1
|
Zogopoulos VL, Malatras A, Kyriakidis K, Charalampous C, Makrygianni EA, Duguez S, Koutsi MA, Pouliou M, Vasileiou C, Duddy WJ, Agelopoulos M, Chrousos GP, Iconomidou VA, Michalopoulos I. HGCA2.0: An RNA-Seq Based Webtool for Gene Coexpression Analysis in Homo sapiens. Cells 2023; 12:cells12030388. [PMID: 36766730 PMCID: PMC9913097 DOI: 10.3390/cells12030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Genes with similar expression patterns in a set of diverse samples may be considered coexpressed. Human Gene Coexpression Analysis 2.0 (HGCA2.0) is a webtool which studies the global coexpression landscape of human genes. The website is based on the hierarchical clustering of 55,431 Homo sapiens genes based on a large-scale coexpression analysis of 3500 GTEx bulk RNA-Seq samples of healthy individuals, which were selected as the best representative samples of each tissue type. HGCA2.0 presents subclades of coexpressed genes to a gene of interest, and performs various built-in gene term enrichment analyses on the coexpressed genes, including gene ontologies, biological pathways, protein families, and diseases, while also being unique in revealing enriched transcription factors driving coexpression. HGCA2.0 has been successful in identifying not only genes with ubiquitous expression patterns, but also tissue-specific genes. Benchmarking showed that HGCA2.0 belongs to the top performing coexpression webtools, as shown by STRING analysis. HGCA2.0 creates working hypotheses for the discovery of gene partners or common biological processes that can be experimentally validated. It offers a simple and intuitive website design and user interface, as well as an API endpoint.
Collapse
Affiliation(s)
- Vasileios L. Zogopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Apostolos Malatras
- Biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, 2029 Nicosia, Cyprus
| | - Konstantinos Kyriakidis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrysanthi Charalampous
- Centre of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Evanthia A. Makrygianni
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Stéphanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry-Londonderry BT47 6SB, UK
| | - Marianna A. Koutsi
- Centre of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Marialena Pouliou
- Centre of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Christos Vasileiou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Engineering Design and Computing Laboratory, ETH Zurich, 8092 Zurich, Switzerland
| | - William J. Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry-Londonderry BT47 6SB, UK
| | - Marios Agelopoulos
- Centre of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
2
|
Gilley J, Jackson O, Pipis M, Estiar MA, Al-Chalabi A, Danzi MC, van Eijk KR, Goutman SA, Harms MB, Houlden H, Iacoangeli A, Kaye J, Lima L, Ravits J, Rouleau GA, Schüle R, Xu J, Züchner S, Cooper-Knock J, Gan-Or Z, Reilly MM, Coleman MP. Enrichment of SARM1 alleles encoding variants with constitutively hyperactive NADase in patients with ALS and other motor nerve disorders. eLife 2021; 10:e70905. [PMID: 34796871 PMCID: PMC8735862 DOI: 10.7554/elife.70905] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
SARM1, a protein with critical NADase activity, is a central executioner in a conserved programme of axon degeneration. We report seven rare missense or in-frame microdeletion human SARM1 variant alleles in patients with amyotrophic lateral sclerosis (ALS) or other motor nerve disorders that alter the SARM1 auto-inhibitory ARM domain and constitutively hyperactivate SARM1 NADase activity. The constitutive NADase activity of these seven variants is similar to that of SARM1 lacking the entire ARM domain and greatly exceeds the activity of wild-type SARM1, even in the presence of nicotinamide mononucleotide (NMN), its physiological activator. This rise in constitutive activity alone is enough to promote neuronal degeneration in response to otherwise non-harmful, mild stress. Importantly, these strong gain-of-function alleles are completely patient-specific in the cohorts studied and show a highly significant association with disease at the single gene level. These findings of disease-associated coding variants that alter SARM1 function build on previously reported genome-wide significant association with ALS for a neighbouring, more common SARM1 intragenic single nucleotide polymorphism (SNP) to support a contributory role of SARM1 in these disorders. A broad phenotypic heterogeneity and variable age-of-onset of disease among patients with these alleles also raises intriguing questions about the pathogenic mechanism of hyperactive SARM1 variants.
Collapse
Affiliation(s)
- Jonathan Gilley
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Oscar Jackson
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Menelaos Pipis
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for NeurologyLondonUnited Kingdom
| | - Mehrdad A Estiar
- Department of Human Genetics, McGill UniversityMontrealCanada
- The Neuro (Montreal Neurological Institute-Hospital), McGill UniversityMontrealCanada
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
- Department of Neurology, King's College Hospital, King’s College LondonLondonUnited Kingdom
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of MedicineMiamiUnited States
| | - Kristel R van Eijk
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Stephen A Goutman
- Department of Neurology, University of MichiganAnn ArborUnited States
| | - Matthew B Harms
- Institute for Genomic Medicine, Columbia UniversityNew YorkUnited States
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for NeurologyLondonUnited Kingdom
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King's College LondonLondonUnited Kingdom
| | - Julia Kaye
- Center for Systems and Therapeutics, Gladstone InstitutesSan FranciscoUnited States
| | - Leandro Lima
- Center for Systems and Therapeutics, Gladstone InstitutesSan FranciscoUnited States
- Gladstone Institute of Data Science and Biotechnology, Gladstone InstitutesSan FranciscoUnited States
| | - Queen Square Genomics
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for NeurologyLondonUnited Kingdom
| | - John Ravits
- Department of Neurosciences, University of California, San DiegoLa JollaUnited States
| | - Guy A Rouleau
- Department of Human Genetics, McGill UniversityMontrealCanada
- The Neuro (Montreal Neurological Institute-Hospital), McGill UniversityMontrealCanada
- Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
| | - Rebecca Schüle
- Center for Neurology and Hertie Institute für Clinical Brain Research, University of Tübingen, German Center for Neurodegenerative DiseasesTübingenGermany
| | - Jishu Xu
- Center for Neurology and Hertie Institute für Clinical Brain Research, University of Tübingen, German Center for Neurodegenerative DiseasesTübingenGermany
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of MedicineMiamiUnited States
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of SheffieldSheffieldUnited Kingdom
| | - Ziv Gan-Or
- Department of Human Genetics, McGill UniversityMontrealCanada
- The Neuro (Montreal Neurological Institute-Hospital), McGill UniversityMontrealCanada
- Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
| | - Mary M Reilly
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for NeurologyLondonUnited Kingdom
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
3
|
Dilliott AA, Abdelhady A, Sunderland KM, Farhan SMK, Abrahao A, Binns MA, Black SE, Borrie M, Casaubon LK, Dowlatshahi D, Finger E, Fischer CE, Frank A, Freedman M, Grimes D, Hassan A, Jog M, Kumar S, Kwan D, Lang AE, Mandzia J, Masellis M, McIntyre AD, Pasternak SH, Pollock BG, Rajji TK, Rogaeva E, Sahlas DJ, Saposnik G, Sato C, Seitz D, Shoesmith C, Steeves TDL, Swartz RH, Tan B, Tang-Wai DF, Tartaglia MC, Turnbull J, Zinman L, Hegele RA. Contribution of rare variant associations to neurodegenerative disease presentation. NPJ Genom Med 2021; 6:80. [PMID: 34584092 PMCID: PMC8478934 DOI: 10.1038/s41525-021-00243-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
Genetic factors contribute to neurodegenerative diseases, with high heritability estimates across diagnoses; however, a large portion of the genetic influence remains poorly understood. Many previous studies have attempted to fill the gaps by performing linkage analyses and association studies in individual disease cohorts, but have failed to consider the clinical and pathological overlap observed across neurodegenerative diseases and the potential for genetic overlap between the phenotypes. Here, we leveraged rare variant association analyses (RVAAs) to elucidate the genetic overlap among multiple neurodegenerative diagnoses, including Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia (FTD), mild cognitive impairment, and Parkinson's disease (PD), as well as cerebrovascular disease, using the data generated with a custom-designed neurodegenerative disease gene panel in the Ontario Neurodegenerative Disease Research Initiative (ONDRI). As expected, only ~3% of ONDRI participants harboured a monogenic variant likely driving their disease presentation. Yet, when genes were binned based on previous disease associations, we observed an enrichment of putative loss of function variants in PD genes across all ONDRI cohorts. Further, individual gene-based RVAA identified significant enrichment of rare, nonsynonymous variants in PARK2 in the FTD cohort, and in NOTCH3 in the PD cohort. The results indicate that there may be greater heterogeneity in the genetic factors contributing to neurodegeneration than previously appreciated. Although the mechanisms by which these genes contribute to disease presentation must be further explored, we hypothesize they may be a result of rare variants of moderate phenotypic effect contributing to overlapping pathology and clinical features observed across neurodegenerative diagnoses.
Collapse
Affiliation(s)
- Allison A Dilliott
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Abdalla Abdelhady
- Department of Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Kelly M Sunderland
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Sali M K Farhan
- Departments of Neurology and Neurosurgery, and Human Genetics, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Agessandro Abrahao
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
| | - Malcolm A Binns
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Sandra E Black
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
- LCCampbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Research Program Sunnybrook Health Sciences Research Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Michael Borrie
- St. Joseph's Health Care Centre, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Leanne K Casaubon
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- University Health Network Stroke Program, Toronto Western Hospital, Toronto, ON, Canada
| | - Dar Dowlatshahi
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Corinne E Fischer
- Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Andrew Frank
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Bruyère Research Institute, Ottawa, ON, Canada
| | - Morris Freedman
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Baycrest Health Sciences, Mt. Sinai Hospital and University of Toronto, Toronto, ON, Canada
| | - David Grimes
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ayman Hassan
- Thunder Bay Regional Research Institute and Northern Ontario School of Medicine, Thunder Bay, ON, Canada
| | - Mandar Jog
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Health Sciences Centre, London, ON, Canada
| | - Sanjeev Kumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Donna Kwan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Anthony E Lang
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Jennifer Mandzia
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Mario Masellis
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Cognitive & Movement Disorders Clinic and L.C. Campbell Cognitive Neurology Research Unit, Hurvitz Brain Science Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Adam D McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Stephen H Pasternak
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Cognitive Neurology and Alzheimer's Disease Research Centre, Parkwood Institute, St. Joseph's Health Care, London, ON, Canada
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry and Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | | | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Clinical Outcomes and Decision Neuroscience Unit, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Dallas Seitz
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Thomas D L Steeves
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Division of Neurology, St. Michael's Hospital, Toronto, ON, Canada
| | - Richard H Swartz
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
- LCCampbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Research Program Sunnybrook Health Sciences Research Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Brian Tan
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - David F Tang-Wai
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON, Canada
- University Health Network Memory Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - John Turnbull
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Lorne Zinman
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
4
|
Tripolszki K, Gampawar P, Schmidt H, Nagy ZF, Nagy D, Klivényi P, Engelhardt JI, Széll M. Comprehensive Genetic Analysis of a Hungarian Amyotrophic Lateral Sclerosis Cohort. Front Genet 2019; 10:732. [PMID: 31475037 PMCID: PMC6707335 DOI: 10.3389/fgene.2019.00732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the degeneration of motor neurons. Genetic factors play a key role in ALS, and identifying variants that contribute to ALS susceptibility is an important step toward understanding the etiology of the disease. The frequency of protein altering variants in ALS patients has been extensively investigated in populations of different ethnic origin. To further delineate the genetic architecture of the Hungarian ALS patients, we aimed to detect potentially damaging variants in major and minor ALS genes and in genes related to other neurogenetic disorders. A combination of repeat-sizing of C9orf72 and next-generation sequencing (NGS) was used to comprehensively assess genetic variations in 107 Hungarian patients with ALS. Variants in major ALS genes were detected in 36.45% of patients. As a result of repeat sizing, pathogenic repeat expansions in the C9orf72 gene were detected in 10 patients (9.3%). According to the NGS results, the most frequently mutated genes were NEK1 (5.6%), NEFH, SQSTM1 (3.7%), KIF5A, SPG11 (2.8%), ALS2, CCNF, FUS, MATR3, TBK1, and UBQLN2 (1.9%). Furthermore, potentially pathogenic variants were found in GRN and SIGMAR1 genes in single patients. Additional 33 novel or rare known variants were detected in minor ALS genes, as well as 48 variants in genes previously linked to other neurogenetic disorders. The latter finding supports the hypothesis that common pathways in different neurodegenerative diseases may contribute to the development of ALS. While the disease-causing role of several variants identified in this study has previously been established, other variants may show reduced penetrance or may be rare benign variants. Our findings highlight the necessity for large-scale multicenter studies on ALS patients to gain a more accurate view of the genetic pattern of ALS.
Collapse
Affiliation(s)
| | - Piyush Gampawar
- Research Unit for Genetic Epidemiology, Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Helena Schmidt
- Research Unit for Genetic Epidemiology, Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Zsófia F. Nagy
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - Dóra Nagy
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, University of Szeged, Szeged, Hungary
| | | | - Márta Széll
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
| |
Collapse
|