Organization Hiroshima-Nishi Medical Center, Hiroshima, Japan
| | - Yoshiro Tachiyama
- Department of Clinical Laboratory, National Hospital Organization Hiroshima-Nishi Medical Center, Hiroshima, Japan
| | - Hiroyuki Morino
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuko Saito
- Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Molecular Research Center for Children's Mental Development (Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders), United Graduate School of Child Development, Osaka University, Osaka, Japan
| |
Collapse
|
15
|
Korb MK, Kimonis VE, Mozaffar T. Multisystem proteinopathy: Where myopathy and motor neuron disease converge. Muscle Nerve 2020; 63:442-454. [PMID: 33145792 DOI: 10.1002/mus.27097] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Multisystem proteinopathy (MSP) is a pleiotropic group of inherited disorders that cause neurodegeneration, myopathy, and bone disease, and share common pathophysiology. Originally referred to as inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), attributed to mutations in the gene encoding valosin-containing protein (VCP), it has more recently been discovered that there are several other genes responsible for similar clinical and pathological phenotypes with muscle, brain, nerve, and bone involvement, in various combinations. These include heterogeneous nuclear ribonucleoprotein A2B1 and A1 (hnRNPA2B1, hnRNPA1), sequestosome 1 (SQSTM1), matrin 3 (MATR3), T-cell restricted intracellular antigen 1 (TIA1), and optineurin (OPTN), all of which share disruption of RNA stress granule function and autophagic degradation. This review will discuss each of the genes implicated in MSP, exploring the molecular pathogenesis, clinical features, current standards of care, and future directions for this diverse yet mechanistically linked spectrum of disorders.
Collapse
Affiliation(s)
- Manisha K Korb
- Departments of Neurology, University of California Irvine, Orange, California, USA
| | - Virginia E Kimonis
- Departments of Pediatrics, University of California Irvine, Orange, California, USA
| | - Tahseen Mozaffar
- Departments of Neurology, University of California Irvine, Orange, California, USA.,Departments of Orthopedic Surgery, University of California Irvine, Orange, California, USA.,Departments of Pathology & Laboratory Medicine, University of California Irvine, Orange, California, USA
| |
Collapse
|
16
|
Ikenaga C, Findlay AR, Seiffert M, Peck A, Peck N, Johnson NE, Statland JM, Weihl CC. Phenotypic diversity in an international Cure VCP Disease registry. Orphanet J Rare Dis 2020; 15:267. [PMID: 32993728 PMCID: PMC7523394 DOI: 10.1186/s13023-020-01551-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Dominant mutations in valosin-containing protein (VCP) gene cause an adult onset inclusion body myopathy, Paget’s disease of bone, and frontotemporal dementia also termed multisystem proteinopathy (MSP). The genotype-phenotype relationships in VCP-related MSP are still being defined; in order to understand this better, we investigated the phenotypic diversity and patterns of weakness in the Cure VCP Disease Patient Registry. Methods Cure VCP Disease, Inc. was founded in 2018 for the purpose of connecting patients with VCP gene mutations and researchers to help advance treatments and cures. Cure VCP Disease Patient Registry is maintained by Coordination of Rare Diseases at Sanford. The results of two questionnaires with a 5-point Likert scale questions regarding to patients’ disease onset, symptoms, and daily life were obtained from 59 participants (28 males and 31 females) between June 2018 and May 2020. Independent of the registry, 22 patients were examined at the Cure VCP Disease annual patient conference in 2019. Results In the questionnaires of the registry, fifty-three patients (90%) reported that they were with inclusion body myopathy, 17 patients (29%) with Paget’s disease of bone, eight patients (14%) with dementia, two patients (3%) with amyotrophic lateral sclerosis, and a patient with parkinsonism. Thirteen patients (22%) reported dysphagia and 25 patients (42%) reported dyspnea on exertion. A self-reported functional rating scale for motor function identified challenges with sit to stand (72%), walking (67%), and climbing stairs (85%). Thirty-five (59%) patients in the registry answered that their quality of life is more than good. As for the weakness pattern of the 22 patients who were evaluated at the Cure VCP Disease annual conference, 50% of patients had facial weakness, 55% had scapular winging, 68% had upper proximal weakness, 41% had upper distal weakness, 77% had lower proximal, and 64% had lower distal weakness. Conclusions The Cure VCP Disease Patient Registry is useful for deepening the understanding of patient daily life, which would be a basis to develop appropriate clinical outcome measures. The registry data is consistent with previous studies evaluating VCP patients in the clinical setting. Patient advocacy groups are essential in developing and maintaining disease registries.
Collapse
Affiliation(s)
- Chiseko Ikenaga
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, Saint Louis, MO, 63110, USA
| | - Andrew R Findlay
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, Saint Louis, MO, 63110, USA
| | - Michelle Seiffert
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, Saint Louis, MO, 63110, USA
| | | | | | - Nicholas E Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, Saint Louis, MO, 63110, USA.
| |
Collapse
|
17
|
De Ridder W, Azmi A, Clemen CS, Eichinger L, Hofmann A, Schröder R, Johnson K, Töpf A, Straub V, De Jonghe P, Maudsley S, De Bleecker JL, Baets J. Multisystem proteinopathy due to a homozygous p.Arg159His VCP mutation: A tale of the unexpected. Neurology 2019; 94:e785-e796. [PMID: 31848255 DOI: 10.1212/wnl.0000000000008763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To assess the clinical, radiologic, myopathologic, and proteomic findings in a patient manifesting a multisystem proteinopathy due to a homozygous valosin-containing protein gene (VCP) mutation previously reported to be pathogenic in the heterozygous state. METHODS We studied a 36-year-old male index patient and his father, both presenting with progressive limb-girdle weakness. Muscle involvement was assessed by MRI and muscle biopsies. We performed whole-exome sequencing and Sanger sequencing for segregation analysis of the identified p.Arg159His VCP mutation. To dissect biological disease signatures, we applied state-of-the-art quantitative proteomics on muscle tissue of the index case, his father, 3 additional patients with VCP-related myopathy, and 3 control individuals. RESULTS The index patient, homozygous for the known p.Arg159His mutation in VCP, manifested a typical VCP-related myopathy phenotype, although with a markedly high creatine kinase value and a relatively early disease onset, and Paget disease of bone. The father exhibited a myopathy phenotype and discrete parkinsonism, and multiple deceased family members on the maternal side of the pedigree displayed a dementia, parkinsonism, or myopathy phenotype. Bioinformatic analysis of quantitative proteomic data revealed the degenerative nature of the disease, with evidence suggesting selective failure of muscle regeneration and stress granule dyshomeostasis. CONCLUSION We report a patient showing a multisystem proteinopathy due to a homozygous VCP mutation. The patient manifests a severe phenotype, yet fundamental disease characteristics are preserved. Proteomic findings provide further insights into VCP-related pathomechanisms.
Collapse
Affiliation(s)
- Willem De Ridder
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Abdelkrim Azmi
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Christoph S Clemen
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Ludwig Eichinger
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Andreas Hofmann
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Rolf Schröder
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Katherine Johnson
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Ana Töpf
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Volker Straub
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Peter De Jonghe
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Stuart Maudsley
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Jan L De Bleecker
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium
| | - Jonathan Baets
- From the Neurogenetics Group (W.D.R., P.D.J., J.B.), Laboratory of Neuromuscular Pathology (W.D.R., P.D.J., J.B.), Institute Born-Bunge, Neuromics Support Facility (A.A.), VIB-UAntwerp Center for Molecular Neurology, and Receptor Biology Lab (S.M.), Department of Biomedical Sciences, University of Antwerp; Neuromuscular Reference Centre (W.D.R., P.D.J., J.B.), Department of Neurology, Antwerp University Hospital, Belgium; Institute of Neuropathology (C.S.C., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen; Centre for Biochemistry (C.S.C., L.E.), Institute of Biochemistry I, and Center for Physiology and Pathophysiology (C.S.C.), Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Germany; Griffith Institute for Drug Discovery (A.H), Griffith University, Nathan, Brisbane, Queensland; Department of Veterinary Biosciences (A.H.), Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia; John Walton Muscular Dystrophy Research Centre (K.J., A.T., V.S.), Institute of Genetic Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK; and Laboratory for Neuropathology (J.L.D.B.), Division of Neurology, Ghent University Hospital, Belgium.
| |
Collapse
|
18
|
Kustermann M, Manta L, Paone C, Kustermann J, Lausser L, Wiesner C, Eichinger L, Clemen CS, Schröder R, Kestler HA, Sandri M, Rottbauer W, Just S. Loss of the novel Vcp (valosin containing protein) interactor Washc4 interferes with autophagy-mediated proteostasis in striated muscle and leads to myopathy in vivo. Autophagy 2018; 14:1911-1927. [PMID: 30010465 PMCID: PMC6152520 DOI: 10.1080/15548627.2018.1491491] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
VCP/p97 (valosin containing protein) is a key regulator of cellular proteostasis. It orchestrates protein turnover and quality control in vivo, processes fundamental for proper cell function. In humans, mutations in VCP lead to severe myo- and neuro-degenerative disorders such as inclusion body myopathy with Paget disease of the bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS) or and hereditary spastic paraplegia (HSP). We analyzed here the in vivo role of Vcp and its novel interactor Washc4/Swip (WASH complex subunit 4) in the vertebrate model zebrafish (Danio rerio). We found that targeted inactivation of either Vcp or Washc4, led to progressive impairment of cardiac and skeletal muscle function, structure and cytoarchitecture without interfering with the differentiation of both organ systems. Notably, loss of Vcp resulted in compromised protein degradation via the proteasome and the macroautophagy/autophagy machinery, whereas Washc4 deficiency did not affect the function of the ubiquitin-proteasome system (UPS) but caused ER stress and interfered with autophagy function in vivo. In summary, our findings provide novel insights into the in vivo functions of Vcp and its novel interactor Washc4 and their particular and distinct roles during proteostasis in striated muscle cells.
Collapse
Affiliation(s)
- Monika Kustermann
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Linda Manta
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Christoph Paone
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Jochen Kustermann
- b Institute of Molecular Genetics and Cell Biology, Department of Biology , University of Ulm , Ulm , Germany
| | - Ludwig Lausser
- c Institute of Medical Systems Biology , University of Ulm , Ulm , Germany
| | - Cora Wiesner
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Ludwig Eichinger
- d Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty , University of Cologne , Cologne , Germany
| | - Christoph S Clemen
- d Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty , University of Cologne , Cologne , Germany.,e Department of Neurology, Heimer Institute for Muscle Research , University Hospital Bergmannsheil, Ruhr-University Bochum , Bochum , Germany
| | - Rolf Schröder
- f Institute of Neuropathology , University Hospital Erlangen , Erlangen , Germany
| | - Hans A Kestler
- c Institute of Medical Systems Biology , University of Ulm , Ulm , Germany
| | - Marco Sandri
- g Department of Biomedical Science, Venetian Institute of Molecular Medicine (VIMM) , University of Padova , Padova , Italy
| | - Wolfgang Rottbauer
- h Department of Internal Medicine II , University of Ulm , Ulm , Germany
| | - Steffen Just
- a Molecular Cardiology, Department of Internal Medicine II , University of Ulm , Ulm , Germany
| |
Collapse
|
19
|
Al-Tahan S, Al-Obeidi E, Yoshioka H, Lakatos A, Weiss L, Grafe M, Palmio J, Wicklund M, Harati Y, Omizo M, Udd B, Kimonis V. Novel valosin-containing protein mutations associated with multisystem proteinopathy. Neuromuscul Disord 2018; 28:491-501. [PMID: 29754758 DOI: 10.1016/j.nmd.2018.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Over fifty missense mutations in the gene coding for valosin-containing protein (VCP) are associated with a unique autosomal dominant adult-onset progressive disease associated with combinations of proximo-distal inclusion body myopathy (IBM), Paget's disease of bone (PDB), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). We report the clinical, histological, and molecular findings in four new patients/families carrying novel VCP mutations: c.474 G > A (p.M158I); c.478 G > C (p.A160P); c.383G > C (p.G128A); and c.382G > T (p.G128C). Clinical features included myopathy, PDB, ALS and Parkinson's disease though frontotemporal dementia was not an associated feature in these families. One of the patients was noted to have severe manifestations of PDB and was suspected of having neoplasia. There were wide inter- and intra-familial variations making genotype-phenotype correlations difficult between the novel mutations and frequency or age of onset of IBM, PDB, FTD, ALS and Parkinson's disease. Increasing awareness of the full spectrum of clinical presentations will improve diagnosis of VCP-related diseases and thus proactively manage or prevent associated clinical features such as PDB.
Collapse
Affiliation(s)
- Sejad Al-Tahan
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA
| | - Ebaa Al-Obeidi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA
| | - Hiroshi Yoshioka
- Department of Radiological Sciences, University of California, Irvine, CA
| | - Anita Lakatos
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA
| | - Lan Weiss
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA
| | - Marjorie Grafe
- Department of Pathology, Oregon Health and Science University, Portland, OR
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University and University Hospital, Neurology, Tampere, Finland
| | - Matt Wicklund
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO
| | - Yadollah Harati
- Department of Neurology, Baylor College of Medicine, Houston, TX
| | | | - Bjarne Udd
- Neuromuscular Research Center, Tampere University and University Hospital, Neurology, Tampere, Finland; Folkhälsan Institute of Genetics and the Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland; Neurology Department, Vasa Central Hospital, Vasa, Finland
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA.
| |
Collapse
|
20
|
PAPADIMAS GEORGEK, PARASKEVAS GEORGEP, ZAMBELIS THOMAS, KARAGIAOURIS CHRISOSTOMOS, BOURBOULI MARA, BOUGEA ANASTASIA, WALTER MAGGIEC, SCHUMACHER NICOLASU, KRAUSE SABINE, KAPAKI ELISABETH. The multifaceted clinical presentation of VCP-proteinopathy in a Greek family. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2017; 36:203-206. [PMID: 29770363 PMCID: PMC5953233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
VCP-proteinopathy is a multisystem neurodegenerative disorder caused by mutations in valosin containing protein. Here, we report the first Greek case of VCP-proteinopathy in a 62 year old patient with a slowly progressing muscular weakness since his mid-40s and a severe deterioration during the last year. He also manifested dementia with prominent neuropsychiatric symptoms, including aggression, apathy, palilalia and obsessions. Brain MRI revealed frontal atrophy, while muscle MRI showed diffuse muscle atrophy. Family history was positive and several members of the family had been diagnosed with motor neuron disease, dementia or behavioral symptoms. Sequencing of the VCP gene revealed a pathogenic heterozygous missense mutation p.R159H. Conclusively, the present report highlights the intrafamilial variability and broadens the phenotypic spectrum of VCP-proteinopathy.
Collapse
Affiliation(s)
- GEORGE K. PAPADIMAS
- 1 Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - GEORGE P. PARASKEVAS
- 1 Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - THOMAS ZAMBELIS
- 1 Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - CHRISOSTOMOS KARAGIAOURIS
- 1 Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - MARA BOURBOULI
- 1 Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - ANASTASIA BOUGEA
- 1 Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - MAGGIE C. WALTER
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | - NICOLAS U. SCHUMACHER
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | - SABINE KRAUSE
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | - ELISABETH KAPAKI
- 1 Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
21
|
Shinjo SK, Oba-Shinjo SM, Lerario AM, Marie SKN. A Brazilian family with inclusion body myopathy associated with Paget’s disease of bone and frontotemporal dementia linked to the VCP pGly97Glu mutation. Clin Rheumatol 2017; 37:1129-1136. [DOI: 10.1007/s10067-017-3913-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
|
22
|
Tang WK, Xia D. Mutations in the Human AAA + Chaperone p97 and Related Diseases. Front Mol Biosci 2016; 3:79. [PMID: 27990419 PMCID: PMC5131264 DOI: 10.3389/fmolb.2016.00079] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
A number of neurodegenerative diseases have been linked to mutations in the human protein p97, an abundant cytosolic AAA+ (ATPase associated with various cellular activities) ATPase, that functions in a large number of cellular pathways. With the assistance of a variety of cofactors and adaptor proteins, p97 couples the energy of ATP hydrolysis to conformational changes that are necessary for its function. Disease-linked mutations, which are found at the interface between two main domains of p97, have been shown to alter the function of the protein, although the pathogenic mutations do not appear to alter the structure of individual subunit of p97 or the formation of the hexameric biological unit. While exactly how pathogenic mutations alter the cellular function of p97 remains unknown, functional, biochemical and structural differences between wild-type and pathogenic mutants of p97 are being identified. Here, we summarize recent progress in the study of p97 pathogenic mutants.
Collapse
Affiliation(s)
- Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
23
|
One family, one gene and three phenotypes: A novel VCP (valosin-containing protein) mutation associated with myopathy with rimmed vacuoles, amyotrophic lateral sclerosis and frontotemporal dementia. J Neurol Sci 2016; 368:352-8. [PMID: 27538664 DOI: 10.1016/j.jns.2016.07.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND VCP (valosin-containing protein gene) variants have been associated with peripheral and central neurodegenerative processes, including inclusion body myopathy (IBM), Paget disease of bone (PDB), frontotemporal dementia (FTD), and familial amyotrophic lateral sclerosis (ALS) type 14. The combination of IBM, PDB (IBMPFD1) can presented in one individual. However, the association of IBMPFD1 and ALS in the same family is rare. METHODS We reported three individuals from a Brazilian kindred with intrafamilial phenotype variability. Whole exome sequencing (WES) of the proband was performed and revealed a novel VCP variant. VCP Sanger sequencing was performed in the proband and his family members to confirm WES finding and segregation. We performed a systematic review of the literature regarding the genotypic-phenotypic VCP correlations. RESULTS Each individual presented with either myopathy with rimmed vacuoles, ALS, or FTD. There was no PDB. WES of the proband identified the heterozygous variant c.271A>T (p.Asn91Tyr) in the exon 3 of VCP. Sanger sequencing confirmed the segregation of this variant in an autosomal-dominant pattern. CONCLUSION This study expands the genotypic spectrum of the missense mutations of the VCP gene with a novel p.Asn91Tyr variant found in a Brazilian family presenting with the unusual intrafamiliar association of myopathy with rimmed vacuoles, ALS and FTD.
Collapse
|
24
|
Evangelista T, Weihl CC, Kimonis V, Lochmüller H. 215th ENMC International Workshop VCP-related multi-system proteinopathy (IBMPFD) 13-15 November 2015, Heemskerk, The Netherlands. Neuromuscul Disord 2016; 26:535-47. [PMID: 27312024 DOI: 10.1016/j.nmd.2016.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Teresinha Evangelista
- John Walton Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, UK
| | - Conrad C Weihl
- Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO, USA
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, University of California - Irvine Medical Centre, Irvine, USA
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre and MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, UK.
| | | |
Collapse
|