1
|
Hu N, Zhang L, Shen D, Yang X, Liu M, Cui L. Incidence of amyotrophic lateral sclerosis-associated genetic variants: a clinic-based study. Neurol Sci 2024; 45:1515-1522. [PMID: 37952009 DOI: 10.1007/s10072-023-07178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVE This study is to determine the incidence of genetic forms of amyotrophic lateral sclerosis (ALS) in clinic-based population. METHODS Next-generation sequencing (NGS) of whole exome sequencing (WES) was conducted among a total of 374 patients with definite or probable ALS to identify ALS-associated genes based on ALSoD database ( https://alsod.ac.uk ) [2023-07-01]. RESULTS Variants of ALS-associated genes were detected in 54.01% (202/374) ALS patients, among which 8.29% (31/374) were pathogenic/likely pathogenic (P/LP). The detection rates of P/LP variants were significantly higher in familial ALS than sporadic ALS (42.31% vs 5.75%, p < 0.001), while VUS mutations were more commonly detected in sporadic ALS (23.07% vs 47.13%, p = 0.018). There is no significant difference in detection rate between patients with and without early onset (8.93% vs 7.77%), rapid progression (9.30% vs 8.91%), cognitive decline (15.00% vs 7.93%), and cerebellar ataxia (20.00% vs 8.15%) (p > 0.05). CONCLUSION Over half of our ALS patients carried variants of ALS-related genes, most of which were variants of uncertain significance (VUS). Family history of ALS could work as strong evidence for carrying P/LP variants regarding ALS. There was no additionally suggestive effect of indicators including early onset, progression rate, cognitive decline, or cerebellar ataxia on the recommendation of genetic testing in clinical practice.
Collapse
Affiliation(s)
- Nan Hu
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Lei Zhang
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Liying Cui
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
2
|
Ryan M, Doherty MA, Al Khleifat A, Costello E, Hengeveld JC, Heverin M, Al-Chalabi A, Mclaughlin RL, Hardiman O. C9orf72 Repeat Expansion Discordance in 6 Multigenerational Kindreds. Neurol Genet 2024; 10:e200112. [PMID: 38149039 PMCID: PMC10751011 DOI: 10.1212/nxg.0000000000200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 12/28/2023]
Abstract
Background and Objectives A hexanucleotide repeat expansion in the noncoding region of the C9orf72 gene is the most common genetically identifiable cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia in populations of European ancestry. Pedigrees associated with this expansion exhibit phenotypic heterogeneity and incomplete disease penetrance, the basis of which is poorly understood. Relatives of those carrying the C9orf72 repeat expansion exhibit a characteristic cognitive endophenotype independent of carrier status. To examine whether additional shared genetic or environmental risks within kindreds could compel this observation, we have conducted a detailed cross-sectional study of the inheritance within multigenerational Irish kindreds carrying the C9orf72 repeat expansion. Methods One hundred thirty-one familial ALS pedigrees, 59 of which carried the C9orf72 repeat expansion (45.0% [95% CI 36.7-53.5]), were identified through the Irish population-based ALS register. C9orf72 genotyping was performed using repeat-primed PCR with amplicon fragment length analysis. Pedigrees were further investigated using SNP, targeted sequencing data, whole-exome sequencing, and whole-genome sequencing. Results We identified 21 kindreds where at least 1 family member with ALS carried the C9orf72 repeat expansion and from whom DNA was available from multiple affected family members. Of these, 6 kindreds (28.6% [95% CI 11.8-48.3]) exhibited discordant segregation. The C9orf72 haplotype was studied in 2 families and was found to segregate with the C9orf72-positive affected relative but not the C9orf72-negative affected relative. No other ALS pathogenic variants were identified within these discordant kindreds. Discussion Family members of kindreds associated with the C9orf72 repeat expansion may carry an increased risk of developing ALS independent of their observed carrier status. This has implications for assessment and counseling of asymptomatic individuals regarding their genetic risk.
Collapse
Affiliation(s)
- Marie Ryan
- From the Academic Unit of Neurology (M.R., E.C., M.H., O.H.) and Smurfit Institute of Genetics (M.A.D., J.C.H., R.L.M.), Trinity College Dublin, Ireland; Department of Basic and Clinical Neuroscience (A.A., A.A.-C.), Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Department of Psychology (E.C.), Beaumont Hospital, Dublin, Ireland; King's College Hospital (A.A.-C.), London, United Kingdom; and Department of Neurology (O.H.), Beaumont Hospital, Dublin, Ireland
| | - Mark A Doherty
- From the Academic Unit of Neurology (M.R., E.C., M.H., O.H.) and Smurfit Institute of Genetics (M.A.D., J.C.H., R.L.M.), Trinity College Dublin, Ireland; Department of Basic and Clinical Neuroscience (A.A., A.A.-C.), Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Department of Psychology (E.C.), Beaumont Hospital, Dublin, Ireland; King's College Hospital (A.A.-C.), London, United Kingdom; and Department of Neurology (O.H.), Beaumont Hospital, Dublin, Ireland
| | - Ahmad Al Khleifat
- From the Academic Unit of Neurology (M.R., E.C., M.H., O.H.) and Smurfit Institute of Genetics (M.A.D., J.C.H., R.L.M.), Trinity College Dublin, Ireland; Department of Basic and Clinical Neuroscience (A.A., A.A.-C.), Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Department of Psychology (E.C.), Beaumont Hospital, Dublin, Ireland; King's College Hospital (A.A.-C.), London, United Kingdom; and Department of Neurology (O.H.), Beaumont Hospital, Dublin, Ireland
| | - Emmet Costello
- From the Academic Unit of Neurology (M.R., E.C., M.H., O.H.) and Smurfit Institute of Genetics (M.A.D., J.C.H., R.L.M.), Trinity College Dublin, Ireland; Department of Basic and Clinical Neuroscience (A.A., A.A.-C.), Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Department of Psychology (E.C.), Beaumont Hospital, Dublin, Ireland; King's College Hospital (A.A.-C.), London, United Kingdom; and Department of Neurology (O.H.), Beaumont Hospital, Dublin, Ireland
| | - Jennifer C Hengeveld
- From the Academic Unit of Neurology (M.R., E.C., M.H., O.H.) and Smurfit Institute of Genetics (M.A.D., J.C.H., R.L.M.), Trinity College Dublin, Ireland; Department of Basic and Clinical Neuroscience (A.A., A.A.-C.), Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Department of Psychology (E.C.), Beaumont Hospital, Dublin, Ireland; King's College Hospital (A.A.-C.), London, United Kingdom; and Department of Neurology (O.H.), Beaumont Hospital, Dublin, Ireland
| | - Mark Heverin
- From the Academic Unit of Neurology (M.R., E.C., M.H., O.H.) and Smurfit Institute of Genetics (M.A.D., J.C.H., R.L.M.), Trinity College Dublin, Ireland; Department of Basic and Clinical Neuroscience (A.A., A.A.-C.), Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Department of Psychology (E.C.), Beaumont Hospital, Dublin, Ireland; King's College Hospital (A.A.-C.), London, United Kingdom; and Department of Neurology (O.H.), Beaumont Hospital, Dublin, Ireland
| | - Ammar Al-Chalabi
- From the Academic Unit of Neurology (M.R., E.C., M.H., O.H.) and Smurfit Institute of Genetics (M.A.D., J.C.H., R.L.M.), Trinity College Dublin, Ireland; Department of Basic and Clinical Neuroscience (A.A., A.A.-C.), Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Department of Psychology (E.C.), Beaumont Hospital, Dublin, Ireland; King's College Hospital (A.A.-C.), London, United Kingdom; and Department of Neurology (O.H.), Beaumont Hospital, Dublin, Ireland
| | - Russell L Mclaughlin
- From the Academic Unit of Neurology (M.R., E.C., M.H., O.H.) and Smurfit Institute of Genetics (M.A.D., J.C.H., R.L.M.), Trinity College Dublin, Ireland; Department of Basic and Clinical Neuroscience (A.A., A.A.-C.), Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Department of Psychology (E.C.), Beaumont Hospital, Dublin, Ireland; King's College Hospital (A.A.-C.), London, United Kingdom; and Department of Neurology (O.H.), Beaumont Hospital, Dublin, Ireland
| | - Orla Hardiman
- From the Academic Unit of Neurology (M.R., E.C., M.H., O.H.) and Smurfit Institute of Genetics (M.A.D., J.C.H., R.L.M.), Trinity College Dublin, Ireland; Department of Basic and Clinical Neuroscience (A.A., A.A.-C.), Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Department of Psychology (E.C.), Beaumont Hospital, Dublin, Ireland; King's College Hospital (A.A.-C.), London, United Kingdom; and Department of Neurology (O.H.), Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
3
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
Baumgartner D, Mušová Z, Zídková J, Hedvičáková P, Vlčková E, Joppeková L, Kramářová T, Fajkusová L, Stránecký V, Geryk J, Votýpka P, Mazanec R. Genetic Landscape of Amyotrophic Lateral Sclerosis in Czech Patients. J Neuromuscul Dis 2024; 11:1035-1048. [PMID: 39058450 PMCID: PMC11380243 DOI: 10.3233/jnd-230236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Background Genetic factors are involved in the pathogenesis of familial and sporadic amyotrophic lateral sclerosis (ALS) and constitute a link to its association with frontotemporal dementia (FTD). Gene-targeted therapies for some forms of ALS (C9orf72, SOD1) have recently gained momentum. Genetic architecture in Czech ALS patients has not been comprehensively assessed so far. Objective We aimed to deliver pilot data on the genetic landscape of ALS in our country. Methods A cohort of patients with ALS (n = 88), recruited from two Czech Neuromuscular Centers, was assessed for hexanucleotide repeat expansion (HRE) in C9orf72 and also for genetic variations in other 36 ALS-linked genes via next-generation sequencing (NGS). Nine patients (10.1%) had a familial ALS. Further, we analyzed two subgroups of sporadic patients - with concomitant FTD (n = 7) and with young-onset of the disease (n = 22). Results We detected the pathogenic HRE in C9orf72 in 12 patients (13.5%) and three other pathogenic variants in FUS, TARDBP and TBK1, each in one patient. Additional 7 novel and 9 rare known variants with uncertain causal significance have been detected in 15 patients. Three sporadic patients with FTD (42.9%) were harbouring a pathogenic variant (all HRE in C9orf72). Surprisingly, none of the young-onset sporadic patients harboured a pathogenic variant and we detected no pathogenic SOD1 variant in our cohort. Conclusion Our findings resemble those from other European populations, with the highest prevalence of HRE in the C9orf72 gene. Further, our findings suggest a possibility of a missing genetic variability among young-onset patients.
Collapse
Affiliation(s)
- Daniel Baumgartner
- Department of Neurology, Neuromuscular Center, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Zuzana Mušová
- Department of Biology and Medical Genetics, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jana Zídková
- Center for Molecular Biology and Genetics, Internal Haematology and Oncology Clinic, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Petra Hedvičáková
- Department of Biology and Medical Genetics, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Eva Vlčková
- Department of Neurology, Neuromuscular Center, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lubica Joppeková
- Department of Neurology, Neuromuscular Center, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tereza Kramářová
- Center for Molecular Biology and Genetics, Internal Haematology and Oncology Clinic, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Lenka Fajkusová
- Center for Molecular Biology and Genetics, Internal Haematology and Oncology Clinic, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Viktor Stránecký
- Department of Pediatrics and Inherited Metabolic Disorders, Research Unit for Rare Diseases, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Jan Geryk
- Department of Biology and Medical Genetics, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Pavel Votýpka
- Department of Biology and Medical Genetics, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Radim Mazanec
- Department of Neurology, Neuromuscular Center, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
5
|
Dong S, Yin X, Wang K, Yang W, Li J, Wang Y, Zhou Y, Liu X, Wang J, Chen X. Presence of Rare Variants is Associated with Poorer Survival in Chinese Patients with Amyotrophic Lateral Sclerosis. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:167-181. [PMID: 37197644 PMCID: PMC10110782 DOI: 10.1007/s43657-022-00093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 05/19/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with phenotypic and genetic heterogeneity. Recent studies have suggested an oligogenic basis of ALS, in which the co-occurrence of two or more genetic variants has additive or synergistic deleterious effects. To assess the contribution of possible oligogenic inheritance, we profiled a panel of 43 relevant genes in 57 sporadic ALS (sALS) patients and eight familial ALS (fALS) patients from five pedigrees in east China. We filtered rare variants using the combination of the Exome Aggregation Consortium, the 1000 Genomes and the HuaBiao Project. We analyzed patients with multiple rare variants in 43 known ALS causative genes and the genotype-phenotype correlation. Overall, we detected 30 rare variants in 16 different genes and found that 16 of the sALS patients and all the fALS patients examined harbored at least one variant in the investigated genes, among which two sALS and four fALS patients harbored two or more variants. Of note, the sALS patients with one or more variants in ALS genes had worse survival than the patients with no variants. Typically, in one fALS pedigree with three variants, the family member with three variants (Superoxide dismutase 1 (SOD1) p.V48A, Optineurin (OPTN) p.A433V and TANK binding kinase 1 (TBK1) p.R573H) exhibited much more severe disease phenotype than the member carrying one variant (TBK1 p.R573H). Our findings suggest that rare variants could exert a negative prognostic effect, thereby supporting the oligogenic inheritance of ALS.
Collapse
Affiliation(s)
- Siqi Dong
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
| | - Xianhong Yin
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| | - Kun Wang
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Wenbo Yang
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
| | - Jiatong Li
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
| | - Yi Wang
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| | - Yanni Zhou
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xiaoni Liu
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
| | - Jiucun Wang
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040 China
- National Center for Neurological Disorders, Shanghai, 200040 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| |
Collapse
|
6
|
Kirola L, Mukherjee A, Mutsuddi M. Recent Updates on the Genetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Mol Neurobiol 2022; 59:5673-5694. [PMID: 35768750 DOI: 10.1007/s12035-022-02934-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) primarily affect the motor and frontotemporal areas of the brain, respectively. These disorders share clinical, genetic, and pathological similarities, and approximately 10-15% of ALS-FTD cases are considered to be multisystemic. ALS-FTD overlaps have been linked to families carrying an expansion in the intron of C9orf72 along with inclusions of TDP-43 in the brain. Other overlapping genes (VCP, FUS, SQSTM1, TBK1, CHCHD10) are also involved in similar functions that include RNA processing, autophagy, proteasome response, protein aggregation, and intracellular trafficking. Recent advances in genome sequencing have identified new genes that are involved in these disorders (TBK1, CCNF, GLT8D1, KIF5A, NEK1, C21orf2, TBP, CTSF, MFSD8, DNAJC7). Additional risk factors and modifiers have been also identified in genome-wide association studies and array-based studies. However, the newly identified genes show higher disease frequencies in combination with known genes that are implicated in pathogenesis, thus indicating probable digenetic/polygenic inheritance models, along with epistatic interactions. Studies suggest that these genes play a pleiotropic effect on ALS-FTD and other diseases such as Alzheimer's disease, Ataxia, and Parkinsonism. Besides, there have been numerous improvements in the genotype-phenotype correlations as well as clinical trials on stem cell and gene-based therapies. This review discusses the possible genetic models of ALS and FTD, the latest therapeutics, and signaling pathways involved in ALS-FTD.
Collapse
Affiliation(s)
- Laxmi Kirola
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
7
|
Chandler R, Cogo S, Lewis P, Kevei E. Modelling the functional genomics of Parkinson's disease in Caenorhabditis elegans: LRRK2 and beyond. Biosci Rep 2021; 41:BSR20203672. [PMID: 34397087 PMCID: PMC8415217 DOI: 10.1042/bsr20203672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
For decades, Parkinson's disease (PD) cases have been genetically categorised into familial, when caused by mutations in single genes with a clear inheritance pattern in affected families, or idiopathic, in the absence of an evident monogenic determinant. Recently, genome-wide association studies (GWAS) have revealed how common genetic variability can explain up to 36% of PD heritability and that PD manifestation is often determined by multiple variants at different genetic loci. Thus, one of the current challenges in PD research stands in modelling the complex genetic architecture of this condition and translating this into functional studies. Caenorhabditis elegans provide a profound advantage as a reductionist, economical model for PD research, with a short lifecycle, straightforward genome engineering and high conservation of PD relevant neural, cellular and molecular pathways. Functional models of PD genes utilising C. elegans show many phenotypes recapitulating pathologies observed in PD. When contrasted with mammalian in vivo and in vitro models, these are frequently validated, suggesting relevance of C. elegans in the development of novel PD functional models. This review will discuss how the nematode C. elegans PD models have contributed to the uncovering of molecular and cellular mechanisms of disease, with a focus on the genes most commonly found as causative in familial PD and risk factors in idiopathic PD. Specifically, we will examine the current knowledge on a central player in both familial and idiopathic PD, Leucine-rich repeat kinase 2 (LRRK2) and how it connects to multiple PD associated GWAS candidates and Mendelian disease-causing genes.
Collapse
Affiliation(s)
| | - Susanna Cogo
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
- Department of Biology, University of Padova, Padova, Via Ugo Bassi 58/B, 35121, Italy
| | - Patrick A. Lewis
- Royal Veterinary College, University of London, London, NW1 0TU, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, U.K
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
| |
Collapse
|
8
|
Perrone F, Cacace R, van der Zee J, Van Broeckhoven C. Emerging genetic complexity and rare genetic variants in neurodegenerative brain diseases. Genome Med 2021; 13:59. [PMID: 33853652 PMCID: PMC8048219 DOI: 10.1186/s13073-021-00878-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Knowledge of the molecular etiology of neurodegenerative brain diseases (NBD) has substantially increased over the past three decades. Early genetic studies of NBD families identified rare and highly penetrant deleterious mutations in causal genes that segregate with disease. Large genome-wide association studies uncovered common genetic variants that influenced disease risk. Major developments in next-generation sequencing (NGS) technologies accelerated gene discoveries at an unprecedented rate and revealed novel pathways underlying NBD pathogenesis. NGS technology exposed large numbers of rare genetic variants of uncertain significance (VUS) in coding regions, highlighting the genetic complexity of NBD. Since experimental studies of these coding rare VUS are largely lacking, the potential contributions of VUS to NBD etiology remain unknown. In this review, we summarize novel findings in NBD genetic etiology driven by NGS and the impact of rare VUS on NBD etiology. We consider different mechanisms by which rare VUS can act and influence NBD pathophysiology and discuss why a better understanding of rare VUS is instrumental for deriving novel insights into the molecular complexity and heterogeneity of NBD. New knowledge might open avenues for effective personalized therapies.
Collapse
Affiliation(s)
- Federica Perrone
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Rita Cacace
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp – CDE, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| |
Collapse
|
9
|
Goldstein O, Gana-Weisz M, Casey F, Meltzer-Fridrich H, Yaacov O, Waldman YY, Lin D, Mordechai Y, Zhu J, Cullen PF, Omer N, Shiner T, Thaler A, Bar-Shira A, Mirelman A, John S, Giladi N, Orr-Urtreger A. PARK16 locus: Differential effects of the non-coding rs823114 on Parkinson’s disease risk, RNA expression, and DNA methylation. J Genet Genomics 2021; 48:341-345. [DOI: 10.1016/j.jgg.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
|
10
|
Picillo M, Ginevrino M, Dati G, Scannapieco S, Vallelunga A, Siano P, Volpe G, Ceravolo R, Nicoletti V, Cicero E, Nicoletti A, Zappia M, Peverelli S, Silani V, Pellecchia MT, Valente EM, Barone P. Genetic characterization of a cohort with familial parkinsonism and cognitive-behavioral syndrome: A Next Generation Sequencing study. Parkinsonism Relat Disord 2021; 84:82-90. [PMID: 33601107 DOI: 10.1016/j.parkreldis.2021.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To perform the genetic characterization of a cohort with familial parkinsonism and cognitive-behavioral syndrome. METHODS A Next Generation Sequencing - based targeted sequencing of 32 genes associated to various neurodegenerative phenotypes, plus a screening for SNCA Copy Number Variations and C9orf72 repeat expansion, was applied in a cohort of 85 Italian patients presenting with parkinsonism and cognitive and/or behavioral syndrome and a positive familial history for any neurodegenerative disorder (i.e., dementia, movement disorders, amyotrophic lateral sclerosis). RESULTS Through this combined genetic approach, we detected potentially relevant genetic variants in 25.8% of patients with familial parkinsonism and cognitive and/or behavioral syndrome. Peculiar phenotypes are described (Cortico-basal syndrome with APP, Posterior Cortical Atrophy with GBA, Progressive Supranuclear Palsy-like with GRN, Multiple System Atrophy with TARDBP). The majority of patients presented a rigid-bradykinetic parkinsonian syndrome, while rest tremor was less common. Myoclonic jerks, pyramidal signs, dystonic postures and vertical gaze disturbances were more frequently associated with the presence of a pathogenic variant in one of the tested genes. CONCLUSIONS Given the syndromic approach adopted in our study, we were able to provide a detailed clinical description of patients beyond the boundaries of specific clinical diagnoses and describe peculiar phenotypes. This observation further supports the knowledge that genetic disorders present phenotypic overlaps across different neurodegenerative syndromes, highlighting the limitations of current clinical diagnostic criteria defining sharp boundaries between distinct conditions.
Collapse
Affiliation(s)
- Marina Picillo
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, Italy
| | - Monia Ginevrino
- Istituto di Medicina Genomica, Università Cattolica Del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy; Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giovanna Dati
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, Italy
| | - Sara Scannapieco
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, Italy
| | - Annamaria Vallelunga
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, Italy
| | - Pietro Siano
- Neurology Unit, University Hospital A.O.U. OO.RR. San Giovanni di Dio e Ruggi D'Aragona, Scuola Medica Salernitana, Salerno, Italy
| | - Giampiero Volpe
- Neurology Unit, University Hospital A.O.U. OO.RR. San Giovanni di Dio e Ruggi D'Aragona, Scuola Medica Salernitana, Salerno, Italy
| | - Roberto Ceravolo
- Dipartimento di Medicina Clinica e Sperimentale Università di Pisa, Italy, Università di Pisa, Pisa, Italy
| | - Valentina Nicoletti
- Dipartimento di Medicina Clinica e Sperimentale Università di Pisa, Italy, Università di Pisa, Pisa, Italy
| | - Edoardo Cicero
- Department G.F. Ingrassia, Section of Neurosciences, University of Catania, Catania, Italy
| | - Alessandra Nicoletti
- Department G.F. Ingrassia, Section of Neurosciences, University of Catania, Catania, Italy
| | - Mario Zappia
- Department G.F. Ingrassia, Section of Neurosciences, University of Catania, Catania, Italy
| | - Silvia Peverelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Maria Teresa Pellecchia
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy.
| | - Paolo Barone
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry, Neuroscience Section, University of Salerno, Italy.
| |
Collapse
|
11
|
Balicza P, Bencsik R, Lengyel A, Gal A, Grosz Z, Csaban D, Rudas G, Danics K, Kovacs GG, Molnar MJ. Novel dominant MPAN family with a complex genetic architecture as a basis for phenotypic variability. Neurol Genet 2020; 6:e515. [PMID: 33134513 PMCID: PMC7577556 DOI: 10.1212/nxg.0000000000000515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/27/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Our aim was to study a Hungarian family with autosomal dominantly inherited neurodegeneration with brain iron accumulation (NBIA) with markedly different intrafamilial expressivity. METHODS Targeted sequencing and multiplex ligation-dependent probe amplification (MLPA) of known NBIA-associated genes were performed in many affected and unaffected members of the family. In addition, a trio whole-genome sequencing was performed to find a potential explanation of phenotypic variability. Neuropathologic analysis was performed in a single affected family member. RESULTS The clinical phenotype was characterized by 3 different syndromes-1 with rapidly progressive dystonia-parkinsonism with cognitive deterioration, 1 with mild parkinsonism associated with dementia, and 1 with predominantly psychiatric symptoms along with movement disorder. A heterozygous stop-gain variation in the C19Orf12 gene segregated with the phenotype. Targeted sequencing of all known NBIA genes, and MLPA of PLA2G6 and PANK2 genes, as well as whole-genome sequencing in a trio from the family, revealed a unique constellation of oligogenic burden in 3 NBIA-associated genes (C19Orf12 p.Trp112Ter, CP p.Val105PhefsTer5, and PLA2G6 dup(ex14)). Neuropathologic analysis of a single case (39-year-old man) showed a complex pattern of alpha-synucleinopathy and tauopathy, both involving subcortical and cortical areas and the hippocampus. CONCLUSIONS Our study expands the number of cases reported with autosomal dominant mitochondrial membrane protein-associated neurodegeneration and emphasizes the complexity of the genetic architecture, which might contribute to intrafamilial phenotypic variability.
Collapse
Affiliation(s)
- Peter Balicza
- Institute of Genomic Medicine and Rare Diseases (P.B., R.B., A.L., A.G., Z.G., D.C., M.J.M.), Semmelweis University, Budapest, Hungary; Neurology Outpatient Clinic (A.L.), General Medical Clinic, Motala Hospital, Sweden; Department of Neuroradiology (G.R.), and Department of Forensic and Insurance Medicine (K.D.), Semmelweis University, Budapest, Hungary; Tanz Centre for Research in Neurodegenerative Disease (G.G.K.), and Department of Laboratory Medicine and Pathobiology (G.G.K.), University of Toronto; and Laboratory Medicine Program (G.G.K.), University Health Network, Toronto, Canada
| | - Renata Bencsik
- Institute of Genomic Medicine and Rare Diseases (P.B., R.B., A.L., A.G., Z.G., D.C., M.J.M.), Semmelweis University, Budapest, Hungary; Neurology Outpatient Clinic (A.L.), General Medical Clinic, Motala Hospital, Sweden; Department of Neuroradiology (G.R.), and Department of Forensic and Insurance Medicine (K.D.), Semmelweis University, Budapest, Hungary; Tanz Centre for Research in Neurodegenerative Disease (G.G.K.), and Department of Laboratory Medicine and Pathobiology (G.G.K.), University of Toronto; and Laboratory Medicine Program (G.G.K.), University Health Network, Toronto, Canada
| | - Andras Lengyel
- Institute of Genomic Medicine and Rare Diseases (P.B., R.B., A.L., A.G., Z.G., D.C., M.J.M.), Semmelweis University, Budapest, Hungary; Neurology Outpatient Clinic (A.L.), General Medical Clinic, Motala Hospital, Sweden; Department of Neuroradiology (G.R.), and Department of Forensic and Insurance Medicine (K.D.), Semmelweis University, Budapest, Hungary; Tanz Centre for Research in Neurodegenerative Disease (G.G.K.), and Department of Laboratory Medicine and Pathobiology (G.G.K.), University of Toronto; and Laboratory Medicine Program (G.G.K.), University Health Network, Toronto, Canada
| | - Aniko Gal
- Institute of Genomic Medicine and Rare Diseases (P.B., R.B., A.L., A.G., Z.G., D.C., M.J.M.), Semmelweis University, Budapest, Hungary; Neurology Outpatient Clinic (A.L.), General Medical Clinic, Motala Hospital, Sweden; Department of Neuroradiology (G.R.), and Department of Forensic and Insurance Medicine (K.D.), Semmelweis University, Budapest, Hungary; Tanz Centre for Research in Neurodegenerative Disease (G.G.K.), and Department of Laboratory Medicine and Pathobiology (G.G.K.), University of Toronto; and Laboratory Medicine Program (G.G.K.), University Health Network, Toronto, Canada
| | - Zoltan Grosz
- Institute of Genomic Medicine and Rare Diseases (P.B., R.B., A.L., A.G., Z.G., D.C., M.J.M.), Semmelweis University, Budapest, Hungary; Neurology Outpatient Clinic (A.L.), General Medical Clinic, Motala Hospital, Sweden; Department of Neuroradiology (G.R.), and Department of Forensic and Insurance Medicine (K.D.), Semmelweis University, Budapest, Hungary; Tanz Centre for Research in Neurodegenerative Disease (G.G.K.), and Department of Laboratory Medicine and Pathobiology (G.G.K.), University of Toronto; and Laboratory Medicine Program (G.G.K.), University Health Network, Toronto, Canada
| | - Dora Csaban
- Institute of Genomic Medicine and Rare Diseases (P.B., R.B., A.L., A.G., Z.G., D.C., M.J.M.), Semmelweis University, Budapest, Hungary; Neurology Outpatient Clinic (A.L.), General Medical Clinic, Motala Hospital, Sweden; Department of Neuroradiology (G.R.), and Department of Forensic and Insurance Medicine (K.D.), Semmelweis University, Budapest, Hungary; Tanz Centre for Research in Neurodegenerative Disease (G.G.K.), and Department of Laboratory Medicine and Pathobiology (G.G.K.), University of Toronto; and Laboratory Medicine Program (G.G.K.), University Health Network, Toronto, Canada
| | - Gabor Rudas
- Institute of Genomic Medicine and Rare Diseases (P.B., R.B., A.L., A.G., Z.G., D.C., M.J.M.), Semmelweis University, Budapest, Hungary; Neurology Outpatient Clinic (A.L.), General Medical Clinic, Motala Hospital, Sweden; Department of Neuroradiology (G.R.), and Department of Forensic and Insurance Medicine (K.D.), Semmelweis University, Budapest, Hungary; Tanz Centre for Research in Neurodegenerative Disease (G.G.K.), and Department of Laboratory Medicine and Pathobiology (G.G.K.), University of Toronto; and Laboratory Medicine Program (G.G.K.), University Health Network, Toronto, Canada
| | - Krisztina Danics
- Institute of Genomic Medicine and Rare Diseases (P.B., R.B., A.L., A.G., Z.G., D.C., M.J.M.), Semmelweis University, Budapest, Hungary; Neurology Outpatient Clinic (A.L.), General Medical Clinic, Motala Hospital, Sweden; Department of Neuroradiology (G.R.), and Department of Forensic and Insurance Medicine (K.D.), Semmelweis University, Budapest, Hungary; Tanz Centre for Research in Neurodegenerative Disease (G.G.K.), and Department of Laboratory Medicine and Pathobiology (G.G.K.), University of Toronto; and Laboratory Medicine Program (G.G.K.), University Health Network, Toronto, Canada
| | - Gabor G Kovacs
- Institute of Genomic Medicine and Rare Diseases (P.B., R.B., A.L., A.G., Z.G., D.C., M.J.M.), Semmelweis University, Budapest, Hungary; Neurology Outpatient Clinic (A.L.), General Medical Clinic, Motala Hospital, Sweden; Department of Neuroradiology (G.R.), and Department of Forensic and Insurance Medicine (K.D.), Semmelweis University, Budapest, Hungary; Tanz Centre for Research in Neurodegenerative Disease (G.G.K.), and Department of Laboratory Medicine and Pathobiology (G.G.K.), University of Toronto; and Laboratory Medicine Program (G.G.K.), University Health Network, Toronto, Canada
| | - Maria Judit Molnar
- Institute of Genomic Medicine and Rare Diseases (P.B., R.B., A.L., A.G., Z.G., D.C., M.J.M.), Semmelweis University, Budapest, Hungary; Neurology Outpatient Clinic (A.L.), General Medical Clinic, Motala Hospital, Sweden; Department of Neuroradiology (G.R.), and Department of Forensic and Insurance Medicine (K.D.), Semmelweis University, Budapest, Hungary; Tanz Centre for Research in Neurodegenerative Disease (G.G.K.), and Department of Laboratory Medicine and Pathobiology (G.G.K.), University of Toronto; and Laboratory Medicine Program (G.G.K.), University Health Network, Toronto, Canada
| |
Collapse
|
12
|
McCann EP, Henden L, Fifita JA, Zhang KY, Grima N, Bauer DC, Chan Moi Fat S, Twine NA, Pamphlett R, Kiernan MC, Rowe DB, Williams KL, Blair IP. Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis. J Med Genet 2020; 58:jmedgenet-2020-106866. [PMID: 32409511 DOI: 10.1136/jmedgenet-2020-106866] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/02/2020] [Accepted: 03/22/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with phenotypic and genetic heterogeneity. Approximately 10% of cases are familial, while remaining cases are classified as sporadic. To date, >30 genes and several hundred genetic variants have been implicated in ALS. METHODS Seven hundred and fifty-seven sporadic ALS cases were recruited from Australian neurology clinics. Detailed clinical data and whole genome sequencing (WGS) data were available from 567 and 616 cases, respectively, of which 426 cases had both datasets available. As part of a comprehensive genetic analysis, 853 genetic variants previously reported as ALS-linked mutations or disease-associated alleles were interrogated in sporadic ALS WGS data. Statistical analyses were performed to identify correlation between clinical variables, and between phenotype and the number of ALS-implicated variants carried by an individual. Relatedness between individuals carrying identical variants was assessed using identity-by-descent analysis. RESULTS Forty-three ALS-implicated variants from 18 genes, including C9orf72, ATXN2, TARDBP, SOD1, SQSTM1 and SETX, were identified in Australian sporadic ALS cases. One-third of cases carried at least one variant and 6.82% carried two or more variants, implicating a potential oligogenic or polygenic basis of ALS. Relatedness was detected between two sporadic ALS cases carrying a SOD1 p.I114T mutation, and among three cases carrying a SQSTM1 p.K238E mutation. Oligogenic/polygenic sporadic ALS cases showed earlier age of onset than those with no reported variant. CONCLUSION We confirm phenotypic associations among ALS cases, and highlight the contribution of genetic variation to all forms of ALS.
Collapse
Affiliation(s)
- Emily P McCann
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Lyndal Henden
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jennifer A Fifita
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Katharine Y Zhang
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Natalie Grima
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Denis C Bauer
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales, Australia
| | - Sandrine Chan Moi Fat
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Natalie A Twine
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales, Australia
| | - Roger Pamphlett
- Discipline of Pathology and Department of Neuropathology, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Dominic B Rowe
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kelly L Williams
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ian P Blair
- Macquarie University Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Smolders S, Van Broeckhoven C. Genetic perspective on the synergistic connection between vesicular transport, lysosomal and mitochondrial pathways associated with Parkinson's disease pathogenesis. Acta Neuropathol Commun 2020; 8:63. [PMID: 32375870 PMCID: PMC7201634 DOI: 10.1186/s40478-020-00935-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) are symptomatically characterized by parkinsonism, with the latter presenting additionally a distinctive range of atypical features. Although the majority of patients with PD and APS appear to be sporadic, genetic causes of several rare monogenic disease variants were identified. The knowledge acquired from these genetic factors indicated that defects in vesicular transport pathways, endo-lysosomal dysfunction, impaired autophagy-lysosomal protein and organelle degradation pathways, α-synuclein aggregation and mitochondrial dysfunction play key roles in PD pathogenesis. Moreover, membrane dynamics are increasingly recognized as a key player in the disease pathogenesis due lipid homeostasis alterations, associated with lysosomal dysfunction, caused by mutations in several PD and APS genes. The importance of lysosomal dysfunction and lipid homeostasis is strengthened by both genetic discoveries and clinical epidemiology of the association between parkinsonism and lysosomal storage disorders (LSDs), caused by the disruption of lysosomal biogenesis or function. A synergistic coordination between vesicular trafficking, lysosomal and mitochondria defects exist whereby mutations in PD and APS genes encoding proteins primarily involved one PD pathway are frequently associated with defects in other PD pathways as a secondary effect. Moreover, accumulating clinical and genetic observations suggest more complex inheritance patters of familial PD exist, including oligogenic and polygenic inheritance of genes in the same or interconnected PD pathways, further strengthening their synergistic connection.Here, we provide a comprehensive overview of PD and APS genes with functions in vesicular transport, lysosomal and mitochondrial pathways, and highlight functional and genetic evidence of the synergistic connection between these PD associated pathways.
Collapse
Affiliation(s)
- Stefanie Smolders
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp - CDE, Universiteitsplein 1, 2610, Antwerpen, Belgium
- Biomedical Sciences, University of Antwerp, Antwerpen, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp - CDE, Universiteitsplein 1, 2610, Antwerpen, Belgium.
- Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.
| |
Collapse
|
14
|
Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Front Neurosci 2019; 13:1310. [PMID: 31866818 PMCID: PMC6909825 DOI: 10.3389/fnins.2019.01310] [Citation(s) in RCA: 507] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
The scientific landscape surrounding amyotrophic lateral sclerosis (ALS) continues to shift as the number of genes associated with the disease risk and pathogenesis, and the cellular processes involved, continues to grow. Despite decades of intense research and over 50 potentially causative or disease-modifying genes identified, etiology remains unexplained and treatment options remain limited for the majority of ALS patients. Various factors have contributed to the slow progress in understanding and developing therapeutics for this disease. Here, we review the genetic basis of ALS, highlighting factors that have contributed to the elusiveness of genetic heritability. The most commonly mutated ALS-linked genes are reviewed with an emphasis on disease-causing mechanisms. The cellular processes involved in ALS pathogenesis are discussed, with evidence implicating their involvement in ALS summarized. Past and present therapeutic strategies and the benefits and limitations of the model systems available to ALS researchers are discussed with future directions for research that may lead to effective treatment strategies outlined.
Collapse
Affiliation(s)
- Rita Mejzini
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Loren L. Flynn
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Ianthe L. Pitout
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - P. Anthony Akkari
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- The Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
15
|
Illés A, Csabán D, Grosz Z, Balicza P, Gézsi A, Molnár V, Bencsik R, Gál A, Klivényi P, Molnar MJ. The Role of Genetic Testing in the Clinical Practice and Research of Early-Onset Parkinsonian Disorders in a Hungarian Cohort: Increasing Challenge in Genetic Counselling, Improving Chances in Stratification for Clinical Trials. Front Genet 2019; 10:1061. [PMID: 31737044 PMCID: PMC6837163 DOI: 10.3389/fgene.2019.01061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/03/2019] [Indexed: 12/27/2022] Open
Abstract
The genetic analysis of early-onset Parkinsonian disorder (EOPD) is part of the clinical diagnostics. Several genes have been implicated in the genetic background of Parkinsonism, which is clinically indistinguishable from idiopathic Parkinson's disease. The identification of patient's genotype could support clinical decision-making process and also track and analyse outcomes in a comprehensive fashion. The aim of our study was to analyse the genetic background of EOPD in a Hungarian cohort and to evaluate the clinical usefulness of different genetic investigations. The age of onset was between 25 and 50 years. To identify genetic alterations, multiplex ligation-dependent probe amplification (n = 142), Sanger sequencing of the most common PD-associated genes (n = 142), and next-generation sequencing (n = 54) of 127 genes which were previously associated to neurodegenerative disorders were carried out. The genetic analysis identified several heterozygous damaging substitutions in PD-associated genes (C19orf12, DNAJC6, DNAJC13, EIF4G1, LRRK2, PRKN, PINK1, PLA2G6, SYNJ1). CNVs in PRKN and SNCA genes were found in five patients. In our cohort, nine previously published genetic risk factors were detected in three genes (GBA, LRRK2, and PINK1). In nine cases, two or three coexisting pathogenic mutations and risk variants were identified. Advances of sequencing technologies make it possible to aid diagnostics of PD by widening the scope of analysis to genes which were previously linked to other neurodegenerative disorders. Our data suggested that rare damaging variants are enriched versus neutral variants, among PD patients in the Hungarian population, which raise the possibility of an oligogenic effect. Heterozygous mutations of multiple recessive genes involved in the same pathway may perturb the molecular process linked to PD pathogenesis. Comprehensive genetic assessment of individual patients can rarely reveal monogenic cause in EOPD, although it may identify the involvement of multiple PD-associated genes in the background of the disease and may facilitate the better understanding of clinically distinct phenocopies. Due to the genetic complexity of the disease, genetic counselling and management is getting more challenging. Clinical geneticist should be prepared for counselling of patients with coexisting disease-causing mutations and susceptibility factors. At the same time, genomic-based stratification has increasing importance in future clinical trials.
Collapse
Affiliation(s)
- Anett Illés
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Dóra Csabán
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Zoltán Grosz
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Péter Balicza
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - András Gézsi
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Viktor Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Renáta Bencsik
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Anikó Gál
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Péter Klivényi
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Maria Judit Molnar
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| |
Collapse
|
16
|
Bis-Brewer DM, Fazal S, Züchner S. Genetic modifiers and non-Mendelian aspects of CMT. Brain Res 2019; 1726:146459. [PMID: 31525351 DOI: 10.1016/j.brainres.2019.146459] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Charcot-Marie-Tooth (CMT) neuropathies are amongst the most common inherited diseases in neurology. While great strides have been made to identify the genesis of these diseases, a diagnostic gap of 30-60% remains. Classic models of genetic causation may be limited to fully close this gap and, thus, we review the current state and future role of alternative, non-Mendelian forms of genetics in CMT. Promising synergies exist to further define the full genetic architecture of inherited neuropathies, including affordable whole-genome sequencing, increased data aggregation and clinical collaboration, improved bioinformatics and statistical methodology, and vastly improved computational resources. Given the recent advances in genetic therapies for rare diseases, it becomes a matter of urgency to diagnose CMT patients with great fidelity. Otherwise, they will not be able to benefit from such therapeutic options, or worse, suffer harm when pathogenicity of genetic variation is falsely evaluated. In addition, the newly identified modifier and risk genes may offer alternative targets for pharmacotherapy of inherited and, potentially, even acquired forms of neuropathies.
Collapse
Affiliation(s)
- Dana M Bis-Brewer
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sarah Fazal
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
17
|
Bis-Brewer DM, Züchner S. Perspectives on the Genomics of HSP Beyond Mendelian Inheritance. Front Neurol 2018; 9:958. [PMID: 30534106 PMCID: PMC6275194 DOI: 10.3389/fneur.2018.00958] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
Hereditary Spastic Paraplegia is an extraordinarily heterogeneous disease caused by over 50 Mendelian genes. Recent applications of next-generation sequencing, large scale data analysis, and data sharing/matchmaking, have discovered a quickly expanding set of additional HSP genes. Since most recently discovered HSP genes are rare causes of the disease, there is a growing concern of a persisting diagnostic gap, estimated at 30-40%, and even higher for sporadic cases. This missing heritability may not be fully closed by classic Mendelian mutations in protein coding genes. Here we show strategies and published examples of broadening areas of attention for Mendelian and non-Mendelian causes of HSP. We suggest a more inclusive perspective on the potential final architecture of HSP genomics. Efforts to narrow the heritability gap will ultimately lead to more precise and comprehensive genetic diagnoses, which is the starting point for emerging, highly specific gene therapies.
Collapse
Affiliation(s)
- Dana M. Bis-Brewer
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|