1
|
Schwartz M. Editorial for "Whole Muscle and Single Motor Unit Twitch Profiles in a Healthy Adult Cohort Assessed With Phase Contrast Motor Unit MRI (PC-MUMRI)". J Magn Reson Imaging 2024; 60:218-219. [PMID: 37823331 DOI: 10.1002/jmri.29067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Affiliation(s)
- Martin Schwartz
- Section on Experimental Radiology, Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
- Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
2
|
El Khalfi R, Maupoint E, Chiavassa-Gandois H, Goumarre C, Filliole A, Lapègue F, Fabry V, Acket B, Laforet A, Sans N, Cintas P, Faruch-Bilfeld M. Assessment of whole-body muscle MRI for the early diagnosis of Amyotrophic Lateral Sclerosis. Eur J Radiol 2024; 176:111481. [PMID: 38703513 DOI: 10.1016/j.ejrad.2024.111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/01/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVES To evaluate muscle signal abnormalities on whole-body muscle MRI with T2 and diffusion-weighted imaging in early ALS stages. METHODS 101 muscles were analyzed in newly diagnosed ALS patients and healthy controls on a whole-body MRI protocol including four-point T2-Dixon imaging and diffusion-weighted imaging (b0 and b800). Sensitivity and inter-observer agreement were assessed. RESULTS 15 patients (mean age, 64 +/- 12 [SD], 9 men) who met the Awaji-Shima criteria for definite, probable or possible ALS and 9 healthy controls were assessed (mean age, 53 +/- 13 [SD], 2 men). 61 % of the muscles assessed in ALS patients (62/101) showed signal hyperintensities on T2-weighted imaging, mainly in the upper and lower extremities (legs, hands and feet). ALS patients had a significantly higher number of involved muscles compared to healthy controls (p = 0,006). Diffusion-weighted imaging allowed for the detection of additional involvement in 22 muscles, thus improving the sensitivity of whole-body MRI from 60 % (using T2-weighted imaging only) up to 80 % (with the combination of T2-weighted and diffusion-weighted imaging). CONCLUSIONS ALS patients exhibited significant muscle signal abnormalities on T2-weighted and diffusion-weighted imaging in early disease stages. Whole-body MRI could be used for pre-EMG mapping of muscle involvement in order to choose suitable targets, thus improving early diagnosis.
Collapse
Affiliation(s)
- Rokia El Khalfi
- Service d'Imagerie Médicale - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France.
| | - Estelle Maupoint
- Service d'Imagerie Médicale - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Hélène Chiavassa-Gandois
- Service d'Imagerie Médicale - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Céline Goumarre
- Service d'Imagerie Médicale - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Antoine Filliole
- Service d'Imagerie Médicale - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Franck Lapègue
- Service d'Imagerie Médicale - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Vincent Fabry
- Service de Neurologie - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Blandine Acket
- Service de Neurologie - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Anne Laforet
- Service de Neurologie - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Nicolas Sans
- Service d'Imagerie Médicale - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Pascal Cintas
- Service de Neurologie - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Marie Faruch-Bilfeld
- Service d'Imagerie Médicale - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France.
| |
Collapse
|
3
|
Shin-Yi Lin C, Howells J, Rutkove S, Nandedkar S, Neuwirth C, Noto YI, Shahrizaila N, Whittaker RG, Bostock H, Burke D, Tankisi H. Neurophysiological and imaging biomarkers of lower motor neuron dysfunction in motor neuron diseases/amyotrophic lateral sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 162:91-120. [PMID: 38603949 DOI: 10.1016/j.clinph.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/07/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
This chapter discusses comprehensive neurophysiological biomarkers utilised in motor neuron disease (MND) and, in particular, its commonest form, amyotrophic lateral sclerosis (ALS). These encompass the conventional techniques including nerve conduction studies (NCS), needle and high-density surface electromyography (EMG) and H-reflex studies as well as novel techniques. In the last two decades, new methods of assessing the loss of motor units in a muscle have been developed, that are more convenient than earlier methods of motor unit number estimation (MUNE),and may use either electrical stimulation (e.g. MScanFit MUNE) or voluntary activation (MUNIX). Electrical impedance myography (EIM) is another novel approach for the evaluation that relies upon the application and measurement of high-frequency, low-intensity electrical current. Nerve excitability techniques (NET) also provide insights into the function of an axon and reflect the changes in resting membrane potential, ion channel dysfunction and the structural integrity of the axon and myelin sheath. Furthermore, imaging ultrasound techniques as well as magnetic resonance imaging are capable of detecting the constituents of morphological changes in the nerve and muscle. The chapter provides a critical description of the ability of each technique to provide neurophysiological insight into the complex pathophysiology of MND/ALS. However, it is important to recognise the strengths and limitations of each approach in order to clarify utility. These neurophysiological biomarkers have demonstrated reliability, specificity and provide additional information to validate and assess lower motor neuron dysfunction. Their use has expanded the knowledge about MND/ALS and enhanced our understanding of the relationship between motor units, axons, reflexes and other neural circuits in relation to clinical features of patients with MND/ALS at different stages of the disease. Taken together, the ultimate goal is to aid early diagnosis, distinguish potential disease mimics, monitor and stage disease progression, quantify response to treatment and develop potential therapeutic interventions.
Collapse
Affiliation(s)
- Cindy Shin-Yi Lin
- Faculty of Medicine and Health, Central Clinical School, Brain and Mind Centre, University of Sydney, Sydney 2006, Australia.
| | - James Howells
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Seward Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sanjeev Nandedkar
- Natus Medical Inc, Middleton, Wisconsin, USA and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital, St. Gallen, Switzerland
| | - Yu-Ichi Noto
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nortina Shahrizaila
- Division of Neurology, Department of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Roger G Whittaker
- Newcastle University Translational and Clinical Research Institute (NUTCRI), Newcastle University., Newcastle Upon Tyne, United Kingdom
| | - Hugh Bostock
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, United Kingdom
| | - David Burke
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Vucic S, de Carvalho M, Bashford J, Alix JJP. Contribution of neurophysiology to the diagnosis and monitoring of ALS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:87-118. [PMID: 38802184 DOI: 10.1016/bs.irn.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This chapter describes the role of neurophysiological techniques in diagnosing and monitoring amyotrophic lateral sclerosis (ALS). Despite many advances, electromyography (EMG) remains a keystone investigation from which to build support for a diagnosis of ALS, demonstrating the pathophysiological processes of motor unit hyperexcitability, denervation and reinnervation. We consider development of the different diagnostic criteria and the role of EMG therein. While not formally recognised by established diagnostic criteria, we discuss the pioneering studies that have demonstrated the diagnostic potential of transcranial magnetic stimulation (TMS) of the motor cortex and highlight the growing evidence for TMS in the diagnostic process. Finally, accurately monitoring disease progression is crucial for the successful implementation of clinical trials. Neurophysiological measures of disease state have been incorporated into clinical trials for over 20 years and we review prominent techniques for assessing disease progression.
Collapse
Affiliation(s)
- Steve Vucic
- Brain and Nerve Research Centre, Concord Clinical School and Department of Neurology, Concord Repatriation General Hospital, The University of Sydney, Sydney, NSW, Australia
| | - Mamede de Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculty of Medicine, Universidade de Lisboa, Lisboa, Portugal; Department of Neurosciences, CHULN, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | - James Bashford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - James J P Alix
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
5
|
Levidy MF, Lindell K, Taylor KF. Isolated Palsy of the Anterior Interosseous Nerve to Flexor Pollicis Longus, Magnetic Resonance Imaging and Clinical Correlation: A Case Report. JBJS Case Connect 2024; 14:01709767-202406000-00024. [PMID: 38709910 DOI: 10.2106/jbjs.cc.24.00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
CASE Anterior interosseous nerve (AIN) palsy is an uncommon, though well-described, clinical entity. When isolated to the thumb, it can be confused with atraumatic rupture of the flexor pollicis longus (FPL) tendon. A 57-year-old man experienced atraumatic onset of difficulty flexing the distal interphalangeal thumb joint. Magnetic resonance imaging (MRI) demonstrated denervation edema of the FPL, suggesting atypical AIN palsy. Resolution of symptoms and MRI findings occurred concomitantly with nonoperative treatment. CONCLUSION Atypical AIN palsy limited to the FPL is a rare clinical entity whose diagnosis can be supported with MRI. Here, we report a successful case of nonoperative management.
Collapse
Affiliation(s)
- Michael F Levidy
- Department of Orthopaedics and Rehabilitation, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Kenneth Lindell
- Department of Radiology, Tripler Army Medical Center, Honolulu, Hawaii
| | - Kenneth F Taylor
- Department of Orthopaedics and Rehabilitation, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
6
|
Lifante J, Moreno-Rupérez Á, Ximendes E, Marin R, Priego T, López-Calderón A, Martín AI, Nieto-Bona MP, Nebot E, Lifante-Pedrola G, Jaque D, Monge L, Fernández N, Granado M. Early in vivo detection of denervation-induced atrophy by luminescence transient nanothermometry. JOURNAL OF BIOPHOTONICS 2024; 17:e202300249. [PMID: 38010860 DOI: 10.1002/jbio.202300249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Denervation induces skeletal muscle atrophy due to the loss of control and feedback with the nervous system. Unfortunately, muscle atrophy only becomes evident days after the denervation event when it could be irreversible. Alternative diagnosis tools for early detection of denervation-induced muscle atrophy are, thus, required. In this work, we demonstrate how the combination of transient thermometry, a technique already used for early diagnosis of tumors, and infrared-emitting nanothermometers makes possible the in vivo detection of the onset of muscle atrophy at short (<1 day) times after a denervation event. The physiological reasons behind these experimental results have been explored by performing three dimensional numerical simulations based on the Pennes' bioheat equation. It is concluded that the alterations in muscle thermal dynamics at the onset of muscle atrophy are consequence of the skin perfusion increment caused by the alteration of peripheral nervous autonomous system. This work demonstrates the potential of infrared luminescence thermometry for early detection of diseases of the nervous system opening the venue toward the development of new diagnosis tools.
Collapse
Affiliation(s)
- José Lifante
- Facultad de Medicina, Departamento de Fisiología, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Álvaro Moreno-Rupérez
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Erving Ximendes
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Departamento de Física de Materiales, Facultad de Ciencias, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Departamento de Física de Materiales, Facultad de Ciencias, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid, Madrid, Spain
| | - Teresa Priego
- Facultad de Enfermería, Fisioterapia y Podología, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Asunción López-Calderón
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Isabel Martín
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - María Paz Nieto-Bona
- Facultad de Ciencias de la Salud, Departamento de Ciencias Básicas, Universidad Rey Juan Carlos, Madrid, Spain
| | - Elena Nebot
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ginés Lifante-Pedrola
- Departamento de Física de Materiales, Facultad de Ciencias, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Departamento de Física de Materiales, Facultad de Ciencias, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid, Madrid, Spain
| | - Luis Monge
- Facultad de Medicina, Departamento de Fisiología, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Nuria Fernández
- Facultad de Medicina, Departamento de Fisiología, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Miriam Granado
- Facultad de Medicina, Departamento de Fisiología, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| |
Collapse
|
7
|
de Carvalho M, Swash M. Diagnosis and differential diagnosis of MND/ALS: IFCN handbook chapter. Clin Neurophysiol Pract 2023; 9:27-38. [PMID: 38249779 PMCID: PMC10796809 DOI: 10.1016/j.cnp.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
•Accurate and rapid diagnosis of amyotrophic lateral sclerosis (ALS) is important to prevent erroneous interventions. •The recent Gold Coast criteria are easily applicable and have high sensitivity and specificity. •Future developments will help to distinguish ALS as a specific clinical-pathologic entity. Accurate and rapid diagnosis of amyotrophic lateral sclerosis (ALS) is essential in order to provide accurate information for patient and family, to avoid time-consuming investigations and to permit an appropriate management plan. ALS is variable regarding presentation, disease progression, genetic profile and patient reaction to the diagnosis. It is obviously important to exclude treatable conditions but, in most patients, for experienced neurologists the diagnosis is clear-cut, depending on the presence of progressive upper and lower motor neuron signs. Patients with signs of restricted lower motor neuron (LMN) or upper motor neuron (UMN) dysfunction may present diagnostic difficulty, but electromyography (EMG) is often a determinant diagnostic test since it may exclude other disorders. Transcranial magnetic stimulation may aid detection of UMN dysfunction, and brain and spinal cord MRI, ultrasound and blood neurofilament measurements, have begun to have clinical impact, although none are themselves diagnostic tests. Several sets of diagnostic criteria have been proposed in the past; all rely on clinical LMN and UMN signs in different anatomic territories, EMG changes, exclusion of other disorders, and disease progression, in particular evidence of spreading to other anatomic territories. Fasciculations are a characteristic clinical feature and increased importance is now attached to fasciculation potentials detected by EMG, when associated with classical signs of denervation and reinnervation. The Gold Coast diagnostic criteria rely on the presence of UMN and LMN signs in one (or more) anatomic territory, or LMN signs in two (or more) anatomic territories, recognizing the fundamental clinical requirements of disease progression and exclusion of other diseases. Recent studies confirm a high sensitivity without loss of specificity using these Gold Coast criteria. In considering the diagnosis of ALS a critical question for future understanding is whether ALS should be considered a syndrome or a specific clinico-pathologic entity; this can only be addressed in the light of more complete knowledge.
Collapse
Affiliation(s)
- Mamede de Carvalho
- Faculdade de Medicina- Instituto de Medicina Molecular, Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa-Norte, Lisbon, Portugal
| | - Michael Swash
- Faculdade de Medicina- Instituto de Medicina Molecular, Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal
- Departments of Neurology and Neurosciences, Barts and the London School of Medicine, Queen Mary University of London and Royal London Hospital, UK
| |
Collapse
|
8
|
Alix JJP, Verber NS, Schooling CN, Kadirkamanathan V, Turner MR, Malaspina A, Day JCC, Shaw PJ. Label-free fibre optic Raman spectroscopy with bounded simplex-structured matrix factorization for the serial study of serum in amyotrophic lateral sclerosis. Analyst 2022; 147:5113-5120. [PMID: 36222101 PMCID: PMC9639415 DOI: 10.1039/d2an00936f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease in urgent need of disease biomarkers for the assessment of promising therapeutic candidates in clinical trials. Raman spectroscopy is an attractive technique for identifying disease related molecular changes due to its simplicity. Here, we describe a fibre optic fluid cell for undertaking spontaneous Raman spectroscopy studies of human biofluids that is suitable for use away from a standard laboratory setting. Using this system, we examined serum obtained from patients with ALS at their first presentation to our centre (n = 66) and 4 months later (n = 27). We analysed Raman spectra using bounded simplex-structured matrix factorization (BSSMF), a generalisation of non-negative matrix factorisation which uses the distribution of the original data to limit the factorisation modes (spectral patterns). Biomarkers associated with ALS disease such as measures of symptom severity, respiratory function and inflammatory/immune pathways (C3/C-reactive protein) correlated with baseline Raman modes. Between visit spectral changes were highly significant (p = 0.0002) and were related to protein structure. Comparison of Raman data with established ALS biomarkers as a trial outcome measure demonstrated a reduction in required sample size with BSSMF Raman. Our portable, simple to use fibre optic system allied to BSSMF shows promise in the quantification of disease-related changes in ALS over short timescales.
Collapse
Affiliation(s)
- James J P Alix
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, UK
| | - Nick S Verber
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, UK
| | - Chlöe N Schooling
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Department of Automatic Control and Systems Engineering, University of Sheffield, UK
| | | | - Martin R Turner
- Nuffield Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - John C C Day
- Interface Analysis Centre, School of Physics, University of Bristol, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, UK
| |
Collapse
|
9
|
Paoletti M, Diamanti L, Muzic SI, Ballante E, Solazzo F, Foppoli L, Deligianni X, Santini F, Figini S, Bergsland N, Pichiecchio A. Longitudinal Quantitative MRI Evaluation of Muscle Involvement in Amyotrophic Lateral Sclerosis. Front Neurol 2021; 12:749736. [PMID: 34899571 PMCID: PMC8651545 DOI: 10.3389/fneur.2021.749736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/11/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Biomarkers of disease progression and outcome measures are still lacking for patients with amyotrophic lateral sclerosis (ALS). Muscle MRI can be a promising candidate to track longitudinal changes and to predict response to the therapy in clinical trials. Objective: Our aim is to apply quantitative muscle MRI in the evaluation of disease progression, focusing on thigh and leg muscles of patients with ALS, and to explore the correlation between radiological and clinical scores. Methods: We enrolled newly diagnosed patients with ALS, longitudinally scored using the ALS Functional Rating Scale-Revised (ALSFRS-R), who underwent a 3T muscle MRI protocol including a 6-point Dixon gradient-echo sequence and multi-echo turbo spin echo (TSE) T2-weighted sequence for quantification of fat fraction (FF), cross-sectional area (CSA), and water T2 (wT2). A total of 12 muscles of the thigh and six muscles of the leg were assessed by the manual drawing of 18 regions of interest (ROIs), for each side. A group of 11 age-matched healthy controls (HCs) was enrolled for comparison. Results: 15 patients (M/F 8/7; mean age 62.2 years old, range 29-79) diagnosed with possible (n = 2), probable (n = 12), or definite (n = 1) ALS were enrolled. Eleven patients presented spinal onset, whereas four of them had initial bulbar involvement. All patients performed MRI at T0, nine of them at T1, and seven of them at T2. At baseline, wT2 was significantly elevated in ALS subjects compared to HCs for several muscles of the thigh and mainly for leg muscles. By contrast, FF was elevated in few muscles, and mainly at the level of the thigh. The applied mixed effects model showed that FF increased significantly in the leg muscles over time (mainly in the triceps surae) and that wT2 decreased significantly in line with worsening in the leg subscore of ALSFRS-R, mainly at the leg level and in the anterior and medial compartment of the thigh. Conclusions: Quantitative MRI represents a non-invasive tool that is able to outline the trajectory of pathogenic modifications at the muscle level in ALS. In particular, wT2 was found to be increased early in the clinical history of ALS and also tended to decrease over time, also showing a positive correlation with leg subscore of ALSFRS-R.
Collapse
Affiliation(s)
- Matteo Paoletti
- Neuroradiology Department, Advanced Imaging and Radiomics Center, Istituto di Ricovero e Cura di Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Luca Diamanti
- Neuro-Oncology Unit, Istituto di Ricovero e Cura di Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Shaun I Muzic
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Department of Radiology, Fondazione Istituto di Ricovero e Cura di Carattere Scientifico (IRCCS) Policlinico San Matteo, Medical School University of Pavia, Pavia, Italy
| | - Elena Ballante
- Department of Mathematics, University of Pavia, Pavia, Italy.,BioData Science Center, Istituto di Ricovero e Cura di Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Francesca Solazzo
- Neuroradiology Department, Advanced Imaging and Radiomics Center, Istituto di Ricovero e Cura di Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
| | - Lia Foppoli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Xeni Deligianni
- Radiology/Division of Radiological Physics, University Hospital of Basel, Basel, Switzerland.,Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Francesco Santini
- Radiology/Division of Radiological Physics, University Hospital of Basel, Basel, Switzerland.,Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Silvia Figini
- Department of Political and Social Sciences, University of Pavia, Pavia, Italy
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States.,IRCCS Fondazione Don Carlo Gnocchi Organizzazione non lucrativa di utilità sociale (ONLUS), Milan, Italy
| | - Anna Pichiecchio
- Neuroradiology Department, Advanced Imaging and Radiomics Center, Istituto di Ricovero e Cura di Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Wilcox M, Dos Santos Canas L, Hargunani R, Tidswell T, Brown H, Modat M, Phillips JB, Ourselin S, Quick T. Volumetric MRI is a promising outcome measure of muscle reinnervation. Sci Rep 2021; 11:22433. [PMID: 34789795 PMCID: PMC8599480 DOI: 10.1038/s41598-021-01342-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022] Open
Abstract
The development of outcome measures that can track the recovery of reinnervated muscle would benefit the clinical investigation of new therapies which hope to enhance peripheral nerve repair. The primary objective of this study was to assess the validity of volumetric Magnetic Resonance Imaging (MRI) as an outcome measure of muscle reinnervation by testing its reproducibility, responsiveness and relationship with clinical indices of muscular function. Over a 3-year period 25 patients who underwent nerve transfer to reinnervate elbow flexor muscles were assessed using intramuscular electromyography (EMG) and MRI (median post-operative assessment time of 258 days, ranging from 86 days pre-operatively to 1698 days post- operatively). Muscle power (Medical Research Council (MRC) grade) and Stanmore Percentage of Normal Elbow Assessment (SPONEA) assessment was also recorded for all patients. Sub-analysis of peak volitional force (PVF), muscular fatigue and co-contraction was performed in those patients with MRC > 3. The responsiveness of each parameter was compared using Pearson or Spearman correlation. A Hierarchical Gaussian Process (HGP) was implemented to determine the ability of volumetric MRI measurements to predict the recovery of muscular function. Reinnervated muscle volume per unit Body Mass Index (BMI) demonstrated good responsiveness (R2 = 0.73, p < 0.001). Using the temporal and muscle volume per unit BMI data, a HGP model was able to predict MRC grade and SPONEA with a mean absolute error (MAE) of 0.73 and 1.7 respectively. Muscle volume per unit BMI demonstrated moderate to good positive correlations with patient reported impairments of reinnervated muscle; co- contraction (R2 = 0.63, p = 0.02) and muscle fatigue (R2 = 0.64, p = 0.04). In summary, volumetric MRI analysis of reinnervated muscle is highly reproducible, responsive to post-operative time and demonstrates correlation with clinical indices of muscle function. This encourages the view that volumetric MRI is a promising outcome measure for muscle reinnervation which will drive advancements in motor recovery therapy.
Collapse
Affiliation(s)
- Matthew Wilcox
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK. .,UCL Centre for Nerve Engineering, University College London, London, UK. .,Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK. .,University College London Medical School, London, UK.
| | | | - Rikin Hargunani
- Department of Radiology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Tom Tidswell
- Department of Clinical Neurophysiology, Royal Free Hospital, London, UK
| | - Hazel Brown
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK.,UCL Centre for Nerve Engineering, University College London, London, UK
| | - Marc Modat
- Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - James B Phillips
- UCL Centre for Nerve Engineering, University College London, London, UK.,Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK
| | - Sebastien Ourselin
- Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Tom Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK.,UCL Centre for Nerve Engineering, University College London, London, UK
| |
Collapse
|
11
|
Schooling CN, Jamie Healey T, McDonough HE, French SJ, McDermott CJ, Shaw PJ, Kadirkamanathan V, Alix JJP. Tensor electrical impedance myography identifies clinically relevant features in amyotrophic lateral sclerosis. Physiol Meas 2021; 42. [PMID: 34521070 DOI: 10.1088/1361-6579/ac2672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/14/2021] [Indexed: 11/12/2022]
Abstract
Objective.Electrical impedance myography (EIM) shows promise as an effective biomarker in amyotrophic lateral sclerosis (ALS). EIM applies multiple input frequencies to characterise muscle properties, often via multiple electrode configurations. Herein, we assess if non-negative tensor factorisation (NTF) can provide a framework for identifying clinically relevant features within a high dimensional EIM dataset.Approach.EIM data were recorded from the tongue of healthy and ALS diseased individuals. Resistivity and reactivity measurements were made for 14 frequencies, in three electrode configurations. This gives 84 (2 × 14 × 3) distinct data points per participant. NTF was applied to the dataset for dimensionality reduction, termed tensor EIM. Significance tests, symptom correlation and classification approaches were explored to compare NTF to using all raw data and feature selection.Main Results.Tensor EIM provides highly significant differentiation between healthy and ALS patients (p< 0.001, AUROC = 0.78). Similarly tensor EIM differentiates between mild and severe disease states (p< 0.001, AUROC = 0.75) and significantly correlates with symptoms (ρ= 0.7,p< 0.001). A trend of centre frequency shifting to the right was identified in diseased spectra, which is in line with the electrical changes expected following muscle atrophy.Significance.Tensor EIM provides clinically relevant metrics for identifying ALS-related muscle disease. This procedure has the advantage of using the whole spectral dataset, with reduced risk of overfitting. The process identifies spectral shapes specific to disease allowing for a deeper clinical interpretation.
Collapse
Affiliation(s)
- Chlöe N Schooling
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom.,Department of Automatic Control and Systems Engineering, University of Sheffield, United Kingdom
| | - T Jamie Healey
- Department of Clinical Engineering, Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom
| | - Harry E McDonough
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom
| | - Sophie J French
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom
| | | | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom
| | - Visakan Kadirkamanathan
- Department of Automatic Control and Systems Engineering, University of Sheffield, United Kingdom
| | - James J P Alix
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom
| |
Collapse
|
12
|
Bell LC, Fuentes AE, Healey DR, Chao R, Bakkar N, Sirianni RW, Medina DX, Bowser RP, Ladha SS, Semmineh NB, Stokes AM, Quarles CC. Longitudinal evaluation of myofiber microstructural changes in a preclinical ALS model using the transverse relaxivity at tracer equilibrium (TRATE): A preliminary study. Magn Reson Imaging 2021; 85:217-221. [PMID: 34715291 DOI: 10.1016/j.mri.2021.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022]
Abstract
T2⁎ relaxivity contrast imaging may serve as a potential imaging biomarker for amyotrophic lateral sclerosis (ALS) by noninvasively quantifying the tissue microstructure. In this preliminary longitudinal study, we investigated the Transverse Relaxivity at Tracer Equilibrium (TRATE) in three muscle groups between SOD1-G93A (ALS model) rat and a control population at two different timepoints. The control group was time matched to the ALS group such that the second timepoint was the onset of disease. We observed a statistically significant decrease in TRATE over time in the gastrocnemius, tibialis, and digital flexor muscles in the SOD1-G93A model (p-value = 0.003, 0.008, 0.005; respectively), whereas TRATE did not change over time in the control group (p-value = 0.4777, 0.6837, 0.9682; respectively). Immunofluorescent staining revealed a decrease in minimum fiber area and cell density in the SOD1-G93A model when compared to the control group (p-value = 6.043E-10 and 2.265E-10, respectively). These microstructural changes observed from histology align with the theorized biophysical properties of TRATE. We demonstrate that TRATE can longitudinally differentiate disease associated atrophy from healthy muscle and has potential to serve as a biomarker for disease progression and ultimately therapy response in patients with ALS.
Collapse
Affiliation(s)
- Laura C Bell
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States of America
| | - Alberto E Fuentes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States of America
| | - Deborah R Healey
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States of America
| | - Renee Chao
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States of America
| | - Nadine Bakkar
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States of America
| | - Rachael W Sirianni
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, United States of America
| | - David X Medina
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States of America
| | - Robert P Bowser
- Division of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States of America; Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States of America
| | - Shafeeq S Ladha
- Division of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States of America
| | - Natenael B Semmineh
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States of America
| | - Ashley M Stokes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States of America
| | - C Chad Quarles
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States of America.
| |
Collapse
|
13
|
Lichtenstein T, Sprenger A, Weiss K, Große Hokamp N, Maintz D, Schlamann M, Fink GR, Lehmann HC, Henning TD. MRI DTI and PDFF as Biomarkers for Lower Motor Neuron Degeneration in ALS. Front Neurosci 2021; 15:682126. [PMID: 34512239 PMCID: PMC8428530 DOI: 10.3389/fnins.2021.682126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To evaluate the utility of nerve magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and muscle MRI multi-echo Dixon for assessing lower motor neuron (LMN) degeneration in amyotrophic lateral sclerosis (ALS). Methods In this prospective observational cohort study, 14 patients with ALS and 13 healthy controls underwent a multiparametric MRI protocol, including DTI of the sciatic nerve and assessment of muscle proton density fat fraction of the biceps femoris and the quadriceps femoris muscles by a multi-echo Dixon sequence. Results In ALS patients, mean fractional anisotropy values of the sciatic nerve were significantly lower than those of healthy controls. The quadriceps femoris, but not the biceps femoris muscle, showed significantly higher intramuscular fat fractions in ALS. Interpretation Our study provides evidence that multiparametric MRI protocols might help estimate structural nerve damage and neurogenic muscle changes in ALS.
Collapse
Affiliation(s)
- Thorsten Lichtenstein
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alina Sprenger
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Kilian Weiss
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Philips Healthcare, Hamburg, Germany
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Maintz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marc Schlamann
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Helmar C Lehmann
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Tobias D Henning
- Department of Neuroradiology, Center Hospital Luxembourg, Luxembourg City, Luxembourg
| |
Collapse
|
14
|
Kriss A, Jenkins T. Muscle MRI in motor neuron diseases: a systematic review. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:161-175. [PMID: 34151652 DOI: 10.1080/21678421.2021.1936062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objective: To summarize applications of muscle magnetic resonance imaging (MRI) in cross-sectional assessment and longitudinal monitoring of motor neuron diseases and evaluate associations with clinical assessment techniques.Methods: PubMed and Scopus were searched for research published up to May 2021 relating to muscle MRI in motor neuron diseases, according to predefined inclusion and exclusion criteria. Studies were systematically appraised for bias and data were extracted for discussion.Results: Twenty-eight papers met inclusion criteria. The studies assessed muscle T1- and T2-weighted signal, diffusion, muscle volume, and fat infiltration, employing quantitative, qualitative, and semi-quantitative approaches. Various regions of interest were considered; changes in thigh and calf muscles were most frequently reported. Preliminary evidence of concordance between clinical and radiological findings and utility as an objective longitudinal biomarker is emerging.Conclusion: Muscle MRI appears a promising objective, versatile, and practical biomarker to assess motor neuron diseases.
Collapse
Affiliation(s)
| | - Thomas Jenkins
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK
| |
Collapse
|
15
|
Malartre S, Bachasson D, Mercy G, Sarkis E, Anquetil C, Benveniste O, Allenbach Y. MRI and muscle imaging for idiopathic inflammatory myopathies. Brain Pathol 2021; 31:e12954. [PMID: 34043260 PMCID: PMC8412099 DOI: 10.1111/bpa.12954] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Although idiopathic inflammatory myopathies (IIM) are a heterogeneous group of diseases nearly all patients display muscle inflammation. Originally, muscle biopsy was considered as the gold standard for IIM diagnosis. The development of muscle imaging led to revisiting not only the IIM diagnosis strategy but also the patients' follow-up. Different techniques have been tested or are in development for IIM including positron emission tomography, ultrasound imaging, ultrasound shear wave elastography, though magnetic resonance imaging (MRI) remains the most widely used technique in routine. Whereas guidelines on muscle imaging in myositis are lacking here we reviewed the relevance of muscle imaging for both diagnosis and myositis patients' follow-up. We propose recommendations about when and how to perform MRI on myositis patients, and we describe new techniques that are under development.
Collapse
Affiliation(s)
- Samuel Malartre
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Damien Bachasson
- Neuromuscular Physiology Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Guillaume Mercy
- Department of Medical Imaging, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles-Foix, Sorbonne Université, Paris, France
| | - Elissone Sarkis
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Céline Anquetil
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| |
Collapse
|
16
|
Plesia M, Stevens OA, Lloyd GR, Kendall CA, Coldicott I, Kennerley AJ, Miller G, Shaw PJ, Mead RJ, Day JCC, Alix JJP. In Vivo Fiber Optic Raman Spectroscopy of Muscle in Preclinical Models of Amyotrophic Lateral Sclerosis and Duchenne Muscular Dystrophy. ACS Chem Neurosci 2021; 12:1768-1776. [PMID: 33950665 PMCID: PMC8154326 DOI: 10.1021/acschemneuro.0c00794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Neuromuscular diseases result in muscle weakness, disability, and, in many instances, death. Preclinical models form the bedrock of research into these disorders, and the development of in vivo and potentially translational biomarkers for the accurate identification of disease is crucial. Spontaneous Raman spectroscopy can provide a rapid, label-free, and highly specific molecular fingerprint of tissue, making it an attractive potential biomarker. In this study, we have developed and tested an in vivo intramuscular fiber optic Raman technique in two mouse models of devastating human neuromuscular diseases, amyotrophic lateral sclerosis, and Duchenne muscular dystrophy (SOD1G93A and mdx, respectively). The method identified diseased and healthy muscle with high classification accuracies (area under the receiver operating characteristic curves (AUROC): 0.76-0.92). In addition, changes in diseased muscle over time were also identified (AUROCs 0.89-0.97). Key spectral changes related to proteins and the loss of α-helix protein structure. Importantly, in vivo recording did not cause functional motor impairment and only a limited, resolving tissue injury was seen on high-resolution magnetic resonance imaging. Lastly, we demonstrate that ex vivo muscle from human patients with these conditions produced similar spectra to those observed in mice. We conclude that spontaneous Raman spectroscopy of muscle shows promise as a translational research tool.
Collapse
Affiliation(s)
- Maria Plesia
- Sheffield
Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Oliver A. Stevens
- Interface
Analysis Centre, School of Physics, University
of Bristol, Bristol BS8 1TL, UK
| | - Gavin R. Lloyd
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, UK
- Biophotonics
Research Unit, Gloucestershire Hospitals
NHS Foundation Trust, Gloucester GL1 3NN, UK
| | - Catherine A. Kendall
- Biophotonics
Research Unit, Gloucestershire Hospitals
NHS Foundation Trust, Gloucester GL1 3NN, UK
| | - Ian Coldicott
- Sheffield
Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | | | - Gaynor Miller
- Department
of Oncology and Metabolism, University of
Sheffield, Sheffield S10 2RX, UK
| | - Pamela J. Shaw
- Sheffield
Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Cross-Faculty
Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - Richard J. Mead
- Sheffield
Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Cross-Faculty
Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| | - John C. C. Day
- Interface
Analysis Centre, School of Physics, University
of Bristol, Bristol BS8 1TL, UK
| | - James J. P. Alix
- Sheffield
Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Cross-Faculty
Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
17
|
Ragunathan S, Bell LC, Semmineh N, Stokes AM, Shefner JM, Bowser R, Ladha S, Quarles CC. Evaluation of Amyotrophic Lateral Sclerosis-Induced Muscle Degeneration Using Magnetic Resonance-Based Relaxivity Contrast Imaging (RCI). ACTA ACUST UNITED AC 2021; 7:169-179. [PMID: 34062974 PMCID: PMC8162571 DOI: 10.3390/tomography7020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
(1) Background: This work characterizes the sensitivity of magnetic resonance-based Relaxivity Contrast Imaging (RCI) to Amyotrophic Lateral Sclerosis (ALS)-induced changes in myofiber microstructure. Transverse Relaxivity at Tracer Equilibrium (TRATE), an RCI-based parameter, was evaluated in the lower extremities of ALS patients and healthy subjects. (2) Methods: In this IRB-approved study, 23 subjects (12 ALS patients and 11 healthy controls) were scanned at 3T (Philips, The Netherlands). RCI data were obtained during injection of a gadolinium-based contrast agent. TRATE, fat fraction and T2 measures, were compared in five muscle groups of the calf muscle, between ALS and control populations. TRATE was also evaluated longitudinally (baseline and 6 months) and was compared to clinical measures, namely ALS Functional Rating Scale (ALSFRS-R) and Hand-Held Dynamometry (HHD), in a subset of the ALS population. (3) Results: TRATE was significantly lower (p < 0.001) in ALS-affected muscle than in healthy muscle in all muscle groups. Fat fraction differences between ALS and healthy muscle were statistically significant for the tibialis anterior (p = 0.01), tibialis posterior (p = 0.004), and peroneus longus (p = 0.02) muscle groups but were not statistically significant for the medial (p = 0.07) and lateral gastrocnemius (p = 0.06) muscles. T2 differences between ALS and healthy muscle were statistically significant for the tibialis anterior (p = 0.004), peroneus longus (p = 0.004) and lateral gastrocnemius (p = 0.03) muscle groups but were not statistically significant for the tibialis posterior (p = 0.06) and medial gastrocnemius (p = 0.07) muscles. Longitudinally, TRATE, averaged over all patients, decreased by 28 ± 16% in the tibialis anterior, 47 ± 18% in the peroneus longus, 25 ± 19% in the tibialis posterior, 29 ± 14% in the medial gastrocnemius and 35 ± 18% in the lateral gastrocnemius muscles between two timepoints. ALSFRS-R scores were stable in two of four ALS patients. HHD scores decreased in three of four ALS patients. (4) Conclusion: RCI-based TRATE was shown to consistently differentiate ALS-affected muscle from healthy muscle and also provide a quantitative measure of longitudinal muscle degeneration.
Collapse
Affiliation(s)
- Sudarshan Ragunathan
- Barrow Neuroimaging Innovation Center, Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (L.C.B.); (N.S.); (A.M.S.); (C.C.Q.)
- Correspondence: ; Tel.: +1-(602)-406-7884
| | - Laura C. Bell
- Barrow Neuroimaging Innovation Center, Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (L.C.B.); (N.S.); (A.M.S.); (C.C.Q.)
| | - Natenael Semmineh
- Barrow Neuroimaging Innovation Center, Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (L.C.B.); (N.S.); (A.M.S.); (C.C.Q.)
| | - Ashley M. Stokes
- Barrow Neuroimaging Innovation Center, Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (L.C.B.); (N.S.); (A.M.S.); (C.C.Q.)
| | - Jeremy M. Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (J.M.S.); (R.B.)
| | - Robert Bowser
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (J.M.S.); (R.B.)
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Shafeeq Ladha
- Gregory W. Fulton ALS and Neuromuscular Disease Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA;
| | - C. Chad Quarles
- Barrow Neuroimaging Innovation Center, Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (L.C.B.); (N.S.); (A.M.S.); (C.C.Q.)
| |
Collapse
|
18
|
Sassani M, Alix JJ, McDermott CJ, Baster K, Hoggard N, Wild JM, Mortiboys HJ, Shaw PJ, Wilkinson ID, Jenkins TM. Magnetic resonance spectroscopy reveals mitochondrial dysfunction in amyotrophic lateral sclerosis. Brain 2021; 143:3603-3618. [PMID: 33439988 DOI: 10.1093/brain/awaa340] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction is postulated to be central to amyotrophic lateral sclerosis (ALS) pathophysiology. Evidence comes primarily from disease models and conclusive data to support bioenergetic dysfunction in vivo in patients is currently lacking. This study is the first to assess mitochondrial dysfunction in brain and muscle in individuals living with ALS using 31P-magnetic resonance spectroscopy (MRS), the modality of choice to assess energy metabolism in vivo. We recruited 20 patients and 10 healthy age and gender-matched control subjects in this cross-sectional clinico-radiological study. 31P-MRS was acquired from cerebral motor regions and from tibialis anterior during rest and exercise. Bioenergetic parameter estimates were derived including: ATP, phosphocreatine, inorganic phosphate, adenosine diphosphate, Gibbs free energy of ATP hydrolysis (ΔGATP), phosphomonoesters, phosphodiesters, pH, free magnesium concentration, and muscle dynamic recovery constants. Linear regression was used to test for associations between brain data and clinical parameters (revised amyotrophic functional rating scale, slow vital capacity, and upper motor neuron score) and between muscle data and clinico-neurophysiological measures (motor unit number and size indices, force of contraction, and speed of walking). Evidence for primary dysfunction of mitochondrial oxidative phosphorylation was detected in the brainstem where ΔGATP and phosphocreatine were reduced. Alterations were also detected in skeletal muscle in patients where resting inorganic phosphate, pH, and phosphomonoesters were increased, whereas resting ΔGATP, magnesium, and dynamic phosphocreatine to inorganic phosphate recovery were decreased. Phosphocreatine in brainstem correlated with respiratory dysfunction and disability; in muscle, energy metabolites correlated with motor unit number index, muscle power, and speed of walking. This study provides in vivo evidence for bioenergetic dysfunction in ALS in brain and skeletal muscle, which appears clinically and electrophysiologically relevant. 31P-MRS represents a promising technique to assess the pathophysiology of mitochondrial function in vivo in ALS and a potential tool for future clinical trials targeting bioenergetic dysfunction.
Collapse
Affiliation(s)
- Matilde Sassani
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - James J Alix
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Kathleen Baster
- Statistical Service Unit, University of Sheffield, Sheffield, UK
| | - Nigel Hoggard
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Heather J Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Iain D Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Thomas M Jenkins
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
19
|
Kojima Y, Noto YI, Tsuji Y, Kitani-Morii F, Shiga K, Mizuno T, Nakagawa M. Charcot-Marie-Tooth disease type 1A: Longitudinal change in nerve ultrasound parameters. Muscle Nerve 2020; 62:722-727. [PMID: 32959396 DOI: 10.1002/mus.27068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND This study aimed to elucidate the longitudinal changes in nerve ultrasound parameters of adult Charcot-Marie-Tooth disease type 1A (CMT1A) patients. METHODS Fifteen adult patients with CMT1A prospectively underwent nerve ultrasound and clinical assessment (CMT neuropathy score [CMTNS]) at baseline and 5 y later. Nerve cross-sectional area (CSA) and echogenicity were measured in the median and sural nerves. Changes in ultrasound parameters and CMTNS and correlation between changes of ultrasound parameters and CMTNS were analyzed. RESULTS Median and sural nerve CSAs did not change over 5 y, although CMTNS increased (P < .01). Nerve echogenicity in the sural nerve decreased over 5 y (P = .045). No correlations between changes in nerve ultrasound parameters and CMTNS were identified. CONCLUSIONS No longitudinal changes in nerve size was detected in adult CMT1A. Exploring the factors that determine nerve size in childhood CMT1A may lead to the development of treatments.
Collapse
Affiliation(s)
- Yuta Kojima
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yu-Ichi Noto
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiko Tsuji
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fukiko Kitani-Morii
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kensuke Shiga
- Department of Neurology, Matsushita Memorial Hospital, Osaka, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masanori Nakagawa
- North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
20
|
Rajabkhah S, Moradi K, Okhovat AA, Van Alfen N, Fathi D, Aghaghazvini L, Ashraf-Ganjouei A, Attarian S, Nafissi S, Fatehi F. Application of muscle ultrasound for the evaluation of patients with amyotrophic lateral sclerosis: An observational cross-sectional study. Muscle Nerve 2020; 62:516-521. [PMID: 32710682 DOI: 10.1002/mus.27036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION We evaluated the association between muscle ultrasound, number of motor units, and clinical parameters, and assessed their utility for distinguishing amyotrophic lateral scleorisis (ALS) patients from healthy individuals. METHODS Three muscle pairs (abductor pollicis brevis, abductor digiti minimi, and tibialis anterior) of 18 ALS patients and 18 controls underwent muscle ultrasound (echointensity and thickness) and assessment of motor unit number index (MUNIX). The clinical and functional status of participants were also assessed. RESULTS Mean age of the patients was 53.8 ± 12.1 years, and score on the ALS Functional Rating Scale-Revised was 38.9 ± 4.1. Echointensity of all tested muscles of ALS participants was significantly higher than that of controls, but there was no significant difference in muscle thickness. Muscle echointensity correlated significantly with clinical and electrophysiological parameters. CONCLUSION Echointensity of muscles was highly associated with clinical scales and MUNIX, confirming its relevance as an ancillary diagnostic test in ALS patients.
Collapse
Affiliation(s)
- Sahebeh Rajabkhah
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran
| | - Kamyar Moradi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran
| | - Ali A Okhovat
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran.,Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nens Van Alfen
- Department of Neurology and Clinical Neurophysiology, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Davood Fathi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Aghaghazvini
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran
| | - Shahram Attarian
- Neuromuscular Disease and ALS Reference Center, Timone University Hospital Aix-Marseille University, Marseille, France
| | - Shahriar Nafissi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran.,Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran.,Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Bashford J, Mills K, Shaw C. The evolving role of surface electromyography in amyotrophic lateral sclerosis: A systematic review. Clin Neurophysiol 2020; 131:942-950. [PMID: 32044239 PMCID: PMC7083223 DOI: 10.1016/j.clinph.2019.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/23/2019] [Accepted: 12/14/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease that leads to inexorable motor decline and a median survival of three years from symptom onset. Surface EMG represents a major technological advance that has been harnessed in the development of novel neurophysiological biomarkers. We have systematically reviewed the current application of surface EMG techniques in ALS. METHODS We searched PubMed to identify 42 studies focusing on surface EMG and its associated analytical methods in the diagnosis, prognosis and monitoring of ALS patients. RESULTS A wide variety of analytical techniques were identified, involving motor unit decomposition from high-density grids, motor unit number estimation and measurements of neuronal hyperexcitability or neuromuscular architecture. Some studies have proposed specific diagnostic and prognostic criteria however clinical calibration in large ALS cohorts is currently lacking. The most validated method to monitor disease is the motor unit number index (MUNIX), which has been implemented as an outcome measure in two ALS clinical trials. CONCLUSION Surface EMG offers significant practical and analytical flexibility compared to invasive techniques. To capitalise on this fully, emphasis must be placed upon the multi-disciplinary collaboration of clinicians, bioengineers, mathematicians and biostatisticians. SIGNIFICANCE Surface EMG techniques can enrich effective biomarker development in ALS.
Collapse
Affiliation(s)
- J. Bashford
- UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | | | | |
Collapse
|
22
|
Diamanti L, Paoletti M, Di Vita U, Muzic SI, Cereda C, Ballante E, Pichiecchio A. MRI study of paraspinal muscles in patients with Amyotrophic Lateral Sclerosis (ALS). J Clin Med 2020; 9:jcm9040934. [PMID: 32231147 PMCID: PMC7230865 DOI: 10.3390/jcm9040934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 01/16/2023] Open
Abstract
Background: the study of paraspinal muscles is pivotal for the diagnosis and staging of Amyotrophic Lateral Sclerosis (ALS), and is usually performed by electromyography. Objective: to evaluate the role of paraspinal muscle MRI as a diagnostic biomarker in ALS. Methods: we evaluated T1-w images of newly diagnosed ALS patients (n = 14), age-matched healthy controls (n = 11), patients affected by inflammatory myopathy (n = 10), and lumbar radiculopathy (n = 19), and compared them semiquantitatively by using the Mercuri Scale. Results: a significant difference in the appearance of the psoas muscle was observed between ALS patients and patients with radiculopathy (p = 0.003); after stratifying ALS patients into spinal and bulbar onsets, we found a significant difference in the appearance of the longissimus dorsi muscle between the spinal onset ALS subgroup and bulbar onset ALS subgroup (p = 0.0245), while no difference was found for multifidus (p = 0.1441), iliocostal (p = 0.0655), and psoas muscles (p = 0.0813) between the cohort subgroups. Conclusions: paraspinal T1-w MRI could help to distinguish spinal ALS patients from healthy and pathological controls. Specifically, the study of longissimus dorsi could play the role of a diagnostic ALS biomarker.
Collapse
Affiliation(s)
- Luca Diamanti
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.); (C.C.); (E.B.); (A.P.)
- Correspondence: ; Tel.: +39-382-3801
| | - Matteo Paoletti
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.); (C.C.); (E.B.); (A.P.)
| | - Umberto Di Vita
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (U.D.V.); (S.I.M.)
| | - Shaun Ivan Muzic
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (U.D.V.); (S.I.M.)
| | - Cristina Cereda
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.); (C.C.); (E.B.); (A.P.)
| | - Elena Ballante
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.); (C.C.); (E.B.); (A.P.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (U.D.V.); (S.I.M.)
| | - Anna Pichiecchio
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.); (C.C.); (E.B.); (A.P.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (U.D.V.); (S.I.M.)
| |
Collapse
|
23
|
Jenkins TM, Alix JJP, Fingret J, Esmail T, Hoggard N, Baster K, McDermott CJ, Wilkinson ID, Shaw PJ. Longitudinal multi-modal muscle-based biomarker assessment in motor neuron disease. J Neurol 2019; 267:244-256. [PMID: 31624953 PMCID: PMC6954906 DOI: 10.1007/s00415-019-09580-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022]
Abstract
Background Clinical phenotypic heterogeneity represents a major barrier to trials in motor neuron disease (MND) and objective surrogate outcome measures are required, especially for slowly progressive patients. We assessed responsiveness of clinical, electrophysiological and radiological muscle-based assessments to detect MND-related progression. Materials and methods A prospective, longitudinal cohort study of 29 MND patients and 22 healthy controls was performed. Clinical measures, electrophysiological motor unit number index/size (MUNIX/MUSIX) and relative T2- and diffusion-weighted whole-body muscle magnetic resonance (MR) were assessed three times over 12 months. Multi-variable regression models assessed between-group differences, clinico-electrophysiological associations, and longitudinal changes. Standardized response means (SRMs) assessed sensitivity to change over 12 months. Results MND patients exhibited 18% higher whole-body mean muscle relative T2-signal than controls (95% CI 7–29%, p < 0.01), maximal in leg muscles (left tibialis anterior 71% (95% CI 33–122%, p < 0.01). Clinical and electrophysiological associations were evident. By 12 months, 16 patients had died or could not continue. In the remainder, relative T2-signal increased over 12 months by 14–29% in right tibialis anterior, right quadriceps, bilateral hamstrings and gastrocnemius/soleus (p < 0.01), independent of onset-site, and paralleled progressive weakness and electrophysiological loss of motor units. Highest clinical, electrophysiological and radiological SRMs were found for revised ALS-functional rating scale scores (1.22), tibialis anterior MUNIX (1.59), and relative T2-weighted leg muscle MR (right hamstrings: 0.98), respectively. Diffusion MR detected minimal changes. Conclusion MUNIX and relative T2-weighted MR represent objective surrogate markers of progressive denervation in MND. Radiological changes were maximal in leg muscles, irrespective of clinical onset-site. Electronic supplementary material The online version of this article (10.1007/s00415-019-09580-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas M Jenkins
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK. .,Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| | - James J P Alix
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.,Departments of Neurophysiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Jacob Fingret
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Taniya Esmail
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Nigel Hoggard
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Kathleen Baster
- Statistics Services Unit, School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.,Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Iain D Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.,Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
24
|
Klickovic U, Zampedri L, Sinclair CDJ, Wastling SJ, Trimmel K, Howard RS, Malaspina A, Sharma N, Sidle K, Emira A, Shah S, Yousry TA, Hanna MG, Greensmith L, Morrow JM, Thornton JS, Fratta P. Skeletal muscle MRI differentiates SBMA and ALS and correlates with disease severity. Neurology 2019; 93:e895-e907. [PMID: 31391248 PMCID: PMC6745729 DOI: 10.1212/wnl.0000000000008009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/05/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the use of muscle MRI for the differential diagnosis and as a disease progression biomarker for 2 major forms of motor neuron disorders: spinal bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS). METHODS We applied quantitative 3-point Dixon and semiquantitative T1-weighted and short tau inversion recovery (STIR) imaging to bulbar and lower limb muscles and performed clinical and functional assessments in ALS (n = 21) and SBMA (n = 21), alongside healthy controls (n = 16). Acquired images were analyzed for the presence of fat infiltration or edema as well as specific patterns of muscle involvement. Quantitative MRI measurements were correlated with clinical measures of disease severity in ALS and SBMA. RESULTS Quantitative imaging revealed significant fat infiltration in bulbar (p < 0.001) and limb muscles in SBMA compared to controls (thigh: p < 0.001; calf: p = 0.001), identifying a characteristic pattern of muscle involvement. In ALS, semiquantitative STIR imaging detected marked hyperintensities in lower limb muscles, distinguishing ALS from SBMA and controls. Finally, MRI measurements correlated significantly with clinical scales of disease severity in both ALS and SBMA. CONCLUSIONS Our findings show that muscle MRI differentiates between SBMA and ALS and correlates with disease severity, supporting its use as a diagnostic tool and biomarker for disease progression. This highlights the clinical utility of muscle MRI in motor neuron disorders and contributes to establish objective outcome measures, which is crucial for the development of new drugs.
Collapse
Affiliation(s)
- Uros Klickovic
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria
| | - Luca Zampedri
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria
| | - Christopher D J Sinclair
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria
| | - Stephen J Wastling
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria
| | - Karin Trimmel
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria
| | - Robin S Howard
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria
| | - Andrea Malaspina
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria
| | - Nikhil Sharma
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria
| | - Katie Sidle
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria
| | - Ahmed Emira
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria
| | - Sachit Shah
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria
| | - Tarek A Yousry
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria
| | - Michael G Hanna
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria
| | - Linda Greensmith
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria
| | - Jasper M Morrow
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria
| | - John S Thornton
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria.
| | - Pietro Fratta
- From the Neuroradiological Academic Unit (C.D.J.S., S.J.W., A.E., S.S., T.A.Y., J.S.T.), and MRC Centre for Neuromuscular Diseases (U.K., L.Z., K.T., R.S.H., N.S., K.S., M.G.H., L.G., J.M.M., P.F.), UCL Queen Square Institute of Neurology, University College London; Blizard Institute (A.M.), Queen Mary University of London, UK; and Department of Radiology (U.K.), University Hospital Tulln, Karl Landsteiner University of Health Sciences, Tulln, Austria.
| |
Collapse
|
25
|
Verber NS, Shepheard SR, Sassani M, McDonough HE, Moore SA, Alix JJP, Wilkinson ID, Jenkins TM, Shaw PJ. Biomarkers in Motor Neuron Disease: A State of the Art Review. Front Neurol 2019; 10:291. [PMID: 31001186 PMCID: PMC6456669 DOI: 10.3389/fneur.2019.00291] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022] Open
Abstract
Motor neuron disease can be viewed as an umbrella term describing a heterogeneous group of conditions, all of which are relentlessly progressive and ultimately fatal. The average life expectancy is 2 years, but with a broad range of months to decades. Biomarker research deepens disease understanding through exploration of pathophysiological mechanisms which, in turn, highlights targets for novel therapies. It also allows differentiation of the disease population into sub-groups, which serves two general purposes: (a) provides clinicians with information to better guide their patients in terms of disease progression, and (b) guides clinical trial design so that an intervention may be shown to be effective if population variation is controlled for. Biomarkers also have the potential to provide monitoring during clinical trials to ensure target engagement. This review highlights biomarkers that have emerged from the fields of systemic measurements including biochemistry (blood, cerebrospinal fluid, and urine analysis); imaging and electrophysiology, and gives examples of how a combinatorial approach may yield the best results. We emphasize the importance of systematic sample collection and analysis, and the need to correlate biomarker findings with detailed phenotype and genotype data.
Collapse
Affiliation(s)
- Nick S Verber
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Stephanie R Shepheard
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Matilde Sassani
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Harry E McDonough
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Sophie A Moore
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - James J P Alix
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Iain D Wilkinson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Tom M Jenkins
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
26
|
A pilot study assessing T1-weighted muscle MRI in amyotrophic lateral sclerosis (ALS). Skeletal Radiol 2019; 48:569-575. [PMID: 30225607 DOI: 10.1007/s00256-018-3073-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/02/2018] [Accepted: 09/09/2018] [Indexed: 02/02/2023]
Abstract
The authors set out to study the role of T1-weighted muscle MRI in the diagnostic phase of ALS, comparing images from ten patients and nine age-matched healthy controls (HCs). All subjects underwent MRI of 68 muscles in the hands, paraspinal regions and lower limbs; the images were semi-quantitatively scored. Atrophy was more frequent in muscles of ALS patients than HCs (p < 0.0001); fatty infiltration was particularly marked in iliopsoas (p = 0.046), anterior (p = 0.020) and posterior (p = 0.047) calf muscles in patients. A trend towards agreement was found between MRI and clinic-EMG data for the first dorsal interosseous, paraspinal, and tibial anterior muscles. Muscle T1-weighted MRI can distinguish ALS patients from HCs for specific regions (i.e., legs). MRI abnormalities could be found in pauci-symptomatic spinal muscles in bulbar-onset patients. Muscle MRI may be a useful diagnostic tool in ALS, in particular for muscles difficult to investigate using clinical-EMG methods.
Collapse
|
27
|
Chipika RH, Finegan E, Li Hi Shing S, Hardiman O, Bede P. Tracking a Fast-Moving Disease: Longitudinal Markers, Monitoring, and Clinical Trial Endpoints in ALS. Front Neurol 2019; 10:229. [PMID: 30941088 PMCID: PMC6433752 DOI: 10.3389/fneur.2019.00229] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) encompasses a heterogeneous group of phenotypes with different progression rates, varying degree of extra-motor involvement and divergent progression patterns. The natural history of ALS is increasingly evaluated by large, multi-time point longitudinal studies, many of which now incorporate presymptomatic and post-mortem assessments. These studies not only have the potential to characterize patterns of anatomical propagation, molecular mechanisms of disease spread, but also to identify pragmatic monitoring markers. Sensitive markers of progressive neurodegenerative change are indispensable for clinical trials and individualized patient care. Biofluid markers, neuroimaging indices, electrophysiological markers, rating scales, questionnaires, and other disease-specific instruments have divergent sensitivity profiles. The discussion of candidate monitoring markers in ALS has a dual academic and clinical relevance, and is particularly timely given the increasing number of pharmacological trials. The objective of this paper is to provide a comprehensive and critical review of longitudinal studies in ALS, focusing on the sensitivity profile of established and emerging monitoring markers.
Collapse
Affiliation(s)
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
28
|
The changing landscape of motor neuron disease imaging: the transition from descriptive studies to precision clinical tools. Curr Opin Neurol 2019; 31:431-438. [PMID: 29750730 DOI: 10.1097/wco.0000000000000569] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Neuroimaging in motor neuron disease (MND) has traditionally been seen as an academic tool with limited direct relevance to individualized patient care. This has changed radically in recent years as computational imaging has emerged as a viable clinical tool with true biomarker potential. This transition is not only fuelled by technological advances but also by important conceptual developments. RECENT FINDINGS The natural history of MND is now evaluated by presymptomatic, postmortem and multi-timepoint longitudinal imaging studies. The anatomical spectrum of MND imaging has also been expanded from an overwhelmingly cerebral focus to innovative spinal and muscle applications. In contrast to the group-comparisons of previous studies, machine-learning and deep-learning approaches are increasingly utilized to model real-life diagnostic dilemmas and aid prognostic classification. The focus from evaluating focal structural changes has shifted to the appraisal of network integrity by connectivity-based approaches. The armamentarium of MND imaging has also been complemented by novel PET-ligands, spinal toolboxes and the availability of magnetoencephalography and high-field magnetic resonance (MR) imaging platforms. SUMMARY In addition to the technological and conceptual advances, collaborative multicentre research efforts have also gained considerable momentum. This opinion-piece reviews emerging trends in MND imaging and their implications to clinical care and drug development.
Collapse
|
29
|
Whittaker RG, Porcari P, Braz L, Williams TL, Schofield IS, Blamire AM. Functional magnetic resonance imaging of human motor unit fasciculation in amyotrophic lateral sclerosis. Ann Neurol 2019; 85:455-459. [PMID: 30688362 DOI: 10.1002/ana.25422] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
A novel diffusion-weighted magnetic resonance imaging protocol sensitive to contraction of individual skeletal motor units was developed. We applied this technique to the lower limb muscles of 4 patients with confirmed amyotrophic lateral sclerosis (ALS) and 6 healthy controls. A 3-minute scan revealed florid fasciculation in ALS patients, involving both superficial and deep muscles, and at a frequency higher than in healthy controls. This novel imaging technique reveals hitherto unobtainable information on human motor unit structure and function, which may allow earlier diagnosis and recruitment to clinical trials. ANN NEUROL 2019;85:455-459.
Collapse
Affiliation(s)
- Roger G Whittaker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paola Porcari
- Institute of Genetic Medicine and Centre for in vivo Imaging, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Luis Braz
- Department of Neurology, São João Hospital Center, Porto, Portugal
| | - Timothy L Williams
- Directorate of Clinical Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Ian S Schofield
- Directorate of Clinical Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Andrew M Blamire
- Institute of Cellular Medicine and Centre for in vivo Imaging, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
30
|
Fatehi F, Grapperon AM, Fathi D, Delmont E, Attarian S. The utility of motor unit number index: A systematic review. Neurophysiol Clin 2018; 48:251-259. [PMID: 30287192 DOI: 10.1016/j.neucli.2018.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
The need for a valid biomarker for assessing disease progression and for use in clinical trials on amyotrophic lateral sclerosis (ALS) has stimulated the study of methods that could measure the number of motor units. Motor unit number index (MUNIX) is a newly developed neurophysiological technique that was demonstrated to have a good correlation with the number of motor units in a given muscle, even though it does not necessarily accurately express the actual number of viable motor neurons. Several studies demonstrated the technique is reproducible and capable of following motor neuron loss in patients with ALS and peripheral polyneuropathies. The main goal of this review was to conduct an extensive review of the literature using MUNIX. We conducted a systematic search in English medical literature published in two databases (PubMed and SCOPUS). In this review, we aimed to answer the following queries: Comparison of MUNIX with other MUNE techniques; the reproducibility of MUNIX; the utility of MUNIX in ALS and preclinical muscles, peripheral neuropathies, and other neurological disorders.
Collapse
Affiliation(s)
- Farzad Fatehi
- Reference Center for Neuromuscular Diseases and ALS, Timone University Hospital, 13385 Marseille, France; Department of Neurology, Iranian Center of Neurological Research, Neuroscience Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Aude-Marie Grapperon
- Reference Center for Neuromuscular Diseases and ALS, Timone University Hospital, 13385 Marseille, France
| | - Davood Fathi
- Department of Neurology, Iranian Center of Neurological Research, Neuroscience Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Emilien Delmont
- Reference Center for Neuromuscular Diseases and ALS, Timone University Hospital, 13385 Marseille, France
| | - Shahram Attarian
- Reference Center for Neuromuscular Diseases and ALS, Timone University Hospital, 13385 Marseille, France; Inserm, GMGF, Aix-Marseille University, Marseille, 13385 France.
| |
Collapse
|
31
|
Simon NG. Pragmatic approach to muscle MRI biomarkers in motor neuron disease. J Neurol Neurosurg Psychiatry 2018; 89:230. [PMID: 29142141 DOI: 10.1136/jnnp-2017-317406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
|
32
|
Murphy S, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic serum biomarkers for neuromuscular diseases. Expert Rev Proteomics 2018; 15:277-291. [DOI: 10.1080/14789450.2018.1429923] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, Bonn, Germany
| | | | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| |
Collapse
|