1
|
Becerril-Gaitan A, Mokua C, Liu C, Nguyen T, Shaker F, Nguyen J, Gusdon AM, Brown RJ, Cochran J, Blackburn S, Chen PR, Dannenbaum M, Choi HA, Chen CJ. Racial and Ethnic Differences in Mortality and Functional Outcomes Following Aneurysmal Subarachnoid Hemorrhage. Stroke 2024; 55:1572-1581. [PMID: 38716675 DOI: 10.1161/strokeaha.123.045489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Ischemic and hemorrhagic stroke incidence tends to be higher among minority racial and ethnic groups. The effect of race and ethnicity following an aneurysmal subarachnoid hemorrhage (aSAH) remains poorly understood. Thus, we aimed to explore the association between race and ethnicity and aSAH outcomes. METHODS Single-center retrospective review of patients with aSAH from January 2009 to March 2023. Primary outcome was in-hospital mortality. Secondary outcomes included delayed cerebral ischemia, cerebral infarction, radiographic and symptomatic vasospasm, pulmonary complications, epileptic seizures, external ventricular drain placement, and modified Rankin Scale score at discharge and 3-month follow-up. Associations between race and ethnicity and outcomes were assessed using binary and ordinal regression models, with multivariable models adjusted for significant covariates. RESULTS A total of 1325 patients with subarachnoid hemorrhage presented to our center. Among them, 443 cases were excluded, and data from 882 patients with radiographically confirmed aSAH were analyzed. Distribution by race and ethnicity was 40.8% (n=360) White, 31.4% (n=277) Hispanic, 22.1% (n=195) Black, and 5.7% (n=50) Asian. Based on Hunt-Hess and modified Fisher grade, aSAH severity was similar among groups (P=0.269 and P=0.469, respectively). In-hospital mortality rates were highest for Asian (14.0%) and Hispanic (11.2%) patients; however, after adjusting for patient sex, age, health insurance, smoking history, alcohol and substance abuse, and aneurysm treatment, the overall likelihood was comparable to White patients. Hispanic patients had higher risks of developing cerebral infarction (adjusted odds ratio, 2.17 [1.20-3.91]) and symptomatic vasospasm (adjusted odds ratio, 1.64 [1.05-2.56]) than White patients and significantly worse discharge modified Rankin Scale scores (adjusted odds ratio, 1.44 [1.05-1.99]). Non-White patients also demonstrated a lower likelihood of 0 to 2 discharge modified Rankin Scale scores (adjusted odds ratio, 0.71 [0.50-0.98]). No significant interactions between race and ethnicity and age or sex were found for in-hospital mortality and functional outcomes. CONCLUSIONS Our study identified significant differences in cerebral infarction and symptomatic vasospasm risk between Hispanic and White patients following aSAH. A higher likelihood of worse functional outcomes at discharge was found among non-White patients. These findings emphasize the need to better understand predisposing risk factors that may influence aSAH outcomes. Efforts toward risk stratification and patient-centered management should be pursued.
Collapse
Affiliation(s)
| | | | - Collin Liu
- Neurosurgery Department, UTHealth Houston, TX
| | - Tien Nguyen
- Neurosurgery Department, UTHealth Houston, TX
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Gaastra B, Alexander S, Bakker MK, Bhagat H, Bijlenga P, Blackburn SL, Collins MK, Doré S, Griessenauer CJ, Hendrix P, Hong EP, Hostettler IC, Houlden H, IIhara K, Jeon JP, Kim BJ, Li J, Morel S, Nyquist P, Ren D, Ruigrok YM, Werring D, Tapper W, Galea I, Bulters D. A Genome-Wide Association Study of Outcome After Aneurysmal Subarachnoid Haemorrhage: Discovery Analysis. Transl Stroke Res 2023; 14:681-687. [PMID: 36264420 PMCID: PMC10444641 DOI: 10.1007/s12975-022-01095-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/12/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022]
Abstract
Candidate gene studies have identified genetic variants associated with clinical outcomes following aneurysmal subarachnoid haemorrhage (aSAH), but no genome-wide association studies have been performed to date. Here we report the results of the discovery phase of a two-stage genome-wide meta-analysis of outcome after aSAH. We identified 157 independent loci harbouring 756 genetic variants associated with outcome after aSAH (p < 1 × 10-4), which require validation. A single variant (rs12949158), in SPNS2, achieved genome-wide significance (p = 4.29 × 10-8) implicating sphingosine-1-phosphate signalling in outcome after aSAH. A large multicentre international effort to recruit samples for validation is required and ongoing. Validation of these findings will provide significant insight into the pathophysiology of outcomes after aSAH with potential implications for treatment.
Collapse
Affiliation(s)
- Ben Gaastra
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Sheila Alexander
- School of Nursing, University of Pittsburgh, 3500 Victoria Street, Pittsburgh, PA, 15261, USA
| | - Mark K Bakker
- Department of Neurology, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Heidelberlaan 100, 3584 CX, Utrecht, the Netherlands
| | - Hemant Bhagat
- Division of Neuroanaesthesia, Department of Anaesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Philippe Bijlenga
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | | | - Malie K Collins
- Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| | - Sylvain Doré
- Departments of Anesthesiology, Neurology, Psychiatry, Pharmaceutics, and Neuroscience College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Christoph J Griessenauer
- Department of Neurosurgery, Geisinger, Danville, PA, USA
- Department of Neurosurgery, Paracelsus Medical University, Christian-Doppler Klinik, Salzburg, Austria
| | - Philipp Hendrix
- Department of Neurosurgery, Geisinger, Danville, PA, USA
- Department of Neurosurgery, Saarland University Medical Center, Homburg, Germany
| | - Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Isabel C Hostettler
- Stroke Research Centre, Institute of Neurology, University College London, London, UK
- Department of Neurosurgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Henry Houlden
- Stroke Research Centre, Institute of Neurology, University College London, London, UK
| | - Koji IIhara
- National Cerebral and Cardiovascular Center Hospital, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Jin Pyeong Jeon
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jiang Li
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Health System, Danville, Danville, PA, 17822, USA
| | - Sandrine Morel
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Paul Nyquist
- Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Dianxu Ren
- School of Nursing, University of Pittsburgh, 3500 Victoria Street, Pittsburgh, PA, 15261, USA
| | - Ynte M Ruigrok
- Department of Neurology, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Heidelberlaan 100, 3584 CX, Utrecht, the Netherlands
| | - David Werring
- Stroke Research Centre, Institute of Neurology, University College London, London, UK
| | - Will Tapper
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Ian Galea
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Diederik Bulters
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
3
|
Galea I, Bandyopadhyay S, Bulters D, Humar R, Hugelshofer M, Schaer DJ. Haptoglobin Treatment for Aneurysmal Subarachnoid Hemorrhage: Review and Expert Consensus on Clinical Translation. Stroke 2023; 54:1930-1942. [PMID: 37232189 PMCID: PMC10289236 DOI: 10.1161/strokeaha.123.040205] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating form of stroke frequently affecting young to middle-aged adults, with an unmet need to improve outcome. This special report focusses on the development of intrathecal haptoglobin supplementation as a treatment by reviewing current knowledge and progress, arriving at a Delphi-based global consensus regarding the pathophysiological role of extracellular hemoglobin and research priorities for clinical translation of hemoglobin-scavenging therapeutics. After aneurysmal subarachnoid hemorrhage, erythrocyte lysis generates cell-free hemoglobin in the cerebrospinal fluid, which is a strong determinant of secondary brain injury and long-term clinical outcome. Haptoglobin is the body's first-line defense against cell-free hemoglobin by binding it irreversibly, preventing translocation of hemoglobin into the brain parenchyma and nitric oxide-sensitive functional compartments of cerebral arteries. In mouse and sheep models, intraventricular administration of haptoglobin reversed hemoglobin-induced clinical, histological, and biochemical features of human aneurysmal subarachnoid hemorrhage. Clinical translation of this strategy imposes unique challenges set by the novel mode of action and the anticipated need for intrathecal drug administration, necessitating early input from stakeholders. Practising clinicians (n=72) and scientific experts (n=28) from 5 continents participated in the Delphi study. Inflammation, microvascular spasm, initial intracranial pressure increase, and disruption of nitric oxide signaling were deemed the most important pathophysiological pathways determining outcome. Cell-free hemoglobin was thought to play an important role mostly in pathways related to iron toxicity, oxidative stress, nitric oxide, and inflammation. While useful, there was consensus that further preclinical work was not a priority, with most believing the field was ready for an early phase trial. The highest research priorities were related to confirming haptoglobin's anticipated safety, individualized versus standard dosing, timing of treatment, pharmacokinetics, pharmacodynamics, and outcome measure selection. These results highlight the need for early phase trials of intracranial haptoglobin for aneurysmal subarachnoid hemorrhage, and the value of early input from clinical disciplines on a global scale during the early stages of clinical translation.
Collapse
Affiliation(s)
- Ian Galea
- Department of Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom (I.G., S.B., D.B.)
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom (I.G., S.B., D.B.)
| | - Soham Bandyopadhyay
- Department of Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom (I.G., S.B., D.B.)
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom (I.G., S.B., D.B.)
| | - Diederik Bulters
- Department of Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Hampshire, United Kingdom (I.G., S.B., D.B.)
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom (I.G., S.B., D.B.)
| | - Rok Humar
- Division of Internal Medicine (R.H., D.J.S.), Universitätsspital and University of Zurich, Switzerland
| | - Michael Hugelshofer
- Department of Neurosurgery, Clinical Neuroscience Center (M.H.), Universitätsspital and University of Zurich, Switzerland
| | - Dominik J. Schaer
- Division of Internal Medicine (R.H., D.J.S.), Universitätsspital and University of Zurich, Switzerland
| |
Collapse
|
4
|
Gaastra B, Duncan P, Bakker MK, Hostettler IC, Alg VS, Houlden H, Ruigrok YM, Galea I, Tapper W, Werring D, Bulters D. Genetic variation in NFE2L2 is associated with outcome following aneurysmal subarachnoid haemorrhage. Eur J Neurol 2023; 30:116-124. [PMID: 36148820 PMCID: PMC10092511 DOI: 10.1111/ene.15571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Nuclear factor erythroid 2-related factor 2 (NRF2; encoded by the NFE2L2 gene) has been implicated in outcome following aneurysmal subarachnoid haemorrhage (aSAH) through its activity as a regulator of inflammation, oxidative injury and blood breakdown product clearance. The aim of this study was to identify whether genetic variation in NFE2L2 is associated with clinical outcome following aSAH. METHODS Ten tagging single nucleotide polymorphisms (SNPs) in NFE2L2 were genotyped and tested for association with dichotomized clinical outcome, assessed by the modified Rankin scale, in both a discovery and a validation cohort. In silico functional analysis was performed using a range of bioinformatic tools. RESULTS One SNP, rs10183914, was significantly associated with outcome following aSAH in both the discovery (n = 1007) and validation cohorts (n = 466). The risk of poor outcome was estimated to be 1.33-fold (95% confidence interval 1.12-1.58) higher in individuals with the T allele of rs10183914 (pmeta-analysis = 0.001). In silico functional analysis identified rs10183914 as a potentially regulatory variant with effects on transcription factor binding in addition to alternative splicing with the T allele, associated with a significant reduction in the NFE2L2 intron excision ratio (psQTL = 1.3 × 10-7 ). CONCLUSIONS The NFE2L2 SNP, rs10183914, is significantly associated with outcome following aSAH. This is consistent with a clinically relevant pathophysiological role for oxidative and inflammatory brain injury due to blood and its breakdown products in aSAH. Furthermore, our findings support NRF2 as a potential therapeutic target following aSAH and other forms of intracranial haemorrhage.
Collapse
Affiliation(s)
- Ben Gaastra
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, UK
| | - Poppy Duncan
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark K Bakker
- Department of Neurology, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Isabel C Hostettler
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
- Department of Neurosurgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Varinder S Alg
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - Henry Houlden
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - Ynte M Ruigrok
- Department of Neurology, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ian Galea
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Will Tapper
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David Werring
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - Diederik Bulters
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
5
|
Medina-Suárez J, Rodríguez-Esparragón F, Sosa-Pérez C, Cazorla-Rivero S, Torres-Mata LB, Jiménez-O’Shanahan A, Clavo B, Morera-Molina J. A Review of Genetic Polymorphisms and Susceptibilities to Complications after Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2022; 23:ijms232315427. [PMID: 36499752 PMCID: PMC9739720 DOI: 10.3390/ijms232315427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Delayed cerebral ischemia (DCI) and vasospasm are two complications of subarachnoid hemorrhages (SAHs) which entail high risks of morbidity and mortality. However, it is unknown why only some patients who suffer SAHs will experience DCI and vasospasm. The purpose of this review is to describe the main genetic single nucleotide polymorphisms (SNPs) that have demonstrated a relationship with these complications. The SNP of the nitric oxide endothelial synthase (eNOS) has been related to the size and rupture of an aneurysm, as well as to DCI, vasospasm, and poor neurological outcome. The SNPs responsible for the asymmetric dimetilarginine and the high-mobility group box 1 have also been associated with DCI. An association between vasospasm and the SNPs of the eNOS, the haptoglobin, and the endothelin-1 receptor has been found. The SNPs of the angiotensin-converting enzyme have been related to DCI and poor neurological outcome. Studies on the SNPs of the Ryanodine Receptor yielded varying results regarding their association with vasospasm.
Collapse
Affiliation(s)
- Jose Medina-Suárez
- Research Unit, University Hospital of Gran Canaria Dr. Negrín, 35010 Gran Canaria, Spain
- Department of Specific Teaching Methodologies, University of Las Palmas de Gran Canaria, 35004 Gran Canaria, Spain
- Correspondence: (J.M.-S.); (F.R.-E.)
| | - Francisco Rodríguez-Esparragón
- Research Unit, University Hospital of Gran Canaria Dr. Negrín, 35010 Gran Canaria, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 Tenerife, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.M.-S.); (F.R.-E.)
| | - Coralia Sosa-Pérez
- Neurosurgery Unit, University Hospital of Gran Canaria Dr. Negrín, 35010 Gran Canaria, Spain
- Department of Medical and Surgery Sciences, University of Las Palmas de Gran Canaria, 35016 Gran Canaria, Spain
| | - Sara Cazorla-Rivero
- Research Unit, University Hospital of Gran Canaria Dr. Negrín, 35010 Gran Canaria, Spain
- University of La Laguna, 38200 Tenerife, Spain
| | - Laura B. Torres-Mata
- Research Unit, University Hospital of Gran Canaria Dr. Negrín, 35010 Gran Canaria, Spain
| | | | - Bernardino Clavo
- Research Unit, University Hospital of Gran Canaria Dr. Negrín, 35010 Gran Canaria, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 Tenerife, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- RETIC de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), 28029 Madrid, Spain
- Instituto de Salud Carlos III, 28029 Madrid, Spain
- Chronic Pain Unit, University Hospital of Gran Canaria Dr. Negrín, 35010 Gran Canaria, Spain
- Radiation Oncology Department, University Hospital of Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain
| | - Jesús Morera-Molina
- Neurosurgery Unit, University Hospital of Gran Canaria Dr. Negrín, 35010 Gran Canaria, Spain
- Department of Medical and Surgery Sciences, University of Las Palmas de Gran Canaria, 35016 Gran Canaria, Spain
| |
Collapse
|
6
|
Jeon JP, Han SW, Kim TY, Lim SH, Youn DH, Rhim JK, Park JJ, Ahn JH, Kim HC, Yang J. Association of Haptoglobin Phenotypes with Outcomes in Patients with Spontaneous Intracerebral Hemorrhage. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071001. [PMID: 35888091 PMCID: PMC9318044 DOI: 10.3390/life12071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Object. We aimed to investigate the association of Haptoglobin (Hp) phenotypes with perihematomal edema (PHE) and neurological outcomes after intracerebral hemorrhage (ICH). Methods. This prospective multicenter study enrolled patients that suffered ICH from March 2017 to February 2020. Hp phenotypes were determined using Western blotting; relative α1 intensity was calculated in patients with Hp2-1. A multivariable logistic regression analysis was then conducted to identify risk factors for increased relative PHE at 96 h and 3-month poor outcomes. Results. In total, 120 patients were ultimately enrolled: Hp1-1 (n = 15, 12.5%); Hp2-1 (n = 51, 42.5%); and Hp2-2 (n = 54, 45.0%). Hp phenotype was significantly associated with PHE (p = 0.028). With Hp1-1 as a reference value, Hp2-2 significantly increased the likelihood of increased rPHE (OR = 6.294, 95% CI: 1.283–30.881), while Hp2-1 did not (OR = 2.843, 95% CI: 0.566–14.284). Poor outcomes were found to be closely associated with hematoma volume at admission (OR = 1.057, 95% CI: 1.015–1.101) and surgical treatment (OR = 5.340, 95% CI: 1.665–17.122) but not Hp phenotypes (p = 0.190). Further, a high level of relative α1 intensity was identified to be significantly associated with decreased rPHE (OR = 0.020, 95% CI: 0.001–0.358). However, the relative α1 intensity was not associated with poor outcomes (OR = 0.057, 95% CI: 0.001–11.790). Conclusions: ICH patients with Hp2-2 exhibited a higher likelihood of increased rPHE than those with Hp1-1. Higher relative α1 intensities were identified to be closely associated with rPHE in patients with Hp2-1.
Collapse
Affiliation(s)
- Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24253, Korea;
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.W.H.); (T.Y.K.); (S.H.L.); (D.H.Y.)
| | - Tae Yeon Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.W.H.); (T.Y.K.); (S.H.L.); (D.H.Y.)
| | - Seung Hyuk Lim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.W.H.); (T.Y.K.); (S.H.L.); (D.H.Y.)
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.W.H.); (T.Y.K.); (S.H.L.); (D.H.Y.)
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju 63243, Korea;
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul 05030, Korea;
| | - Jun Hyong Ahn
- Department of Neurosurgery, Kangwon National University Hospital, Chuncheon 24289, Korea;
| | - Heung Cheol Kim
- Department of Radiology, Hallym University College of Medicine, Chuncheon 24253, Korea;
| | - Jinseo Yang
- Department of Neurology, Konkuk University Medical Center, Seoul 05030, Korea;
- Correspondence:
| |
Collapse
|
7
|
Han SW, Kim BJ, Kim TY, Lim SH, Youn DH, Hong EP, Rhim JK, Park JJ, Lee JJ, Cho YJ, Gaastra B, Galea I, Jeon JP. Association of Haptoglobin Phenotype With Neurological and Cognitive Outcomes in Patients With Subarachnoid Hemorrhage. Front Aging Neurosci 2022; 14:819628. [PMID: 35386117 PMCID: PMC8978790 DOI: 10.3389/fnagi.2022.819628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTo assess the association of haptoglobin (Hp) phenotype with neurological and cognitive outcomes in a large cohort of patients with subarachnoid hemorrhage (SAH).MethodsThis prospective multicenter study enrolled patients with aneurysmal SAH between May 2015 and September 2020. The Hp phenotype was confirmed via Western blots. The relative intensities of α1 in individuals carrying Hp2-1 were compared with those of albumin. Multivariable logistic and Cox proportional-hazard regression analyses were used to identify the risk factors for 6-month and long-term outcomes, respectively.ResultsA total of 336 patients including the phenotypes Hp1-1 (n = 31, 9.2%), Hp2-1 (n = 126, 37.5%), and Hp2-2 (n = 179, 53.3%) were analyzed. The Hp phenotype was closely associated with 6-month outcome (p = 0.001) and cognitive function (p = 0.013), and long-term outcome (p = 0.002) and cognitive function (p < 0.001). Compared with Hp1-1 as the reference value, Hp2-2 significantly increased the risk of 6-month poor outcome (OR: 7.868, 95% CI: 1.764–35.093) and cognitive impairment (OR: 8.056, 95% CI: 1.020–63.616), and long-term poor outcome (HR: 5.802, 95% CI: 1.795–18.754) and cognitive impairment (HR: 7.434, 95% CI: 2.264–24.409). Long-term cognitive impairment based on the Hp phenotype was significantly higher in patients under 65 years of age (p < 0.001) and female gender (p < 0.001). A lower relative α1/albumin intensity (OR: 0.010, 95% CI: 0.000–0.522) was associated with poor outcome at 6 months but not cognitive impairment in patients with SAH expressing Hp2-1.ConclusionHp2-2 increased the risk of poor neurological outcomes and cognitive impairment compared with Hp1-1. For Hp2-1, higher relative α1 intensities were related to 6-month favorable outcomes.
Collapse
Affiliation(s)
- Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Tae Yeon Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Seung Hyuk Lim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University School of Medicine, Jeju, South Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul, South Korea
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Yong Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Ben Gaastra
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, United Kingdom
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea
- *Correspondence: Jin Pyeong Jeon,
| |
Collapse
|
8
|
Galea I, Durnford A, Glazier J, Mitchell S, Kohli S, Foulkes L, Norman J, Darekar A, Love S, Bulters DO, Nicoll JAR, Boche D. Iron Deposition in the Brain After Aneurysmal Subarachnoid Hemorrhage. Stroke 2022; 53:1633-1642. [PMID: 35196874 DOI: 10.1161/strokeaha.121.036645] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND After aneurysmal subarachnoid hemorrhage (SAH), thrombus forms over the cerebral cortex and releases hemoglobin. When extracellular, hemoglobin is toxic to neurones. High local hemoglobin concentration overwhelms the clearance capacity of macrophages expressing the hemoglobin-haptoglobin scavenger receptor CD163. We hypothesized that iron is deposited in the cortex after SAH and would associate with outcome. METHODS Two complementary cross-sectional studies were conducted. Postmortem brain tissue from 39 SAH (mean postictal interval of 9 days) and 22 control cases was studied with Perls' staining for iron and immunolabeling for CD163, ADAM17 (a disintegrin and metallopeptidase domain 17), CD68, and Iba1 (ionized calcium binding adaptor molecule 1). In parallel, to study the persistence of cortical iron and its relationship to clinical outcome, we conducted a susceptibility-weighted imaging study of 21 SAH patients 6 months postictus and 10 control individuals. RESULTS In brain tissue from patients dying soon after SAH, the distribution of iron deposition followed a gradient that diminished with distance from the brain surface. Iron was located intracellularly (mainly in macrophages, and occasionally in microglia, neurones, and glial cells) and extracellularly. Microglial activation and motility markers were increased after SAH, with a similar inward diminishing gradient. In controls, there was a positive correlation between CD163 and iron, which was lost after SAH. In SAH survivors, iron-sensitive imaging 6 months post-SAH confirmed persistence of cortical iron, related to the size and location of the blood clot immediately after SAH, and associated with cognitive outcome. CONCLUSIONS After SAH, iron deposits in the cortical gray matter in a pattern that reflects proximity to the brain surface and thrombus and is related to cognitive outcome. These observations support therapeutic manoeuvres which prevent the permeation of hemoglobin into the cortex after SAH.
Collapse
Affiliation(s)
- Ian Galea
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| | - Andrew Durnford
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.).,Wessex Neurological Centre (A. Durnford, D.O.B.), University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - James Glazier
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| | - Sophie Mitchell
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| | - Suraj Kohli
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| | | | - Jeanette Norman
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| | - Angela Darekar
- Medical Physics (A. Darekar), University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Seth Love
- Dementia Research Group, Bristol Medical School, University of Bristol, United Kingdom (S.L.)
| | - Diederik O Bulters
- Wessex Neurological Centre (A. Durnford, D.O.B.), University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - James A R Nicoll
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.).,Department of Cellular Pathology (J.A.R.N.), University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Delphine Boche
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| |
Collapse
|
9
|
Gaastra B, Alexander S, Bakker MK, Bhagat H, Bijlenga P, Blackburn S, Collins MK, Doré S, Griessenauer C, Hendrix P, Hong EP, Hostettler IC, Houlden H, IIhara K, Jeon JP, Kim BJ, Kumar M, Morel S, Nyquist P, Ren D, Ruigrok YM, Werring D, Galea I, Bulters D, Tapper W. Genome-Wide Association Study of Clinical Outcome After Aneurysmal Subarachnoid Haemorrhage: Protocol. Transl Stroke Res 2022; 13:565-576. [PMID: 34988871 PMCID: PMC9232474 DOI: 10.1007/s12975-021-00978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
Aneurysmal subarachnoid haemorrhage (aSAH) results in persistent clinical deficits which prevent survivors from returning to normal daily functioning. Only a small fraction of the variation in clinical outcome following aSAH is explained by known clinical, demographic and imaging variables; meaning additional unknown factors must play a key role in clinical outcome. There is a growing body of evidence that genetic variation is important in determining outcome following aSAH. Understanding genetic determinants of outcome will help to improve prognostic modelling, stratify patients in clinical trials and target novel strategies to treat this devastating disease. This protocol details a two-stage genome-wide association study to identify susceptibility loci for clinical outcome after aSAH using individual patient-level data from multiple international cohorts. Clinical outcome will be assessed using the modified Rankin Scale or Glasgow Outcome Scale at 1–24 months. The stage 1 discovery will involve meta-analysis of individual-level genotypes from different cohorts, controlling for key covariates. Based on statistical significance, supplemented by biological relevance, top single nucleotide polymorphisms will be selected for replication at stage 2. The study has national and local ethical approval. The results of this study will be rapidly communicated to clinicians, researchers and patients through open-access publication(s), presentation(s) at international conferences and via our patient and public network.
Collapse
Affiliation(s)
- Ben Gaastra
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.,Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Sheila Alexander
- School of Nursing, University of Pittsburgh, 3500 Victoria Street, Pittsburgh, PA, 15261, USA
| | - Mark K Bakker
- Department of Neurology, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Heidelberlaan 100, 3584, CX, Utrecht, the Netherlands
| | - Hemant Bhagat
- Division of Neuroanaesthesia, Department of Anaesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Philippe Bijlenga
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Spiros Blackburn
- University of Texas Houston Health Science Center, Houston, TX, USA
| | - Malie K Collins
- Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| | - Sylvain Doré
- Departments of Anesthesiology, Neurology, Psychiatry, Pharmaceutics, and Neuroscience, College of Medicine, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Christoph Griessenauer
- Department of Neurosurgery, Geisinger, Danville, PA, USA.,Department of Neurosurgery, Christian-Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Philipp Hendrix
- Department of Neurosurgery, Geisinger, Danville, PA, USA.,Department of Neurosurgery, Saarland University Medical Center, Homburg, Germany
| | - Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Isabel C Hostettler
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - Henry Houlden
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - Koji IIhara
- National Cerebral and Cardiovascular Center Hospital, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Jin Pyeong Jeon
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea.,Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Munish Kumar
- Division of Neuroanaesthesia, Department of Anaesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sandrine Morel
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Paul Nyquist
- Departments of Neurology, Anesthesia/Critical Care Medicine, Neurosurgery and General Internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Dianxu Ren
- School of Nursing, University of Pittsburgh, 3500 Victoria Street, Pittsburgh, PA, 15261, USA
| | - Ynte M Ruigrok
- Department of Neurology, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Heidelberlaan 100, 3584, CX, Utrecht, the Netherlands
| | - David Werring
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Diederik Bulters
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Will Tapper
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
10
|
Wu F, Liu Z, Li G, Zhou L, Huang K, Wu Z, Zhan R, Shen J. Inflammation and Oxidative Stress: Potential Targets for Improving Prognosis After Subarachnoid Hemorrhage. Front Cell Neurosci 2021; 15:739506. [PMID: 34630043 PMCID: PMC8497759 DOI: 10.3389/fncel.2021.739506] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) has a high mortality rate and causes long-term disability in many patients, often associated with cognitive impairment. However, the pathogenesis of delayed brain dysfunction after SAH is not fully understood. A growing body of evidence suggests that neuroinflammation and oxidative stress play a negative role in neurofunctional deficits. Red blood cells and hemoglobin, immune cells, proinflammatory cytokines, and peroxidases are directly or indirectly involved in the regulation of neuroinflammation and oxidative stress in the central nervous system after SAH. This review explores the role of various cellular and acellular components in secondary inflammation and oxidative stress after SAH, and aims to provide new ideas for clinical treatment to improve the prognosis of SAH.
Collapse
Affiliation(s)
- Fan Wu
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongchi Liu
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ganglei Li
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lihui Zhou
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaiyuan Huang
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhanxiong Wu
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Renya Zhan
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Shen
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Zhou J, Guo P, Guo Z, Sun X, Chen Y, Feng H. Fluid metabolic pathways after subarachnoid hemorrhage. J Neurochem 2021; 160:13-33. [PMID: 34160835 DOI: 10.1111/jnc.15458] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 06/20/2021] [Indexed: 01/05/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating cerebrovascular disease with high mortality and morbidity. In recent years, a large number of studies have focused on the mechanism of early brain injury (EBI) and delayed cerebral ischemia (DCI), including vasospasm, neurotoxicity of hematoma and neuroinflammatory storm, after aSAH. Despite considerable efforts, no novel drugs have significantly improved the prognosis of patients in phase III clinical trials, indicating the need to further re-examine the multifactorial pathophysiological process that occurs after aSAH. The complex pathogenesis is reflected by the destruction of the dynamic balance of the energy metabolism in the nervous system after aSAH, which prevents the maintenance of normal neural function. This review focuses on the fluid metabolic pathways of the central nervous system (CNS), starting with ruptured aneurysms, and discusses the dysfunction of blood circulation, cerebrospinal fluid (CSF) circulation and the glymphatic system during disease progression. It also proposes a hypothesis on the metabolic disorder mechanism and potential therapeutic targets for aSAH patients.
Collapse
Affiliation(s)
- Jiru Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Peiwen Guo
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zongduo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
12
|
Heinsberg LW, Alexander SA, Crago EA, Minster RL, Poloyac SM, Weeks DE, Conley YP. Genetic Variability in the Iron Homeostasis Pathway and Patient Outcomes After Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2020; 33:749-758. [PMID: 32246437 PMCID: PMC7541432 DOI: 10.1007/s12028-020-00961-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND/OBJECTIVE Iron can be detrimental to most tissues both in excess and in deficiency. The brain in particular is highly susceptible to the consequences of excessive iron, especially during blood brain barrier disruption after injury. Preliminary evidence suggests that iron homeostasis is important during recovery after neurologic injury; therefore, the exploration of genetic variability in genes involved in iron homeostasis is an important area of patient outcomes research. The purpose of this study was to examine the relationship between tagging single nucleotide polymorphisms (SNPs) in candidate genes related to iron homeostasis and acute and long-term patient outcomes after aneurysmal subarachnoid hemorrhage (aSAH). METHODS This study was a longitudinal, observational, candidate gene association study of participants with aSAH that used a two-tier design including tier 1 (discovery, n = 197) and tier 2 (replication, n = 277). Participants were followed during the acute outcome phase for development of cerebral vasospasm and delayed cerebral ischemia (DCI) and during the long-term outcome phase for death and gross functional outcome using the Glasgow Outcome Scale (GOS; poor = 1-3). Genetic association analyses were performed using a logistic regression model adjusted for age, sex, and Fisher grade. Approximate Bayes factors (ABF) and Bayesian false discovery probabilities (BFDP) were used to prioritize and interpret results. RESULTS In tier 1, 235 tagging SNPs in 28 candidate genes were available for analysis and 26 associations (20 unique SNPs in 12 genes) were nominated for replication in tier 2. In tier 2, we observed an increase in evidence of association for three associations in the ceruloplasmin (CP) and cubilin (CUBN) genes. We observed an association of rs17838831 (CP) with GOS at 3 months (tier 2 results, odds ratio [OR] = 2.10, 95% confidence interval [CI] = 1.14-3.86, p = 0.018, ABF = 0.52, and BFDP = 70.8%) and GOS at 12 months (tier 2 results, OR = 1.86, 95% CI 0.98-3.52, p = 0.058, ABF = 0.72, and BFDP = 77.3%) as well as rs10904850 (CUBN) with DCI (tier 2 results, OR = 0.70, 95% CI 0.48-1.02, p = 0.064, ABF = 0.59, and BFDP = 71.8%). CONCLUSIONS Among the genes examined, our findings support a role for CP and CUBN in patient outcomes after aSAH. In an effort to translate these findings into clinical utility and improve outcomes after aSAH, additional research is needed to examine the functional roles of these genes after aSAH.
Collapse
Affiliation(s)
- Lacey W Heinsberg
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 440 Victoria Building, 3500 Victoria Street, Pittsburgh, PA, 15261, USA.
| | - Sheila A Alexander
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth A Crago
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan L Minster
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel E Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yvette P Conley
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 440 Victoria Building, 3500 Victoria Street, Pittsburgh, PA, 15261, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|